
220-225MHz, 12.5V, 30W, FM MOBILE RADIO

OUTLINE DRAWING

Dimensions in mm

BLOCK DIAGRAM

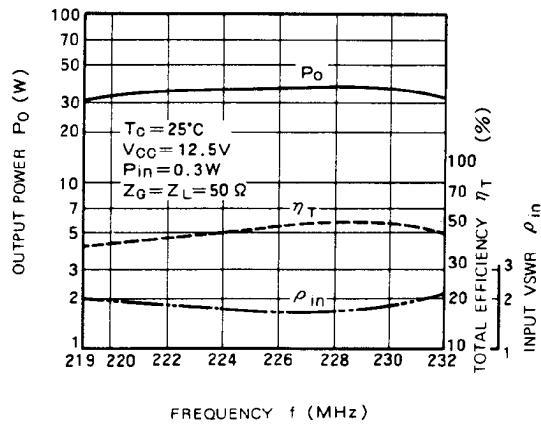
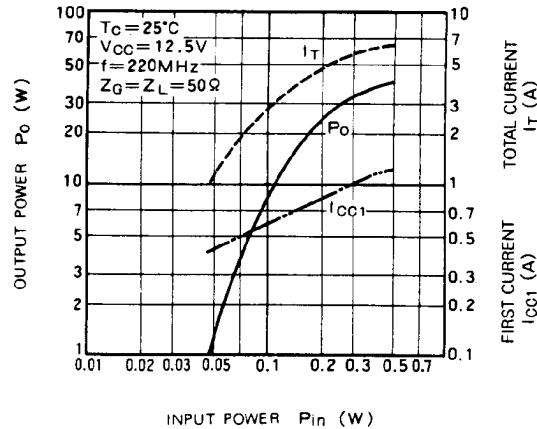
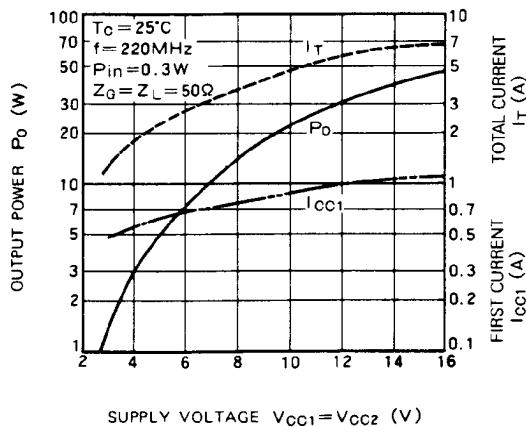
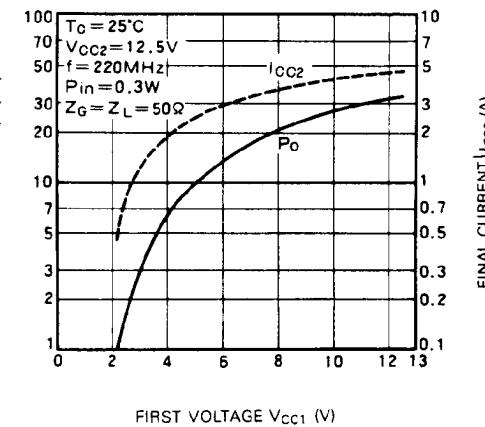
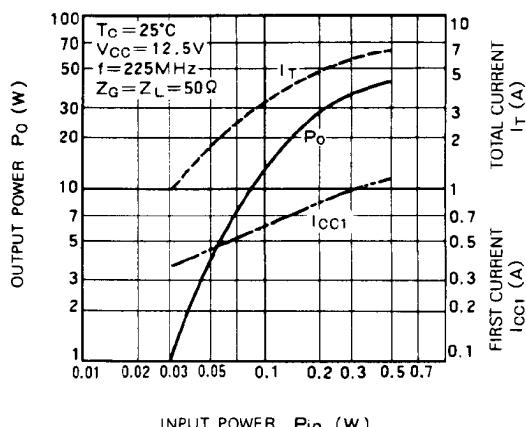
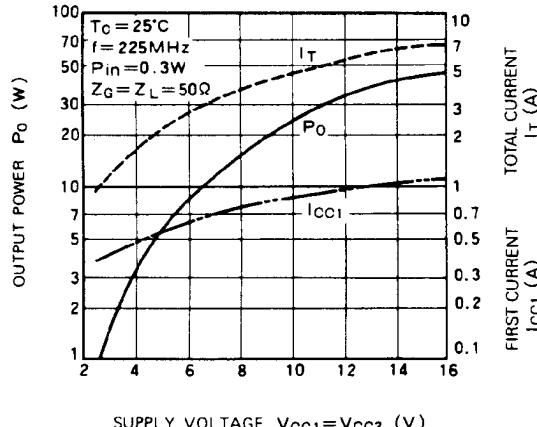
PIN :

