OS DIGITAL INTEGRATED CIRCUIT , 专业PCB打样工**工C5092AF**

TC5092AP C2MOS 13-BIT A/D CONVERTER

GENERAL DESCRIPTION

The TC5092AP is an integration 13-bit A/D converter of high precision and low power consumption. The 13-bit, 3-state data output is capable of independent enable in 4 bits so as to be connected directly to 4-bit/8-bit/12-bit data bus. (LSB is common to lower order 4 bits.) Further, since this converter has an 8-channel analog multiplexer, and a serial clock output function, it

multiplexer, and a serial clock output function, it is most suitable as data collection unit of various industrial control instruments.

FEATURES:

- . High precision.....±1 LSB(Typ.)
- . Low power consumption....10mW(Typ.)
- . Single power supply.....VDD=5V±0.5V
- . High-speed conversion....fcp Max.=5MHz
- . 8-channel analog multiplexer contained
- . TLL/CMOS compatible digital Input/Output
- . Capable of direct connection to 4-/8-/12-bit bus

APPLICATIONS:

- . Various industrial control instruments
- . Data collection modules

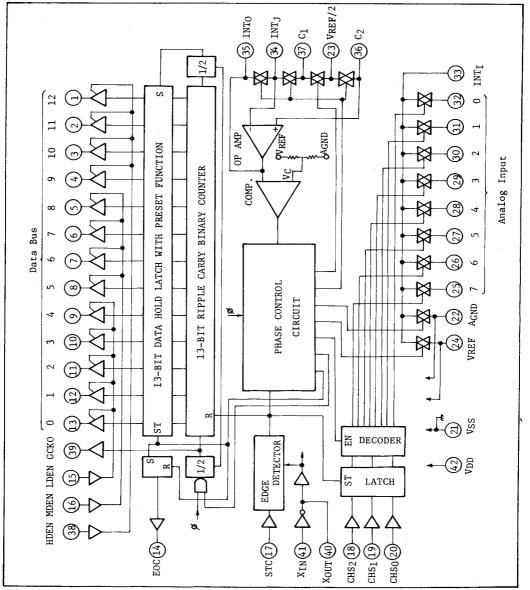
ABSOLUTE MAXIMUM RATINGS

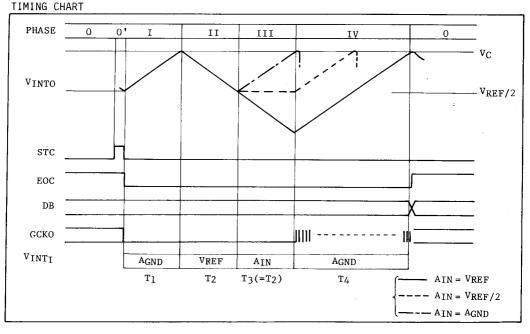
CHARACTERISTIC	SYMBOL	RATING	UNIT
DC Supply Voltage	V _{DD}	VSS-0.5~VSS+7	V
Input Voltage	VIN	V _{SS} -0.5~V _{DD} +0.5	v
Reference Supply Voltage	VREF	V _{AGND} ~V _{DD} +0.5	V
Analog Ground Voltage	VAGND	$v_{SS} = 0.5 \sim v_{REF}$	v
Output Voltage	VOUT	V _{SS} -0.5~ V _{DD} +0.5	v
DC Input Current	IIN	±10	mA
Power Dissipation	PD	300	m₩
Operating Temperature Range	Topr	-40~85	°C
Storage Temperature Range	Tstg	-65~150	°C

PIN ASSIGNMENT

						. 1
					4.98.4	0.4
	(DB12	1	42	VDD		
	DB11	2	41	XIN		
	DB10	3	40	X _{OUT}		
	DB 9	4	39	еско		
	DB 8	5	38	HDEN		
	DB 7	6	- 37	c _l		
DATA BUS	DB 6	7	36	C ₂		
	DB 5	8	35	INTO		
	DB 4	9	34	INTJ		
	DB 3	10	33	INTI		
	DB 2	11	32	AINO]	
	DB 1	12	31	AINI	-1-1	
	(DB 0	13	30	AIN2		
	EOC	14	29	AIN3	Analog	37
	LDEN	15	28	AIN4	Input	
	MDEN	16	27	A _{IN5}		
	STC	17	26	A _{IN6}		
	CHS2	18	25	AIN7	}	
	CHS1	19	24	VREF		
	CHS ₀	20	23	1/2 V	REF	
	v _{ss} l	21	22	AGND		
		(TOP	VIEW)			

