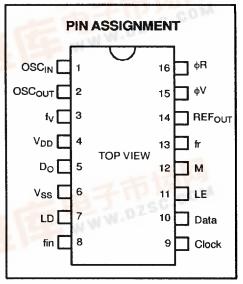
FUĴĨTSU

DATA SHEET

MB87006A Frequency Synthesizer CMOS Serial Input Phase Locked Loop (PLL)

CMOS SERIAL INPUT PHASE-LOCKED-LOOP (PLL) FREQUENCY SYNTHESIZER

The Fujitsu MB87006A, fabricated in CMOS technology, is a serial input Phase Locked Loop (PLL) frequency synthesizer.


The MB87006A contains an inverter for connection to an external oscillator, programmable reference divider (binary 14-bit programmable reference counter), 14-bit shift register, 14-bit latch, phase detector, charge pump, 17-bit shift register, 17-bit latch, programmable divider (binary 7-bit swallow counter, binary 10-bit programmable counter) and control generator for dual modulus prescaler.

When supplemented with a loop filter and VCO, the MB87006A contains the necessary circuitry to make up a Phase Locked Loop (PLL). Typically, a dual modulus prescaler such as the MB501L can be added, allowing input frequency operation up to 1.1GHz.

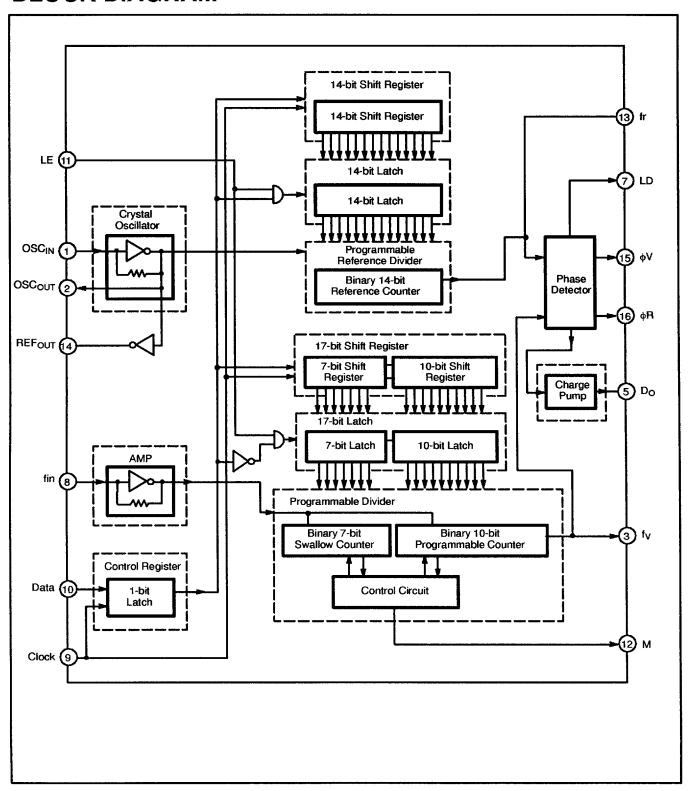
- Wide range power supply voltage: V_{CC} = 3.0 to 6.0V
- Wide temp range: Ta = -40 to 85°C
- 17MHz typical input capability
 @5V (fin input)
- On-chip inverter for oscillator
- Programmable divider with input amplifier consisting of:
 - · Binary 7-bit swallow counter
 - Binary 10-bit programmable counter
- Programmable reference divider with input amplifier consisting of:

- Binary 14-bit programmable reference counter
- Divide factor of programmable divider and programmable reference divider are set by serial data input (The last data bit is a control bit)
- 2-types of phase detector output
 - · On-chip charge pump output
 - Output for external charge pump
- Easy interface with Fujitsu prescalers
- 16-pin standard dual-in-line package (Suffix: -P)
 16-pin standard flat package (Suffix: -PF)

PLASTIC PACKAGE DIP-16P-M04 PLASTIC PACKAGE FPT-16P-M06

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

ABSOLUTE MAXIMUM RATINGS (see NOTE)

