至EB 1 1 1999 查询SM5807ES供应商	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
NIPPON PRECISION CIRCUITS LTD.	4-Time Oversampling Digital Filter for CD System

GENERAL DESCRIPTION

The SM5807 digital filter is manufactured using MOLYGATE ($\neq \forall \forall \neg \uparrow^{\circ}$) CMOS technology developed by NPC and is implemented in 4 times oversampling scheme with the stopband (above 24.1 kHz) attenuation of more than 50 dB and the passband ripple of less than +0.05 dB. Two channel filters are provided and the 4 times oversampled output signal of each channel can be independently obtained. Because of this 4 times oversampling, the requirement of the analog filter can be greatly relaxed, and also the serious data format reduces the size of hardware requirement characteristics. required in the system design. Two types, D and E are available in different characteristics.

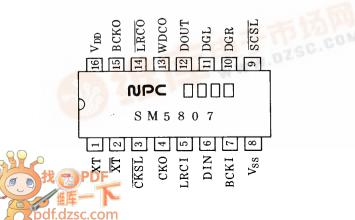
FEATURES

- Filter Structure
- 4 times oversampling
 2 channel filters
- 2 stages linear phase FIR filter (61 + 13 taps)
- Overflow limiter
- Internal crystal oscillator circuit
- Clock buffer Filter Characteristics

	SM5807DP,DS	SM5807EP,ES	
Passband ripple(0~20kHz)	<±0.05dB	<±0.05dB	
Stopband attenuation (above 24.1kHz)	>50dB	>45dB	
Group delay time	Constant linear phase		

• Input/Output

- 16-bit serial data input and output (2's complement, MSB first)
- TTL compatible

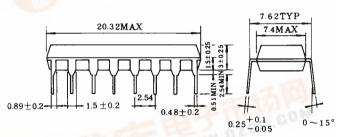

- Power Supply 5±0.5V
 16-Pin plastic DIP/SOP
 Molygate CMOS technology

PRODUCT SELECT LIST

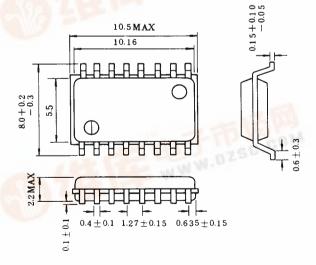
Part Number	PACKAGE
SM5807DP, EP	16-Pin DIP
SM5807DS, ES	16-Pin SOP

PIN CONFIGURATION

(Top View)

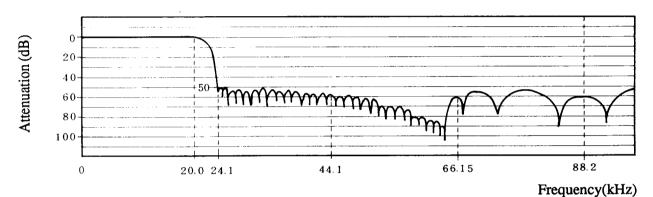


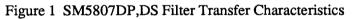
PACKAGE DIMENSIONS

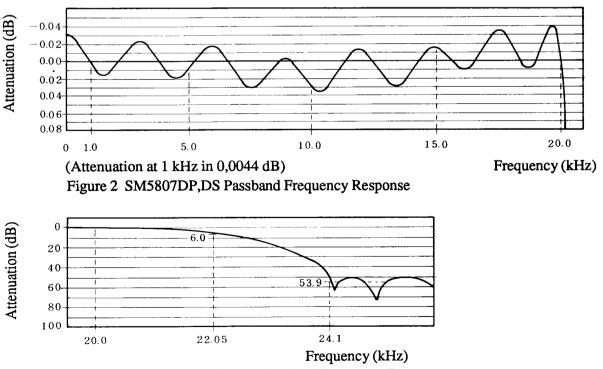

All dimensions in millimeters

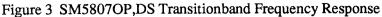
16-Pin DIP

5 - v

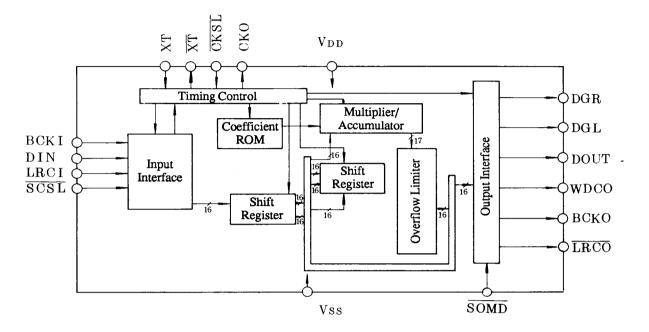







■ THEORETICAL FILTER CHARACTERISTICS 1. SM5807DP,DS (0~88.2kHz)