FUNCTION OF EACH PIN


PIN NO.	Symbol	NAME & FUNCTION	PIN NO.	Symbol	N	AME &	FUNCTI	ON		
1 2 3	DB12 DB11 DB10		23	V _{REF} /2	termin	al wh		supply pplies t AGND	the	
4	DB 9 DB 8	3-State Parallel	24	VREF	Reference voltage supply terminal					
6	DB 7	Data Outputs		uput terminal						
7 8	DB 6 DB 5	DB12 : MSB DB 0 : LSB	26	A _{IN6}	Input voltage range: AGND∿VREF Arbitrary input can be lected by CHS input.					
9 10	DB 4 DB 3		27	AIN5	CHS0	t. A _{TN}	1			
11	DB 2		28	AIN4	L	CHS ₁ L	CHS ₂ L	AINO		
12 13	DB 1 DB 0		29	AIN3	L	H	L L	AIN1 AIN2		
14	EOC	End of Conversion EOC goes to "L" level at the fall of STC signal, and re-	30	A _{IN2}	H L	H L	L H	A _{IN3} A _{IN4}		
		turns to "H" level at the end of conversion.	31	AIN1	H L	L H	H H	AIN5 AIN6		
15	LDEN	Low Data Enable $DB_0 \sim DB_4$ are read by "H" level input.	32	AINO	H H H AIN7 Integrator Input Integrator Junction Integrator Output The integrator consists of these three terminals. RI CI INTI INTJ INTO]	
16	MDEN	Medium Data Enable $DB_5 \sim DB_8$ are read by "H" level input.	33	INT1					f	
17	STC	Start Conversion Conversion starts at the fall time, if pulse input at "H" level is provided. "L" level should be kept during con- version.	34	INTJ						
18	CHS ₂	Channel Select Inputs These pins are address inputs			follow	ing fo	rmula (atisfyt and bes s possib	et	
19	CHS1	for selecting eight analog inputs of AINO $^{\circ}$ AIN7, and	35	1NTO		$> \frac{130}{f_0}$		s]	~*	
20	CHS0	are taken into the internal latch		Ĵ	However be used		f 1 ∿ :	2MΩ shou	u1	
21 22	VSS AGND	Digital Ground Analog Ground	36	C2	Capacit			n termin	a	


FUNCTION OF EACH PIN

PIN NO.	Symbol	NAME & FUNCTION
37	c ₁	0.1 μ F is connected between C2 and C1, and 0.01 μ F C1 and VSS, respectively.
38	HDEN	High Data Enable DBg∿DB12 are read by "H" level input.
39	GCKO	Gated Clock Output Pulses of number equivalent to conversion data are out- put during conversion.
40	X _{OUT}	Terminals for system clock oscillation. Crystal oscillators are con-
41	XIN	nected to both the ends of terminals.
42	V _{DD}	Supply Voltage 5V±0.5V

.

SYSTEM DIAGRAM

FUNCTIONAL DESCRIPTION

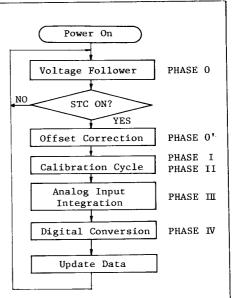
(1)	Conversion	cycle	
-----	------------	-------	--

In the state of PHASE 0', the operation of L3I is at a stop and the integrating amplifier performs as voltage follower. Under this condition the external capactor (0.1 μ F across C₁ and C₂)

When STC is given, the offset voltage charged into external capacitors is applied to non-inversion of the integrator, thus cancelling the offset volage equivalently. In PHASE I, the integrator continues to integrate AGND until its output reaches VC.

In PHASE III the integrator integrates the analog input for the same period of time as T_2 after it has integrated V_{REF} for a fixed period of time (T_2) in PHASE II.

Finally, in PHASE IV the integrator continues to integrate $\ensuremath{^{A}\text{GND}}$ until its output reaches $V_{\text{C}}.$


FUNCTIONAL DESCRIPTION

Let the time in PHASE IV be T₄. Then the following equation is made (formed) by omitting error factors such as offset drift.

$$V_{AIN} = \frac{T_4}{2T_2} V_{REF}$$
 (AGND=0V) ... (1)

In case of this LSI, T_2 is designed by 4096 x 2.TOSC (TOSC denotes reference clock synchronization). Therefore, the above formula letting 2.TOSC be T is changed as follows:

$$\frac{V_{AIN}}{VREF} = \frac{T_4}{8192T} \qquad (2)$$

That is, 13-bit resolution A/D conversion of FS (full scale) = 8192 can be made by

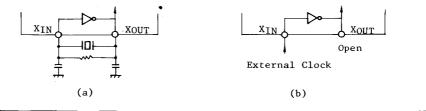
counting the period of T4 by use of a clock having T frequency.

However, it is recommended that $R_{\rm I}$ and $C_{\rm I}$ composing the integrator be set to the values close to 13000/foSC as possible after having satisfied the following formula.