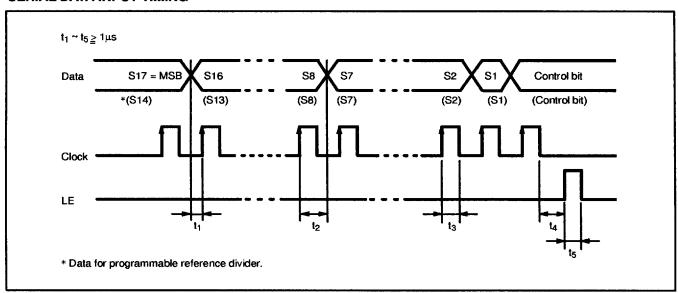

Rating	Symbol	Value	Unit
Power Supply Voltage	V _{DD}	V _{SS} -0.5 to V _{SS} +7.0	٧
Input Voltage	VIN	V _{SS} -0.5 to V _{DD} +0.5	٧
Output Voltage	Vout	V _{SS} -0.5 to V _{DD} +0.5	٧
Output Current	Гоит	±10	mA
Operating Temperature	Ta	-40 to +85	°C
Storage Temperature	T _{STG}	-55 to +125	∘c
Power Dissipation	PD	300	mW

NOTE: Permanent

Permanent device damage may occur if the above **Absolute Maximum Ratings** are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

BLOCK DIAGRAM

PIN DESCRIPTION


Pin No.	Symbol	VO	Description
1	OSC _{IN}	I	Input pin for crystal oscillator. Input to the inverting amplifier that forms part of the oscillator. This pin receives the oscillator signal as AC coupled when an external oscillator is used. For large amplitude signals (standard CMOS levels) DC coupling may also be used.
2	OSC _{OUT}	0	Output pin for crystal oscillator. Output of the inverting amplifier. This pin should be open when an external oscillator is used.
3	fv	0	Monitor output of the phase detector. This pin is tied to the programmable divider output.
4	V _{DD}	_	Power supply voltage input.
5	Do	0	Three-state charge pump output of phase detector. The mode of D_O is changed by the combination of programmable reference divider output frequency fr, and programmable divider output frequency f _V as listed below: fr > f _V : Drive mode (D_O = High level) fr = f _V : High impedance fr < f _V : Sink mode (D_O = Low level)
6	V _{SS}	_	Ground.
7	LD	0	Output of phase detector. It is high level when fr and f_V are equal, and when the loop is locked. Otherwise it outputs negative pulse signal.
8	fin	1	Clock input for programmable divider. This input contains internal bias circuit and amplifier. The connection with an external dual-modulus prescaler should be an AC connection.
9	Clock	1	Clock signal input for 17-bit shift register and 14-bit shift register. Each rising edge of the clock shifts one bit of the data into the shift registers.
10	Data	l	Serial data input for programmable divider and programmable reference divider. The last bit of the data is the control bit. Control bit determines which latch is activated. The data stored in the shift register is transferred to the 14-bit latch when the bit is high, and to 17-bit latch when low.
11	LE	I	Load enable input with internal pull up resistor. When this pin is high (active high), the data stored in shift register is transferred to 14-bit latch or 17-bit latch depending on the control bit data.
12	М	0	Control output for an external dual modulus prescaler. The connection to the prescaler should be DC connection. This output level is synchronized with falling edge of fin input signal (pin #8). Pulse swallow function: e.g. MB501L: M = High: Preset modulus factor 64 or 128 M = Low Preset modulus factor 65 to 129

PIN DESCRIPTION (Continued)

Pin No.	Symbol	VO	Description
13	fr	0	Monitors output of phase detector input. This pin is tied to the programmable reference divider output.
14	REFOUT	0	Monitor output pin of the reference frequency. This output can be used as system clock for microprocessor, or reference oscillator for another PLL frequency synthesizer.
15 16	φV φR	0	Output for external charge pump. The mode of \$\phi \text{R}\$ and \$\phi \text{ are changed by the combination of programmable reference divider output frequency fr and programmable divider output frequency fy as listed below. \$\phi \text{P}\$ fr > fy: Low-level High-level fr = fy: High-level High-level fr < fy: High-level Low-level

FUNCTIONAL DESCRIPTION

SERIAL DATA INPUT TIMING

Notes: Data: Serial data input is used for setting divide factor of programmable reference divider and programmable divider.