Parameter	Characteristic
Passband	0~20kHz
Stopband	Above 24.1 kHz
Passband Ripple	±0.05dB
Stopband Attenuation (above 24.1 kHz)	50dB(minimum)



SM5807 4-Time Oversampling Digital Filter for CD System

2. SM5807EP, ES (0~88.2kHz) Characteristics Parameter Passband 0~20kHz Above 24.1kHz Stopband ±0.05dB Passband Ripple Stopband Attenuator (24.1~40.0kHz) 45dB (minimum) (40.0kHz) 50dB (minimum) 0 Attenuation (dB) 20 40 45 60 80 100-0 20.2 24.1 66.15 88.2 40.0 44.1 Frequency (kHz) Figure 4 SM5807EP,ES Filter Transfer Characteristics 0.04 Attenuation (dB) 0.02 0.00 0.02 0.04 0.06 0.08 1.0 0 5.0 10.0 15.0 20.0 <1 kHz 0.0365dB> Frequency (kHz) Figure 5 SM5807EP,ES Passband Frequency Response 0 Attenuation (dB) 6.0 20-40-60 80-100 20.0 22.05 24.1 0 Frequency (kHz)

BLOCK DIAGRAM

Pin No.	Pin Name	I/O	Function/Descriptions
1	XT	I	Crystal oscillator or clock input
2	XT	0	Oscillator output.when CKSL=H Open, when CKSL=L
3	CKSL	Ip	CKSL=H: 16.9349 MHz ~ 17.2872MHz Crystal Osc.or Clock to XT pin CKSL=L: 8.4672MHZ or 8.6436 MHz Clock to XT pin
4	CKO	0	Clock output (XT clock buffered output)
5	LRCI	Ip	Clock input (synchronized 44.1 kHz)
6	DIN	Ip	Serial data input
7	BCKI		Bit clock input
8	V _{ss}	Ip	Ground, 0 ^v
9	SCSL	Ip	SCSL=H : System Clock = 192fs SCSL=L : System Clock =196fs (fs:sampling frequency)
10	DGR	0	Rch deglitch signal (176.4 kHz)
11	DGL	0	Lch deglitch signal (176.4 kHz)
12	DOUT	0	Serial data output
13	WDCO	0	Output Control Clock (352.8 kHz)
14	LRCO	0	Output Control Clock (176.4 kHz)
15	ВСКО	0	Serial Output Bit Clock (8.4672 MHz or 8.6436 MHz)
16	V _{DD}		Power Supply (5V)

■ PIN DESCRIPTION

I : Input

o : Output Ip: Input with pull-up resistor

4-Time Oversampling Digital Filter for CD System

$(V_{ss}=0^{v})$ Symbol Parameter Rating Units Supply Voltage -0.3~7.0 ۷ VDD ۷ VIN -0.3~V_{DD}+0.3 Input Voltage T -40~125 ۰C Storage Temperature Power Dissipation 250 mW $\mathbf{P}_{\mathbf{w}}$ ۰C 255 Soldering Temperature T_{SLD} Soldering Time 10 Sec. t_{sld}

ABSOLUTE MAXIMUM RATINGS

■ RECOMMENDED OPERATING CONDITIONS

			$(V_{ss} = 0^{v})$
Parameter	Symbol	Conditions	Unit
Supply Voltage	V _{DD}	4.5~5.5	V
Operating Temperature	T	-20~70	°C