 $R_{I}C_{I} > 13000 / f_{OSC}, R_{I} = 1 \circ 2M_{\Omega}$ is used. (3)

(2) Output data format

13-bit output data are output to 13 independent 3-state data buses $DB_0 \sim DB_{12}$. Since 13-bit outputs can be independently placed on 3-state every group of High, Medium and Low of 4 bits/4 bits/5 bits from the higher order, it is easy to connect the microcomputer to buses of 4, 8, 12 bits.


HDEN L L L L L	Analog Input	0 D	1 D	2 Z D	DAT 3 D	A (0UT 5	PUT: 6	s 7	(DB 8	í T	10	11	1
L L L			1	Z	1 - 1	4	5	1 -	7	8	9	10	11	1
L		D	D	<u> </u>						.	1			
L		D	D	D	D	-			-					
			·			D		Z		2			Z	
L				z	•		D	D	D	D	1		2	
	Don't Care	D	D	D	D	D	D	D	D	D	ţ		•	
Н				Z	J			·,	7		D	D	D	1
н		D	D	D	D	D		-	-		D	D	D	1
Н				Z	•		D	D	D	D	D	D	D	1
	<1/2LSB	L	L	L	L	L	L	L	L	L	L	L	L	1
	$1/2$ LSB $\sim 3/2$ LSB	Н	L	L	L	L	L	L	L	L	L	L	L	1
н			.		S	tra	igh	nt E	Bina	ary				
	"FS"-5/2LSB ∿ "FS"-3/2LSB	L	Н	Н	н	H	Н	н	H	Н	Н	н	н	ŀ
	"FS"-3/2 LSB <	н	н	н	н	Н	Н	н	Н	Н	н	Н	н	ŀ
	Н	H H (1/2LSB (1/2LSB) (1/2L	$H = \frac{1/2LSB}{1/2LSB \sim 3/2LSB} L$ $H = \frac{1/2LSB \sim 3/2LSB}{1/2LSB \sim 3/2LSB} L$ $FS''-5/2LSB \sim FS''-3/2LSB L$ $FS''-3/2LSB < H$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	H D	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				

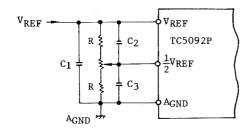
FUNCTIONAL DESCRIPTION

(3) Basic clock

Since this LSI operates on the basis of the frequency given to X_{IN} input, a stable clock (Af < 0.005%) must be used for the clock to be given to X_{IN}.

Therefore, it is proper that the oscillation circuit is configured as shown in the following figure (a) by the use of externally mounted crystal becuase the LSI has a built-in inverter for crystal oscillation.

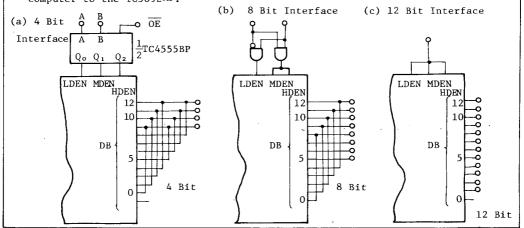
FUNCTIONAL DESCRIPTION


.

10110	
(4)	How to give STC input, Conversion time, and Sampling cycle
	STC input is taken in with the reference clock of LSI, but the positive pulse
	having the pulse width for at least two cycles is required for internal starting.
	The conversion time of from the fall of STC input to the rise of EOC output.
	Letting this time be Tc MAX(Maximum conversion time), then the following equation
	is obtained.
	$T_{CMAX} = 41000 \times T_{OSC} [S]$ (4)
	(where T _{OSC} is oscillation cycle of basic clock.)
	For example, when f_{CP} =5MHz, TcMAX=8.2ms. For one-time sampling, an accurate
	output can be obtained from the falling edge of STC input after the lapse of
	TcMAX.
	For consecutive sampling, however, STC input must be given after the lapse of a
	given period of time (6ms) from the rise of EOC. This period (6ms) is the time required for the recovery of LSI to normal state.
	Therefore, the minimum sampling cycle TsMIN is as follows:
	$T_{SMIN} = 41000 \times T_{OSC} + 0.006 + t_{w}(STC) [S] \dots (5)$
	Note: When power is set ON, following start-up procedure is required due to
	indefinite state of internal circuitry.
	1. Applying clock, STC is to be set high over 10ms.
	2. Complete at least one cycle as a dummy conversion cycle.
	T smapling
	STC
	EOC
	T conversion 6ms
(5)	Reference voltage
	This LSI has three reference input voltage terminals of A_{GND} , $rac{1}{2}$ V _{REF} , and V _{REF} .
	Since analog input signal is quantized to $1/8192$ in the range of $A_{GND} \sim A_{REF}$ for
	digitization, stable voltages must be supplied to $\frac{1}{2}$ V _{REF} and V _{REF} .