Data is input from MSB, and last bit data is a control bit.

Control bit is set high when divide factor of programmable reference divider is set. Control bit is set low level when divide factor of programmable divider is set.

Clock: Data is input to internal shift registers by rising edge of the clock.

LE: Load enable input:

When LE is high, the data stored in shift register is transferred to 14-bit latch, or 17-bit latch depending on the control bit setting.

PULSE SWALLOW FUNCTION

 $f_{VCO} = [(N \times M) + A] \times f_{OSC} \div R(N > A)$

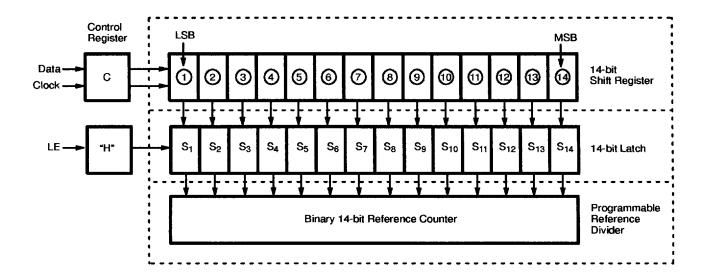
f_{VCO}: Output frequency of external voltage controlled oscillator (VCO)

N : Preset divide factor of binary 10-bit programmable counter (5 to 1023)

M : Preset modulus factor of external dual modulus prescaler

(e.g. 64 in 64/65 mode, 128 in 128/129 mode of an MB501L prescaler)

: Preset divide factor of binary 7-bit programmable counter (0 to 127, A < N)


fosc : Output frequency of external oscillator

R : Preset divide factor of binary 14-bit programmable reference counter (5 to 16383)

DIVIDE FACTOR OF PROGRAMMABLE REFERENCE DIVIDER

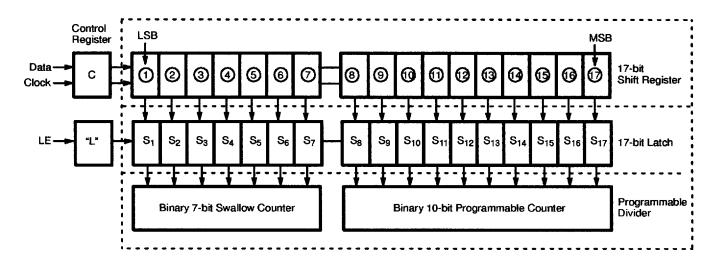
Serial data consists of 14-bit data, which is used for setting divide factor of programmable reference counter, and 1-bit control data. In this case, control bit is set high level.

The data format is shown below.

BINARY 14-BIT REFERENCE COUNTER DATA INPUT

(1)	13	12	11)	100	9	8	Ø	6	⑤	4	3	2	①	Divide Factor
0	0	0	0	0	0	0	0	0	0	0	1	0	1	5
0	0	0	0	0	0	0	0	0	0	0	1	1	0	6
0	0	0	0	0	0	0	0	0	0	0	1	1	1	7
					•				•		•		•	
													•	
1	1	1	1	1	1	1	1	1	1	1	1	1	1	16383

Note: Divide factor less than 5 is prohibited.


Divide factor: 5 to 16383

MB87006A

DIVIDE FACTOR OF PROGRAMMABLE DIVIDER

Serial data consists of 17-bit data, which is used for setting divide factor of programmable divider, and 1-bit control data. In this case, control bit is set low level. The data (1) to (7) set a divide factor of 7-bit swallow counter and data (8) to (17) set divide factor of 10-bit programmable counter.

The data format is shown below.