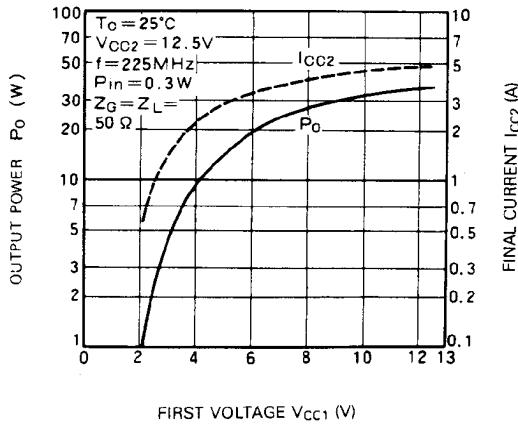
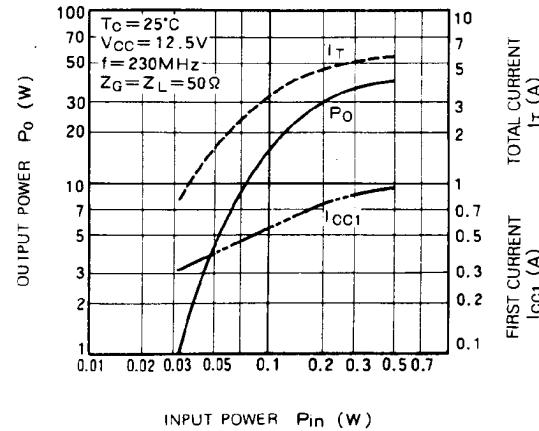
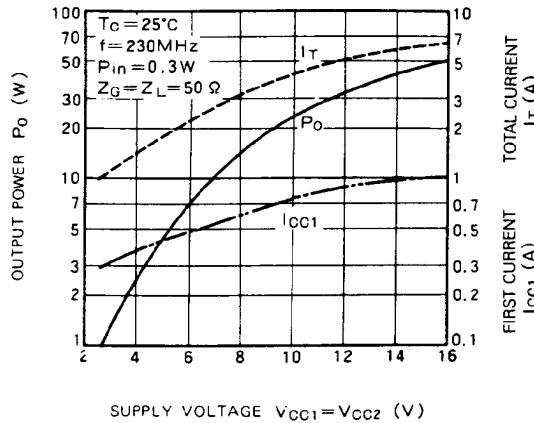
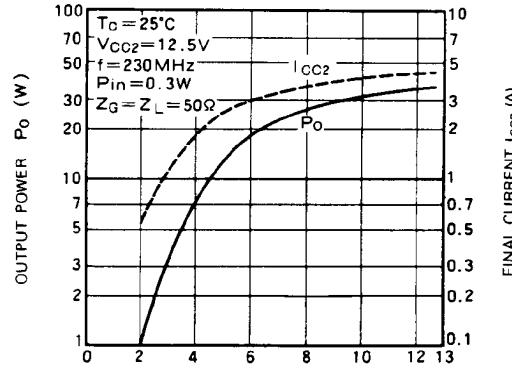
- ① Pin : RF INPUT
- ② VCC1 : 1st. DC SUPPLY
- ③ VCC2 : 2nd. DC SUPPLY
- ④ PO : RF OUTPUT
- ⑤ GND : FIN

ABSOLUTE MAXIMUM RATINGS ($T_C = 25^\circ\text{C}$ unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CC}	Supply voltage		17	V
I _{CC}	Total current		7	A
P _{IN(max)}	Input power	$Z_G = Z_L = 50 \Omega$	0.6	W
P _{O(max)}	Output power	$Z_G = Z_L = 50 \Omega$	40	W
T _{C(OP)}	Operation case temperature		-30 to 110	°C
T _{STG}	Storage temperature		-40 to 110	°C

Note: Above parameters are guaranteed independently.







ELECTRICAL CHARACTERISTICS ($T_C = 25^\circ\text{C}$ unless otherwise noted)





Symbol	Parameter	Test conditions	Limits		Unit
			Min	Max	
f	Frequency range		220	225	MHz
P_o	Output power		30		W
$\eta \tau$	Total efficiency		43		%
$2f_o$	2nd. harmonic	$P_{in} = 0.3W$ $V_{cc} = 12.5V$ $Z_g = Z_L = 50 \Omega$		-30	dBc
$3f_o$	3rd. harmonic			-35	dBc
ρ_{in}	Input VSWR			2.8	-
-	Load VSWR tolerance	$V_{cc} = 15.2V$, $P_o = 30W$ (P_{in} : controlled) Load VSWR=20:1 (All phase), 5sec. $Z_g = 50\Omega$	No degradation or destroy		-

Note: Above parameters, ratings, limits and conditions are subject to change.