*

FUNCTIONAL DESCRIPTION


Espacially the value of $\frac{1}{2}$ VREF voltage has direct effects upon conversion accuracy; therefore, it is recommonded that adjustment be made so as to agree output data with analog input by actually making A/D convert by use of input voltage at FS (full scale) or 1/2FS level.

The left figure shows an example of reference voltage supplying circuit. $C_1 \sim C_3$ are filter capacitors for preventing reference voltage variations to be caused by ripple or induction noise. Generally the value of capacitor is about $0.01 \sim 0.1 \mu$ F, though it varies with the system.

(6) BUS Interface

For connecting a microcomputer to BUS line, three independent enable terminals are used. These three enable terminals permit the processing in the unit of 4 bits (5 bits for the low order digit only). The microcomputer can be directly connected to the BUS of $4 \sim 12$ bits easily by allocating proper address of micro-computer to the TC5092AP.

611

RECOMMENDED OPERATING CONDITION

ITEM	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	V _{DD}	4.5	5.0	5.5	v
Digital Input Voltage	VIN	0	-	VDD	v
Analog Input Voltage	VAIN	AGND	-	VREF	-
Reference Supply Voltage	VREF	4.0	-	VDD	v
Analog Ground Voltage	VAGND	0	0	0.5	v

ELECTRICAL CHARACTERISTICS (VDD = $5V \pm 10\%$, VSS = 0V, Ta = $-40 \sim 85^{\circ}C$)

ITEM	SYMBOL	TEST CONDI	TION	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output High Voltage	VOH	IOH=-1µA,Digit	al output	5	4.9	5.0	_	v
Output Low Voltage	Vol	IOL=1µA, Digit	5	-	0.0	0.1		
		Digital Input e	except XIN	5	2.4	-	_	
Input High Voltage	VIH	XIN		5	4.5	-	-	
		Digital Input e	except XIN	5	-	-	0.8	V
Input Low Voltage	VIL	X _{IN}	5	-	-	0.5		
Output High Current	IOH	VOH = 2.4V Digital output except XOUT		4.75	-1.0	-	_	mA
Output Low Current	I _{OL}	VOL = 0.4V Digital output except XOUT		4.75	1.6	-	-	·mA
	IDH	$V_{OH} = 5.5V, DB_{OH}$) ∿ DB12	5.5	-	10-3	5	
Output Disable Current	IDL	$V_{OL} = 0.0V$, DB($0 \sim DB_{12}$	5.5	-	-10-3	-5	μA
	IIH	VIN=5.5V,Digi	tal input	5.5	-	10-5	1.0	μΑ
Input Current	IIL	V _{IL} =0.0V,Digi	tal input	5.5	-	-10-5	-1.0	
Analog Switch Off-Leak	IOFF	Analog input/	output	5.5	_	± 10-4	-	μΑ
Analog Switch On Resistor	RON	$R_L = 10k\Omega$		5	-		-	Ω
Operating Consump-	IDD	V _{REF} = V _{DD} Digital output	f _{CP} =5MHz	5	-	2	-	- mA
tion Current	-00	Digital ^{open} input GND	f _{CP} =1MHz	5	-	1	-	

ITEM	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Rise Time	t _{TLH}	Digital output	-	50	150	
Output Fall Time	t _{THL}	Digital output	-	40	150	ns
Output Enable Time	tZL tZH	LDEN	-	80	250	
Output Disable Time	t _{LZ} t _{HZ}	MDEN -DB Output HDEN	-	280	500	ns
Max. Clock Frequency	f _{MAX} ø	XIN Duty 40~60%	5.0	-	-	
Min. Clock Frequency	fminø	XIN Duty 40~60%	-	-	-	MHz
	CIN	Digital input	-	5	-	•
Input Capacity	CIN	Analog input	-	-	-	pF
3-State Output Capacity	C _{OUT}	DB Output	-	8	-	

SWITCHING CHARACTERISTICS ($VDD = 5V\pm10\%$, VSS = 0V, $Ta = 25^{\circ}C$, CL = 50pF)

SYSTEM CHARACTERISTICS $(v_{DD} = 5v \pm 10\%, v_{SS} = 0v, Ta = 25^{\circ}c)$

ITEM	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Resolution	n		-	13	-	Bit
		$f_{CP} = 5 MHz$	-	-	8.2	
Conversion Time	Tc	$f_{CP} = 1 MHz$	~	-	41	tins -
Sampling Cycle	<i>T</i>	$f_{CP} = 5 MHz$	14.2	_	-	
	TSPL	$f_{CP} = 1 MHz$	47	-	-	ms
Nonlinearity	-		-	±1		
Zero Scale Error	EZP		-	±2		LSB
Full Scale Error	EFS	$V_{DD} = V_{REF}$	-	±1		
STC Min. Pulse Width	tw		-	-	2/fosc	S