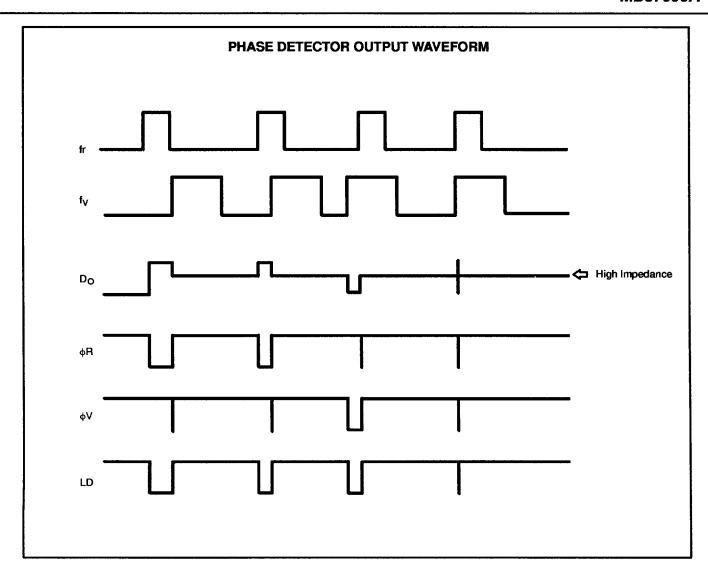
BINARY 7-BIT SWALLOW COUNTER DATA INPUT

7	6	⑤	(4)	3	@	Э	Divide Factor A
0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1
0	0	0	0	0	1	0	2
0	0	0	0	0	1	1	3
0	0	0	0	1	0	0	4
•	•		•	•	•	•	
•	•		•	•	•		
1	1	1	1	1	1	1	127

Note: Divide factor A: 0 to 127

Depending upon the divide factor set input (SW) of external prescaler, the input data should be as follows.

e.g. MB501L (÷65/65)prescaler


SW = H (64/65): Bit 7 to shift register 7 should be zero.

BINARY 10-BIT PROGRAMMABLE COUNTER DATA INPUT

0	10	(3)	13	3	13	①	0	9	8	Divide Factor N
0	0	0	0	0	0	0	1	0	1	5
0	0	0	0	0	0	0	1	1	0	6
0	0	0	0	0	0	0	1	1	1	7
	.							•		
			•	•				•		
1	1	1	1	1	1	1	1	1	1	1023

Note: Divide factor less than 5 is prohibited.

Divide factor N: 5 to 1023

RECOMMENDED OPERATING CONDITIONS

 $(V_{SS} = 0V)$

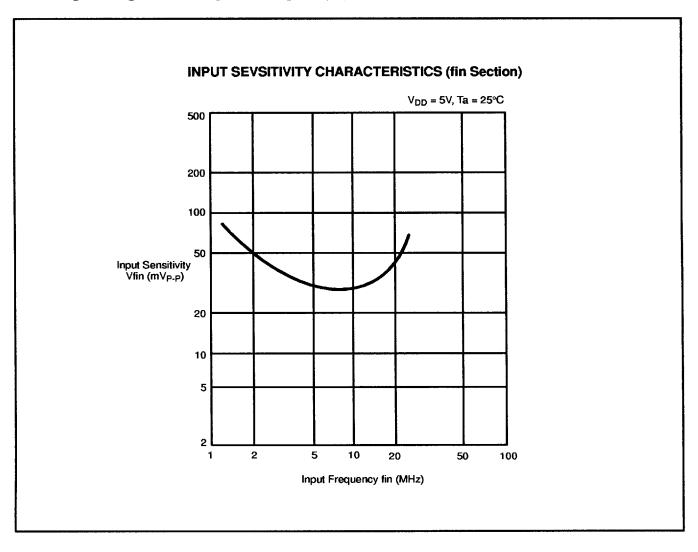
_			Unit		
Parameter	Symbol	Min	Тур	Max	OHE
Power Supply Voltage	V _{DD}	3.0	-	6.0	٧
Input Voltage	V _{IN}	V _{SS}	_	V _{DD}	٧
Operating Temperature	Ta	-40	_	+85	°C

