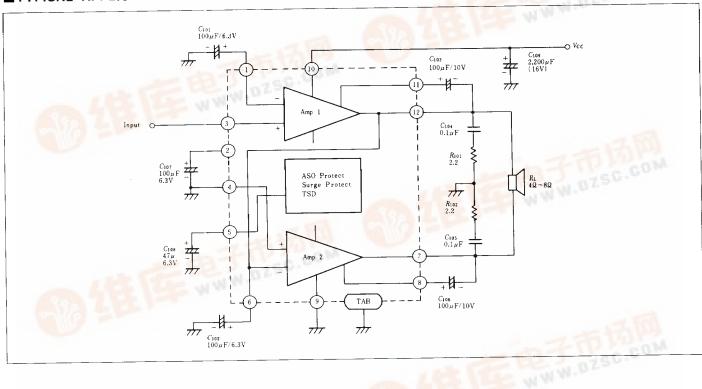

18W BTL Audio Power Amplifier

The HA1388 is specifically designed for Components Car Stereo Amplifiers.


This power IC provides an output power of 18 watts at 13.2 volts to 4 ohm load with10 percent distortion and can be used without output capacitors because of the excellent ASO protection circuit.

FEATURES

- Can be used as OCL.
- Over voltage handling capability up to 50 volts for 200ms Less number of external components.
- Thermal shutdown circuit included.

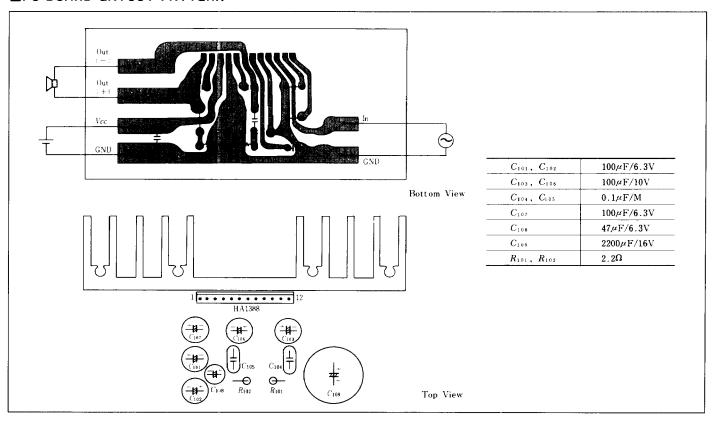
TYPICAL APPLICATION

■ABSOLUTE MAXIMUM RATINGS (Ta=25%)

1. Value at 30sec.

zsc.com

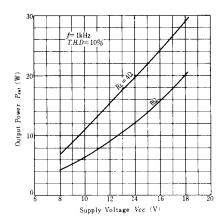
Item	Symbol	Rating	Unit	Note
Operating Supply Voltage	V_{cc}	18	V	
DC Supply Voltage	$V_{CC(DC)}$	26	V	1
Peak Supply Voltage	V _{CC(peak)}	50	V	2
Output Current	I O (peak)	4	A	
Power Dissipation	Рт	15	W	
Thermal Resistance (Junction-Case)	θ_{j-c}	3	°C/W	
Junction Temperature	T_j	150	ზ	
Operating Temperature	$T_{op\tau}$	-20 to +70	c	
Storage Temperature	T_{stg}	-55 to +125	c	


2. Pulse width \leq 200ms, Rise time \geq 1ms.

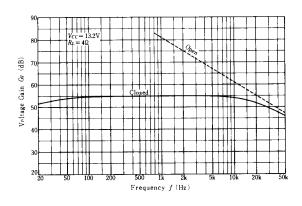
ELECTRICAL CHARACTERISTICS ($V_{CC} = 13.2 \text{V}$, f = 1 kHz, $R_L = 4 \Omega$, Ta = 25 °C)

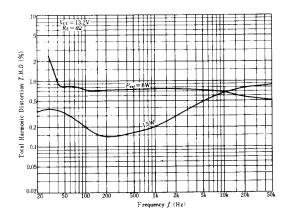
Item	Symbol	Test Condition		min.	typ.	max.	Unit
Quiescent Current	IQ	$V_{in}=0$		40	80	160	mA
Input Bias Voltage	V _B	$V_{in} = 0$		_	20	40	mV
Output Offset Voltage	ΔV_Q	$V_{in} = 0$		_	_	±330	мV
Voltage Gain	G_{V}	$V_{in} = -55 \mathrm{dBm}$		53	55	57	dB
Output Power	n	THD=10%	$R_L = 4\Omega$	15	18	_	117
	Poul		$R_L = 8\Omega$	_	11	_	W
Total Harmonic Distortion	THD	$P_{out} = 1.5 \mathrm{W}$		T -	0.2	1.0	%
Wide Band Noise	WBN	$R_s = 10 \text{k}\Omega$, $BW = 20 \text{Hz}$ to 20kHz		_	1.0	2.0	тV
Supply Voltage Rejection Ratio	SVR	f = 500Hz		33	44	-	dB
Input Resistance	R _{in}			20	30	40	kΩ
Rolloff Frequency	f _L	Gv = -3dB from	Low	1 –	20	_	Hz
	f_H	f = 1 kHz Ref.	High	10	20	40	kHz

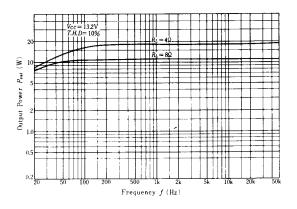
■PC-BOARD LAYOUT PATTERN

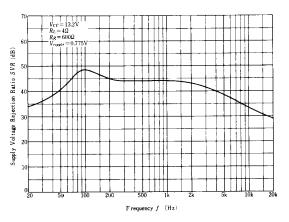

■EXTERNAL COMPONENTS

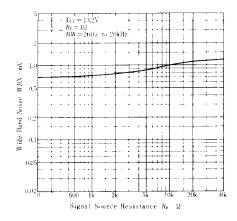
Parts No.	Recommended Value	Purpose	Larger than recommended value	Smaller than recommended value
C_{101}, C_{102}	100µF	Inverting DC decoupling	Danger of burn-out	Higher low frequency rolloff
C_{103}, C_{106}	100µF	Boot Strap	Danger of burn-out at load dump surge	Smaller power bandwidth
C_{104}, C_{105}	0.1µF	Frequency stability	Increase of drain current at high frequency	Danger of oscillation
C_{107}	100µF	Ripple rejection	_	Danger of oscillation at low supply voltage
C_{108}	47µF	ASO protection	Danger of burn-out	Danger of burn-out
R_{101}, R_{102}	2.2Ω	Frequency stability	Danger of oscillation	Danger of oscillation

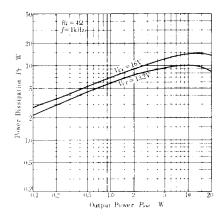

TOTAL HARMONIC DISTORTION VS. OUTPUT POWER

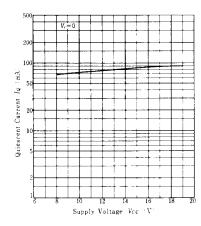

OUTPUT POWER VS. SUPPLY VOLTAGE


VOLTAGE GAIN VS. FREQUENCY


TOTAL HARMONIC DISTORTION VS. FREQUENCY


OUTPUT POWER VS. FREQUENCY


SUPPLY VOLTAGE REJECTION RATIO VS. FREQUENCY


WIDE BAND NOISE VS. SIGNAL SOURCE RESISTANCE

POWER DISSIPATION VS. OUTPUT POWER

QUIESCENT CURRENT VS. SUPPLY VOLTAGE