220-225MHz, 12.5V, 30W, FM MOBILE RADIO

TYPICAL CHARACTERISTICS

OUTPUT POWER, TOTAL
EFFICIENCY, INPUT VSWR VS.
FREQUENCYOUTPUT POWER, TOTAL CURRENT,
FIRST CURRENT VS.
INPUT POWEROUTPUT POWER, TOTAL CURRENT,
FIRST CURRENT VS.
SUPPLY VOLTAGEOUTPUT POWER, FINAL CURRENT,
VS. FIRST VOLTAGEOUTPUT POWER, TOTAL CURRENT,
FIRST CURRENT VS.
INPUT POWEROUTPUT POWER, TOTAL CURRENT,
FIRST CURRENT VS.
SUPPLY VOLTAGE

OUTPUT POWER, FINAL CURRENT,
VS. FIRST VOLTAGEOUTPUT POWER, TOTAL CURRENT,
FIRST CURRENT VS.
SUPPLY VOLTAGEOUTPUT POWER, TOTAL CURRENT,
FIRST CURRENT VS.
SUPPLY VOLTAGEOUTPUT POWER, FINAL CURRENT,
VS. FIRST VOLTAGE

DESIGN CONSIDERATION OF HEAT RADIATION

Note the following when designing a heat sink:

1. Junction temperature of built-in transistor at standard operation

(1) Thermal resistance between junction of built-in transistors and case

Thermal resistance between junction of 1st stage transistor and case

$$R_{th(j-c)} = 8^{\circ}\text{C}/\text{W} \text{ (typ.)}$$

Thermal resistance between junction of final stage transistor and case

$$R_{th(j-c)} = 2^{\circ}\text{C}/\text{W}$$

(2) Junction temperature of built-in transistor at standard operation

- Standard operating conditions

$P_o = 30\text{W}$, $V_{CC} = 12.5\text{V}$, $P_{in} = 0.3\text{W}$, $\eta_T = 43\%$ (rated minimum), $P_{O1} = 5\text{W}$ (Note 1), $I_T = 5.6\text{A}$ (I_{T1} (Note 2) = 0.9A , I_{T2} (Note 3) = 4.7A)

Note 1: Output power of 1st stage transistor

Note 2: Current loss of 1st stage transistor

Note 3: Current loss of final stage transistor

- Junction temperature of 1st stage transistor

$$\begin{aligned} T_{j1} &= (V_{CC} \times I_{T1} - P_{O1} + P_{in}) \times R_{th(j-c)} + T_c \text{ (Note 4)} \\ &= (12.5 \times 0.9 - 5 + 0.3) \times 8 + T_c \\ &= 52 + T_c \text{ } (^{\circ}\text{C}) \end{aligned}$$

Note 4: Case temperature of device

- Junction temperature of final stage transistor

$$\begin{aligned} T_{j2} &= (V_{CC} \times I_{T2} - P_o + P_{O1}) \times R_{th(j-c)} + T_c \\ &= 912.5 \times 4.7 - 30 + 5) \times 2 + T_c \\ &= 68 + T_c \text{ } (^{\circ}\text{C}) \end{aligned}$$

2. Heat sink design

To design the thermal characteristics of a heat sink, keep the case temperature below 90°C when output power P_o is 28W and the upper limit of ambient temperature T_a is 60°C .

The thermal resistance $R_{th(c-a)}$ (Note 5) of a heat sink to achieve this:

$$\begin{aligned} R_{th(c-a)} &= \frac{T_c - T_a}{\frac{P_o}{\eta_T} - P_o + P_{in}} = \frac{90 - 60}{\frac{30}{0.43} - 30 + 0.3} \\ &= 0.75 \text{ } (^{\circ}\text{C}/\text{W}) \end{aligned}$$

Note 5: Including the contact thermal resistance between the device and the heat sink

Mounting the device on the heat sink with the above thermal resistance, junction temperatures of each transistor module becomes as follows:

$T_{j1} = 142^{\circ}\text{C}$, $T_{j2} = 158^{\circ}\text{C}$ at $T_a = 60^{\circ}\text{C}$, $T_c = 90^{\circ}\text{C}$, Since the annual average of ambient temperature is 30°C , junction temperature of each transistor becomes as follows:

$$T_{j1} = 112^{\circ}\text{C} \text{ and } T_{j2} = 17^{\circ}\text{C}$$

Use of these built-in transistors in temperatures below the maximum junction temperature $T_{j\max} = 175^{\circ}\text{C}$ is guaranteed.