Philips Semiconductors

提多邦,专业PCB打样工厂,24小时

8-bit serial-in/serial or parallel-out shift register with output latches; 3-state

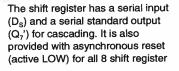
1月74日CS95N&NDSP,1共应格

74HC7HCT595

FEATURES

- 8-bit serial input
- 8-bit serial or parallel output
- Storage register with 3-state outputs
- Shift register with direct clear
- 100 MHz (typ) shift out frequency
- · Output capability:
 - parallel outputs; bus driver
 - serial output; standard
- I_{cc} category: MSI.

APPLICATIONS


- Serial-to-parallel data conversion
- Remote control holding register.

DESCRIPTION

The 74HC/HCT595 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The "595" is an 8-stage serial shift register with a storage register and 3-state outputs. The shift register and storage register have separate clocks.

Data is shifted on the positive-going transitions of the SH_{CP} input. The data in each register is transferred to the storage register on a positive-going transition of the ST_{CP} input. If both clocks are connected together, the shift register will always be one clock pulse ahead of the storage register.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \text{ °C}$; $t_r = t_f = 6 \text{ ns}$.

stages. The storage register has 8 parallel 3-state bus driver outputs. Data in the storage register appears at the output whenever the output enable input (OE) is LOW.

SYMBOL		CONDITIONS	T١		
	PARAMETER	CONDITIONS	НС	нст	UNIT
t _{phl} /t _{plh}	propagation delay SH _{CP} to Q_7' ST _{CP} to Q_n MR to Q_7'	C _L = 15 pF V _{CC} = 5 V	16 17 14	21 20 19	ns ns ns
f _{max}	maximum clock frequency SH _{CP} , ST _{CP}		100	57	MHz
Cı	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per package	notes 1 and 2	115	130	pF

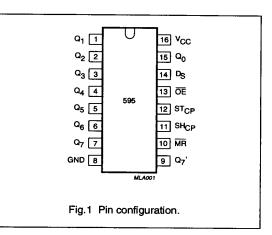
Notes

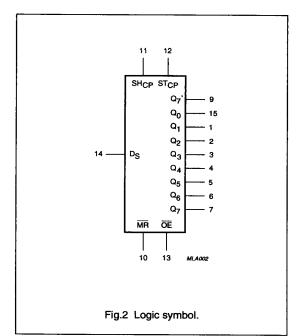
 C_{PD} is used to determine the dynamic power dissipation (P_{D} in μW):

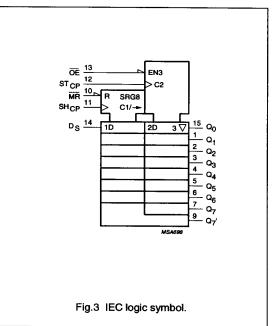
 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

- $f_i = input frequency in MHz$ $C_L = output load capacitance in pF$
- f_e = output frequency in MHz V_{cc} = supply voltage in V
- $\Sigma(C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs.}$

For HC the condition is V_i = GND to V_{cc} For HCT the condition is V_i = GND to V_{cc} - 1.5 V.

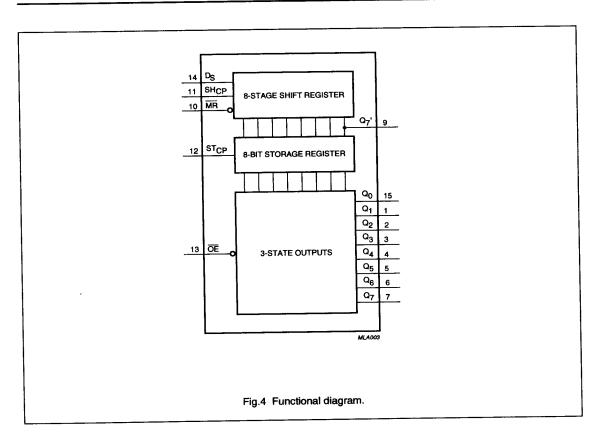

ORDERING INFORMATION

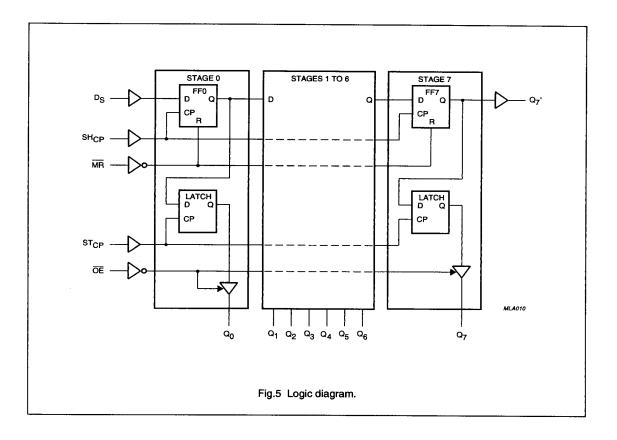

EXTENDED TYPE	PACKAGE								
NUMBER	PINS	PIN POSITION	MATERIAL	CODE					
74HC/HCT595N	16	DIL	plastic	SOT38Z					
74HC/HCT595D	16	SO16	plastic	SOT109A					



