DUAL HIGH CURRENT OPERATIONAL AMPLIFIER

急出货

NJM4556

The NJM4556 integrated circuit is a high-gain, high output current dual operational amplifier capable of driving \pm 70mA into 150 Ω loads (\pm 10.5V output voltage). The NJM4556 combines many of the features of the popular NJM4558 as well as having the capability of driving 150 Ω loads. In addition, the wide band-width, low noise, high slew rate and low distortion of the NJM4556 make it ideal for many audio, telecommunications and instrumentation applications.

■ Absolute Maximum Ratings (Ta=25°C)

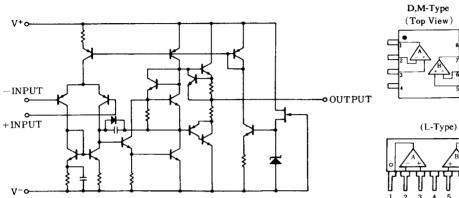
Supply Voltage	V ⁺ /V ⁻	±18V		
Differential Input Voltage	V_{ID}	±30V		
Input Voltage(note)	V_{I}	±15V		
Power Dissipation	P _D (D-Type)	700mW		
	(M-Type)	300mW		
	(L-Type)	800mW		
Operating Temperature Range	Торг	-20~+75°C		
Storage Temperature Range	T_{stg}	-40~+125°C		

(note) For supply voltage less than $\pm 15V$, the absolute maximum input voltage is equal to the supply voltage.

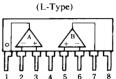
Package Outline

H 1M4FF0B

NJM4556M-B

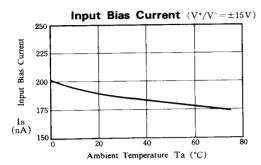

NJM45561

■ Electrical Characteristics (NJM4556D/NJM4556L)(Ta=25°C, V+/V-=±15V)

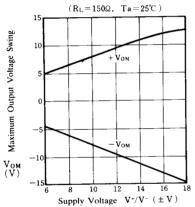

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Input Offset Voltage	V _{IO}	$R_S \leq 10 k\Omega$	_	0.5	6	mV
Input Offset Current	I _{IO}		_	±5	±60	nA
Input Bias Current	I _B		_	180	500	nA
Large Signal Voltage Gain	R _{IN}		0.3	5	_	МΩ
Large Signal Voltage Gain	A_{V}	$R_L \ge 2k\Omega$, $V_O = \pm 10V$	86	100		dB
Maximum Output Voltage Swing 1	V _{om1}	$R_{L} \ge 2k\Omega$	±12	±13.5	_	v
Maximum Output Voltage Swing 2	V _{OM2}	R _L ≥150Ω	±10.5	±11		v
Input Common Mode Voltage Range	V _{ICM}		±12	±14	_	v
Common Mode Rejection Ratio	CMR	R _S ≦10kΩ	70	90	_	dB
Supply Voltage Rejection Ratio	SVR	R _S ≦10kΩ	76.5	90	_	dB
Supply Current	I _{CC}		_	9	12	mA
Slew Rate	SR			3		V/μS
Unity Gain Bandwidth	GB		_	8	_	MHz

■ Equivalent Circuit (1/2 Shown)

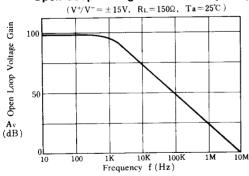
■ Connection Diagram

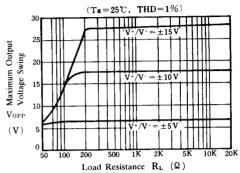

PIN FUNCTION 1. A OUTPUT 2. A-INPUT

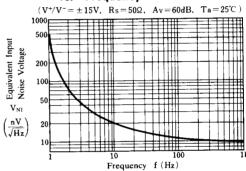
z . A-INPUT 3 . A+INPUT 4 . V-5 . B+INPUT 6 . B-INPUT 7 . B OUTPUT 8 . V-

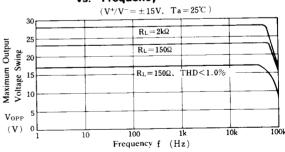

■ Electrical Characteristics (NJM4556M-B) $(V^+/V^- = \pm 15V, T_a = 25^{\circ}C)$

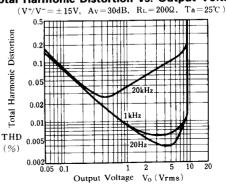
. Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Input Offset Voltage	V _{io}	R _S ≤10kΩ		0.5	0.5	mV
Input Offset Current	Ito			30	60	nA.
Input Bias Current	I _B			250	500	n A
Large Signal Voltage Gain	Av	$R_L \ge 2k\Omega$, $V_0 = \pm 10V$	86	100	—	dB
Maximum Output Voltage Swing 1	V _{OM1}	$V_{IN}^{+} = 4V, V_{IN}^{-} = 3V, V^{+} = 9V$	7.5			v
Maximum Output Voltage Swing 2	V _{OM2}	$I_{SOURCE} = 40mA$ $V_{IN}^+ = 3V, V_{IN}^- = 4V, V^+ = 9V$ $I_{SINK} = 40mA$			2.1	v
Input Common Mode Voltage Range 1	V _{ICM1}	$V^+=9V, V_{II}$	_	_	1.5	v
Input Common Mode Voltage Range 2	V _{ICM2}	$V^+=9V$, V_{IH}	8	_		v
Common Mode Rejection Ratio	CMR	$R_S \leq 10 k\Omega$	70	90	_	dB
Supply Voltage Rejection Ratio	SVR	$R_s \leq 10 k\Omega$	76.5	90		dB
Power Dissipation	PD	$V^+ = 9V$	_	80	135	mW


■ Typical Characteristics


Maximum Output Voltage Swing vs. Supply Voltage


Open Loop Voltage Gain vs. Frequency


Maximum Output Voltage Swing vs. Load Resistance


Equivalent Input Noise Voltage vs. Frequency

Maximum Output Voltage Swing vs. Frequency

Total Harmonic Distortion vs. Output Voltage