ELECTRICAL CHARACTERISTICS

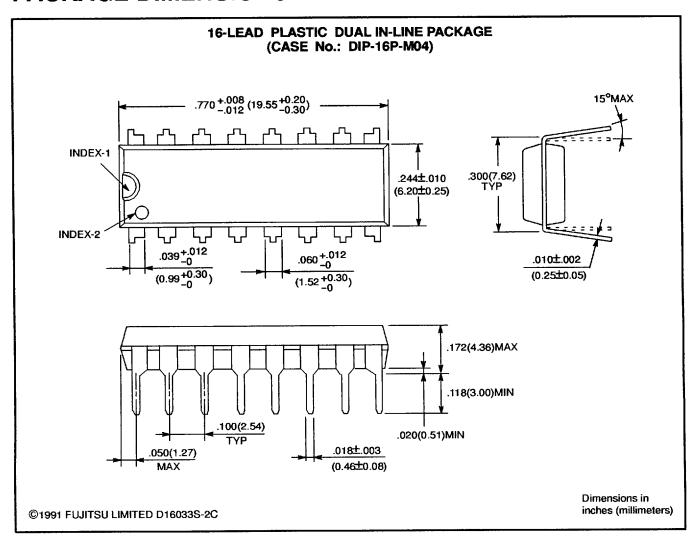
 $(V_{DD} = 3.0V, V_{SS} = 0V, Ta = -40 \text{ to } 85^{\circ}\text{C})$

					Value				
Parameter	Symbol	Condition	Min	Тур	Max	Unit			
High-level Input Voltage	Except fin	V _{IH}		V _{DD} x0.7	-	-			
Low-level Input Voltage	and OSC _{IN}	V _{IL}		-	-	V _{DD} x0.3	٧		
Land Constitute	fin	Vfpp	Amplitude in AC	0.5	_	-			
Input Sensitivity	OSCIN	Vsin	coupling, sine wave	0.5	-	-	V _{P-P}		
High-level Input Current	Except fin	ļн	V _{IN} = V _{DD}	-	1.0	_	A		
Low-level Input Current	and OSC _{IN}	Iμ	VIN = VSS	-	-1.0	-	μΑ		
	fin	lfin	V _{IN} = V _{SS} to V _{DD}	-	±30	-	μА		
Input Current	OSC _{IN}	losc	V _{IN} = V _{SS} to V _{DD}	-	±30	-	μА		
	LE	ILE	VIN = VSS	-	-40	_	μА		
High-level Output Voltage	Except	V _{ОН}	I _{OH} = 0μA	2.95	-	_			
Low-level Output Voltage	OSC _{OUT}	V _{OL}	I _{OL} = 0μA	-	-	0.05	V		
High-level Output Current	Except M	Юн	V _{OH} = 2.6V	-0.5	-	_			
Low-level Output Current	and OSC _{OUT}	loL	V _{OL} = 0.4V	0.5	-	_	mA		
High-level Output Current		lонм	V _{OH} = 2.6V	-0.7	-	-			
Low-level Output Current	M	lolm	V _{OL} = 0.4V	1.5	_	-	mA		
Power Supply Current *1		1 _{DD}		-	2.5	_	mA		
Maximum Operating Frequency of Programmable Reference Divider		fmaxd		10	20	-	MHz		
Maximum Operating Frequency of Programmable Divider		fmaxp		10	20	-	MHz		

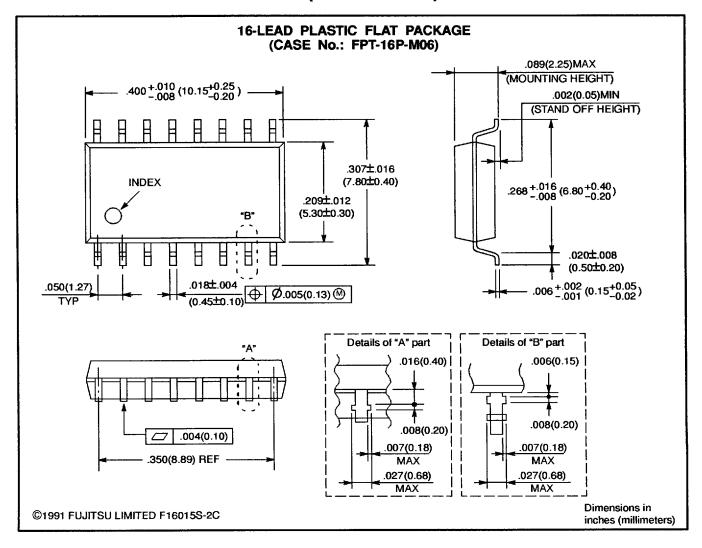
Notes: *1: fin = 8.0 MHz 11.5MHz Crystal is connected between OSC_{IN} and OSC_{OUT}. Inputs are grounded except for fin and OSC_{IN}. Output are open.