PINNING

SYMBOL	PIN	DESCRIPTION
Q ₀ - Q ₇	15, 1 - 7	parallel data output
GND	8	ground (0 V)
Q ₇ '	9	serial data output
MR	10	master reset (active LOW)
SH _{CP}	11	shift register clock input
ST _{CP}	12	storage register clock input
ŌĒ	13	output enable (active LOW)
Ds	14	serial data input
V _{cc}	16	positive supply voltage



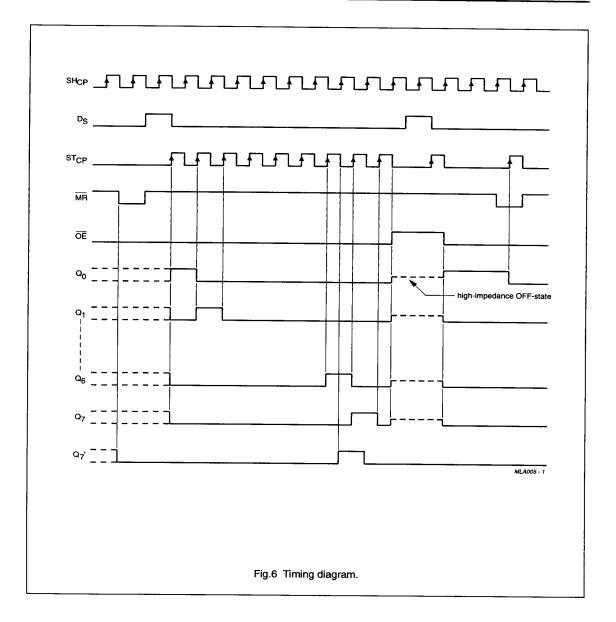


74HC/HCT595

8-bit serial-in/serial or parallel-out shift register with output latches; 3-state

74HC/HCT595

FUNCTION TABLE


INPUTS					OU	PTUTS	FUNCTION			
SH _{CP}	ST _{CP}	ŌĒ	MR	Ds	Q7'	Q				
X	X	L	Ļ	x	L	NC	a LOW level on MR only affects the shift registers			
x	1	L	L	x	L	L	empty shift register loaded into storage register			
x	x	н	L	x	L	z	shift register clear. Parallel outputs in high-impedance OFF-state			
↑	x	L	н	н	Q ₆ '	NC	logic high level shifted into shift register stage 0. Contents of all shift register stages shifted through, e.g. previous state of stage 6 (internal Q_6) appears on the serial output (Q_7)			
x	<i>,</i> ↑	L	н	x	NC	Q _n '	contents of shift register stages (internal Q_n) are transferred to the storage register and parallel output stages			
↑	1	L	н	x	Q ₆ '	Q _n '	contents of shift register shifted through. Previous contents of the shift register is transferred to the storage register and the parallel output stages.			

H = HIGH voltage level

- L = LOW voltage level
- ↑ = LOW-to-HIGH transition

 \downarrow = HIGH-to-LOW transition

- Z = high-impedance OFF-state
- NC = no change
- X = don't care.

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

Output capability: parallel outputs, bus driver; serial output, standard Icc category: MSI.