■ DC ELECTRICAL CHARACTERISTICS

Ta=-20~70°C, V_{DD} =4.5~5.5V, V_{ss} =0^v unless otherwise noted Limit Parameter Pin Symbol Condition Unit MIN TYP MAX Supply Current VDD I_{DD} V_{DD}=5V 10 20 mA <u>v</u>_<u>пн1</u> v $0.7V_{dd}$ Input Voltage (1) ΧТ V_{IL1} 0.3V_{DD} ٧ V 2.4 v (*1) Input Voltage (2) v ٧_{11.2} 0.5 ٧ I_{oH}=-0.4mA 2.5 V_{oh} Output Volage (*2) I_{oL}=1.6mA 0.4 v (*3) V_{IN}=OV 1.0 μA I_{LL} Input Leakage Current (*4) 1.0 I_{LH} $V_{IN} = V_{DD}$ μA (*1) V_{IN}=OV 10 20 Input Current μA I_{II}

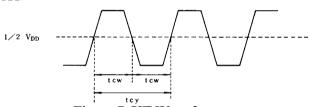
Pin-Group List

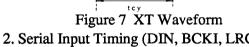
*1	CKSL, LRCI, DIN, BCKI, SCSL
*2	CKO, LRCO, BCKO, WDCO, DOUT, DGL, DGR
*3	(XT, at CKSL=L)
*4	CKSL,, LRCI, DIN, BCKI, SCSL, (XT, at CKSL=L)

AC ELECTRICAL CHARACTERISTICS

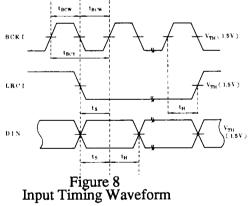
1.XT

a. Crystal Oscillator (Ta=-20~70°C, VDD=4.5~5.5V, $V_{ss}=0^{\circ}$)


Parameter	Symbol		Unit		
		MIN	ТҮР	MAX	Cint
Frequency	fosc			20	MHz


b.External Clock

(Ta=-20~70°C, V_{DD}=4.5~5.5V, V_{ss}=OV)


Parameter	Symbol	Limit			Unit	Condition
I di atticici	Symbol	MIN	TYP	MAX	СШ	Condition
Clock Pulse Width	tcw	50			nSec	CKSL=L
CIOCK I HISC WIGHT		25			nSec	CKSL=H
Clock Pulse Period	tcy	100			nSec	CKSL=L
		50			nSec	CKSL=H

XT

Serial Input Tim						
Parameter	Symbol		Limit			
	Symbol	MIN	TYPE	MAX	Unit	
BCKI Pulse Width	t _{BCW}	100			nsec	ts
BCKI Pulse Period	t _{всу}	200			nsec	
DIN, LRCZ		75			nsec	
set-up time	L _S	1 13	lisec	lisee	15	
DIN, LRCZ		75			nsec	Figure
holding time	Ч	''	1		11360	Input Timing

3.Serial Output Timing

Parameter	Symbol	Limit			Unit	Remarks
	Symbol	MIN	TYP	MAX	OILL	itemarks
BCKO Pulse Width	t _{oBCW}	40			nSec	
BCKO Pulse Period	t _{obcy}	100			nSec	
Output Delay Time	t _{DHL}	0		25	nSec	LRCO, WDCO, DOUT, DGL, DGR
	t _{DLH}			25	nSec	DOUT, DGL, DGR outputs

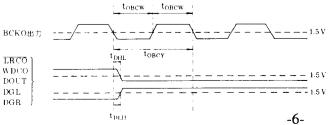


Figure 9 Output Timing Waveform

INTRODUCTION

Basic Filter Structure

The SM5807 consists of two channel filters implemented in two times oversampling two stages cascaded linear phase FIR filter as shown in Fig 10. The 44.1KHz sampled signal.is two times oversampled in the 61-tap first filter stage and is converted to a 88.2KHz sample signal. It is further two times oversampled in the 13-tap second filter stage and becomes 176.4KHz sampled signal which is 4 times oversampled as compared with that at the input. Fig.11 illustrates sampled signal spectrum of the output of channel filter (see Fig.10). Fig.11(a) shows the output spectra of the first filter which provides -50dB or -45dB attenuation at and above 24.1KHz. However, the input signal spectrum of ± 24.1 KHz centered on 88.2KHz sampling frequency still exists. The second filter which further doubles the sampling frequency for filtering the output of the first filter provides -50dB or -45dB for the signal band between 64.1KHz and 112.3KHz as shown in Fig.11(b). The combined filter characteristics are illustrated in Fig.11(c). The SM5807 was designed based on this oversampling technique and their filter characteristics are illustrated in page 2 through 3.