ELECTRICAL CHARACTERISTICS (continued) (V_{DD} = 5.0V, V_{SS} = 0V, Ta = -40 to 85°C)

Parameter		Symbol	Condition		Value			
		Sympol	Condition	Min	Тур	Max	Unit	
High-level Input Voltage	Except fin	V _{IH}		V _{DD} x0.7		-		
Low-level Input Voltage	and OSC _{IN}	V _{IL}		-	_	V _{DD} x0.3	٧	
	fin	Vfpp	Amplitude in AC	0.5	-	-		
Input Sensitivity	OSCIN	Vsin	coupling, sine wave	0.5	_	-	V _{P-P}	
High-level Input Current	Except fin	ίн	V _{IN} = V _{DD}	_	1.0	-		
Low-level Input Current	and OSC _{IN}	l _{IL}	V _{IN} = V _{SS}	-	-1.0	-	μΑ	
	fin	lfin	$V_{IN} = V_{SS}$ to V_{DD}	-	±50	-	μА	
Input Current	OSCIN	losc	V _{IN} = V _{SS} to V _{DD}	_	±50	-	μА	
	LE	I _{LE}	V _{IN} = V _{SS}	-	-60	_	μА	
High-level Output Voltage	Except	V _{OH}	l _{OH} = 0μA	4.95	_	-		
Low-level Output Voltage	OSC _{OUT}	V _{OL}	I _{OL} = 0μΑ	-	-	0.05	٧	
High-level Output Current	Except M	I _{OH}	V _{OH} = 4 .6V	-1.0	_	-		
Low-level Output Current	and OSC _{OUT}	I _{OL}	V _{OL} = 0.4V	1.0	-	-	mA	
High-level Output Current		Іонм	V _{OH} = 4.6V	-1.5	-	-		
Low-level Output Current	. м	lolm	V _{OL} = 0.4V	3.0	_	-	mA	
Power Supply Current *1		I _{DD}		-	3.5	_	mA	
Maximum Operating Frequency of Programmable Reference Divider		fmaxd		10	25	-	MHz	
Maximum Operating Frequency of Programmable Divider		fmaxp		17	25	-	МН	


Note:

^{*1.} fin = 8.0MHz, 11.5MHz Crystal is connected between OSCIN and OSCOUT. Inputs are ground except for fin and OSC_{IN}. Outputs are open.


TYPICAL CHARACTERISTICS CURVE

PACKAGE DIMENSIONS

PACKAGE DIMENSIONS (Continued)

All Rights Reserved.

Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete Information sufficient for construction purposes is not necessarily given.

The Information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.

The Information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.

Fujitsu reserves the right to change products or specifications without notice.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Electronic Devices
International Operations Department
KAWASAKI PLANT, 1015 Kamikodanaka,
Nakahara-ku, Kawasaki-shi,
Kanagawa 211, Japan
Tel: (044) 754-3753
FAX: (044) 754-3332

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street San Jose, CA 95134–1804, USA Tel: (408) 922–9000 FAX: (408) 432–9044/9045

.,...

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6–10 63303 Dreieich–Buchschlag Germany Tel: (06103) 690–0 FAX: (06103) 690–122

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LIMITED No. 51 Bras Basah Road, Plaza By The Park, #06-04 to #06-07 Singapore 0718 Tel: 336-1600 FAX: 336-1609

19411 © FUJITSU LIMITED Printed in Japan