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_i = 6 ns; C_L = 50 pF.$

		T _{amb (°C)}								TEST CONDITION	
SYMBOL	PARAMETER		+25			o +85	40 to	+125	UNIT	V _{cc} (V)	WAVEFORMS
		MIN	ТҮР	MAX	MIN	MAX	MIN	MAX			
		-	52	160	-	200	-	240	ns	2.0	
t _{PHL} /t _{PLH}	propagation delay SH _{CP} to Q ₇ '	-	19	32	-	40	-	48	ns	4.5	Fig.7
	SHCP IO Q7	-	15	27	-	34		41	ns	6.0	
		-	55	175	-	220	-	265	ns	2.0	F 0
t _{PHL} /t _{PLH}	propagation delay	-	20	35]-	44	-	53	ns	4.5	Fig.8
	SICPIOUn	-	16	30	-	37		45	ns	6.0	
		-	47	175		220	1-	265	ns	2.0	Fi 40
t _{PHL}	propagation delay MR to Q7'	-	17	35	1-	44	-	53	ns	4.5	Fig.10
1112		-	14	30	-	37	-	45	ns	6.0	
	3-state output	-	47	150	-	190	-	225	ns	2.0	
t _{PZH} /t _{PZL}	enable time	-	17	30	-	38	1-	45	ns	4.5	Fig.11
·F2H ·F2L	OE to Q _n	-	14	26	-	33	-	38	ns	6.0	
	3-state output	-	41	150	-	190	-	225	ns	2.0	
t _{PHZ} /t _{PLZ}	disable time OE to Qn	-	15	30	-	38	-	45	ns	4.5	Fig.11
PHZ PLZ		-	12	26	-	33		38	ns	6.0	
	shift clock pulse width HIGH or LOW	75	17	-	95	T-	110	-	ns	2.0	
t _w		15	6	-	19	-	22		ns	4.5	Fig.7
•₩		13	5	-	16	-	19		ns	6.0	
·	storage clock	75	11	-	95	Τ_	110	-	ns	2.0	
tw		15	4	-	19	-	22	-	ns	4.5	Fig.8
-00	or LOW	13	3	-	16	-	19		ns	6.0	
		75	17	_	95	_	110	-	ns	2.0	
tw	master reset	15	6.0	-	19	-	22	-	ns	4.5	Fig.10
-vv	pulse width LOW	13	5.0	-	16	1	19	-	ns	6.0	
		50	11	-	65		75	-	ns	2.0	
t _{su}	set-up time Ds to	10	4.0	-	13	-	15	-	ns	4.5	Fig.9
-su	SHCP	9.0	3.0	1-	11	-	13	-	ns	6.0	
		75	22		95	-	110	-	ns	2.0	
t _{su}	set-up time SH _{CP}	15	8	-	19	-	22	-	ns	4.5	Fig.8
ารน	to ST _{CP}	13	7	-	16	-	19		ns	6.0	
		3	-6	-	3		3	-	ns	2.0	
t _h	hold time Ds to	3	-2	-	3	-	3	-	ns	4.5	Fig.9
n-	SHCP	3	-2	-	3	-	3		ns	6.0	
		50	-19	-	65	-	75	-	ns	2.0	
t _{rem}	removal time MR	10	-7	-	13	-	15	-	ns	4.5	Fig.10
'rem	to SH _{CP}	9	-6	-	11]-	13		ns	6.0	

74HC/HCT595

SYMBOL					T _{amb (°C})				TEST	CONDITION	
	PARAMETER		+25		-40 1	to +85	-40 to	o +125	UNIT	V _{cc}		
		MIN	ТҮР	MAX	MIN	MAX	MIN	MAX	1	(Ň)	WAVEFORMS	
_	maximum clock	6	30	-	4.8	-	4	-	MHz	2.0		
f _{max}	pulse frequency SH _{CP} or ST _{CP}	30 35	91 108	- -	24 28	-	20 24	-	MHz MHz	4.5 6.0	Figs 7 and 8	

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see chapter "HCMOS family characteristics", section "Family specifications".

Output capability: parallel outputs, bus driver; serial output, standard $I_{\rm cc}$ category: MSI.

Note to HCT types

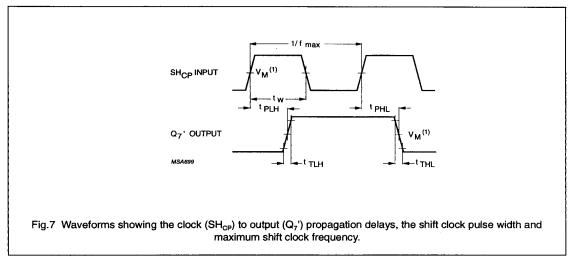
The value of additional quiescent supply current (ΔI_{cc}) for a unit load of 1 is given in the family specifications. To determine ΔI_{cc} per input, multiply this value by the unit load coefficient shown in the table below.