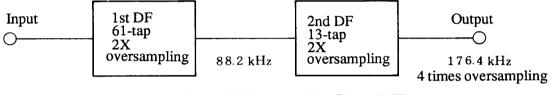


Figure 10 Block Diagram of the Channel Filter.

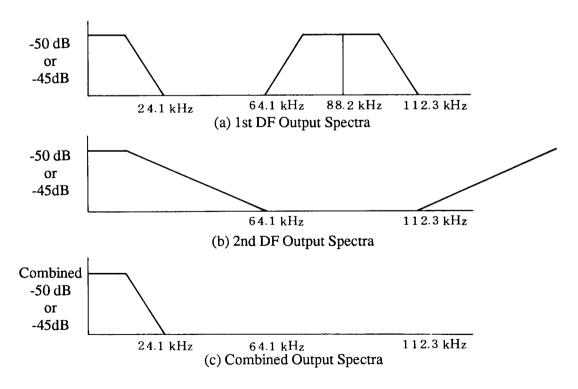
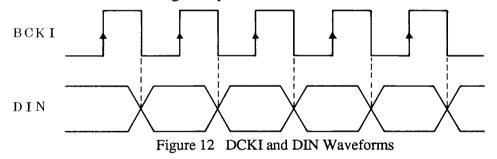


Figure 11 Signal Spectra

■ FUNCTIONAL DESCRIPTION

1.System	Clock	
FT 11		


The system clock freq	uency, 8.4672 l	MHz (=192fs) or 8.	.6436MHz(=196fs) is selected by	
SCSL logic level.	SCSL=H (or of	pen), fsc=192fs	where fs=44.1kHz	
	SCSL=L,	fsc=196fs	where fs=44.1kHz	

Clock	Generation
CIOCK	Generation

SCSL	H (or open)		L	
CKSL	H (or open)	L	Н	L
Clock Source	Crystal oscillator or external clock	Crystal Oscillator or System Clock	Crystal Oscillator or External Clock	Crystal Oscillator or External Clock
XT/XT Input Frequency	384fs=16.9344MHz	192fs=8.4672MHz	392fs=17.2872MHz	196fs=8.6436MHz
CKO Clock Output	384fs=16.9344MHz	192fs=8.4672MHz	392fs=17.2872MHz	196fs=8.6436MHz
System Clock (Internal)	192fs=8.4672MHz	192fs=8.4672MHz	196fs=8.6436MHz	196fs=8.6436MHz

2. Serial Input (data and bit clock)

The serial input data is entered at at the rising edge of serial input bit clock, BCKI. The data can be changed at the falling edge of BCKI. After the 16 bits data have been entered, they are latched in the internal register by the LRCI clock.

3. Input Data Format

The format is 2's complement, MSB first.

4. Starting of Data Process

The data process starts at the rising edge of LRCI clock.

5. Serial Output (data and bit clock)

The Lch and Rch serial data are delivered to pin DOUT alternately and therefore using one DAC for conversion is implementable. For using two DAC's, additional gates are required (see Fig.15,b). The serial output bit clock is available at pin BCKO.

BCKO=8.4672MHz	(SCSL=H or open	system clock: 192fs)
BCKO=8.6436MHz	(SCSL=L	system clock: 196fs)

6.Output Data Format

The format is 2's complement, MSB first.

- 7. Deglitch Signals
 - The 176.4kHz, 25% duty cycle deglitch signals are available at pins DGL and DGR for Lch and Rch respectively.