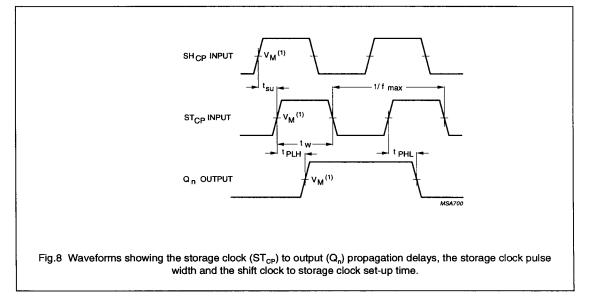
$GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

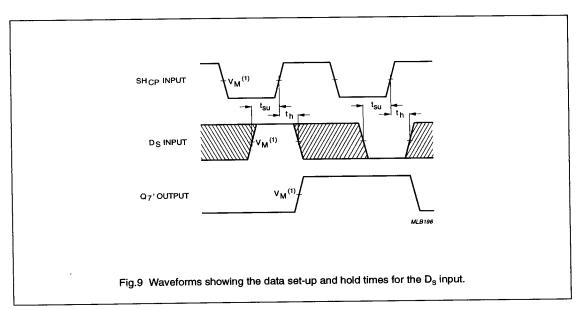
INPUT	UNIT LOAD COEFFICIENT
D _s	0.25
MR	1.50
SH _{CP}	1.50
ST _{CP}	1.50
ŌĒ	1.50

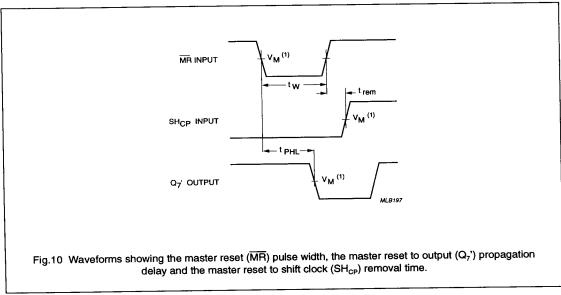
74HC/HCT595

AC CHARACTERISTICS FOR 74HCT

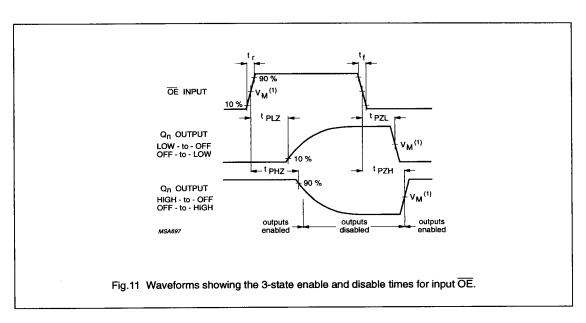

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF.$


					T _{amb (°C)}					TEST CONDITION	
SYMBOL	PARAMETER		+25		-40 t	o +85	40 to	+125	UNIT	V _{cc}	WAVEFORMS
		MIN	ΤΥΡ	MAX	MIN	MAX	MIN	MAX		(V)	
t _{PHL} /t _{PLH}	propagation delay SH _{CP} to Q ₇ '	-	25	42	-	53	-	63	ns	4.5	Fig.7
t _{PHL} /t _{PLH}	propagation delay ST _{CP} to Q _n	1	24	40	-	50	-	60	ns	4.5	Fig.8
t _{PHL}	propagation delay MR to Q ₇ '	-	23	40	-	50	-	60	ns	4.5	Fig.10
t _{PZH} / t _{PZL}	3-state output enable time \overline{OE} to Q_n	-	21	35	-	44	-	53	ns	4.5	Fig.11
t _{PHZ} /t _{PLZ}	3-state output disable time \overline{OE} to Q_n	-	18	30	-	38	-	45	ns	4.5	Fig.11
t _w	shift clock pulse width HIGH or LOW	16	6	-	20	_	24	-	ns	4.5	Fig.7
t _w	storage clock pulse width HIGH or LOW	16	5	-	20	-	24		ns	4.5	Fig.8
t _w	master reset pulse width LOW	20	8	-	25	-	30	-	ns	4.5	Fig.10
t _{su}	set-up time D_s to SH_{CP}	16	5		20	-	24	-	ns	4.5	Fig.9
t _{su}	set-up time SH _{CP} to ST _{CP}	16	8	-	20	-	24		ns	4.5	Fig.8
t _h	hold time D _s to SH _{CP}	3	-2	-	3	-	3	-	ns	4.5	Fig.9
t _{rem}	removal time MR to SH _{CP}	10	-7	-	13	-	15		ns	4.5	Fig.10
f _{max}	maximum clock pulse frequency SH _{CP} or ST _{CP}	30	52		24	-	20	-	MHz	4.5	Figs 7 and 8


Product specification


74HC/HCT595

AC WAVEFORMS



74HC/HCT595

8-bit serial-in/serial or parallel-out shift register with output latches; 3-state

Note to AC waveforms

(1) HC : $V_M = 50\%$; $V_I = GND$ to V_{CC} HCT: $V_M = 1.3$ V; $V_I = GND$ to 3 V.