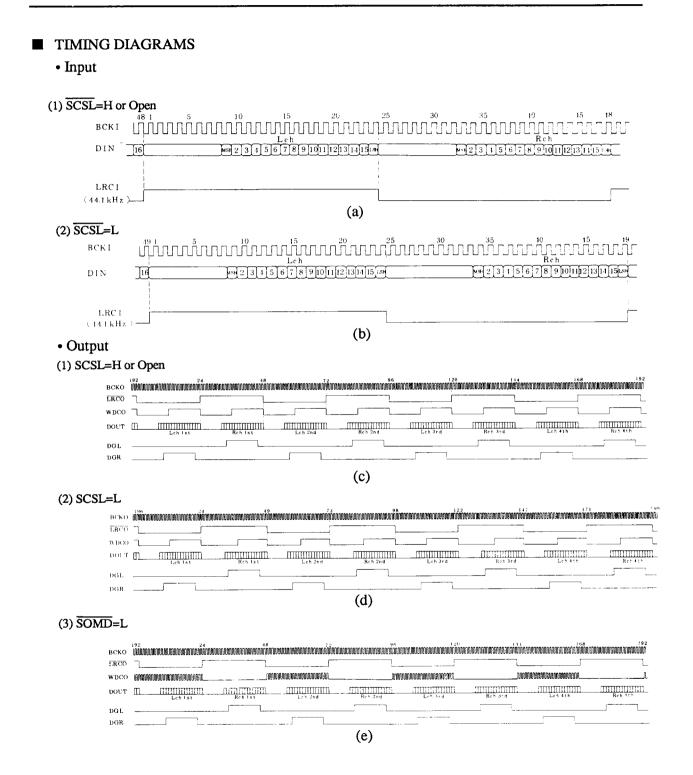
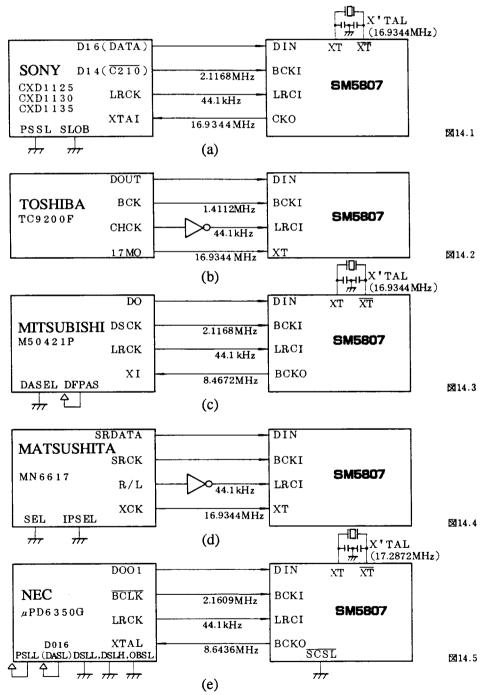



Figure 13 Serial Input and Output Timing Diagrams -9-

APPLICATION DIAGRAMS

1. Input Connection

4-Time Oversampling Digital Filter for CD System

2. Output Connection

a.1DAC

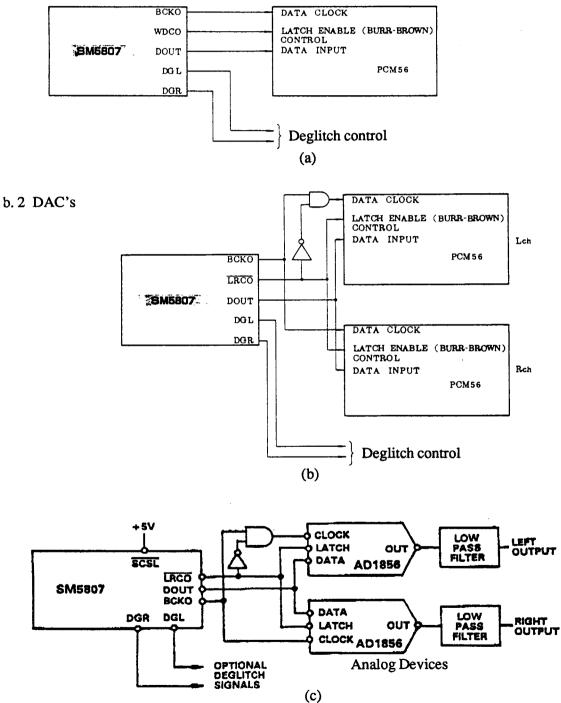


Figure 15 Application Circuit - Output connections