

捷多邦,专业PCB打样工厂,24小MMD7810/11 8-BIT, SINGLE-CHIP NMOS MICROCOMPUTERS WITH A/D CONVERTER

Description

The μ PD7810 and μ PD7811 single-chip microcomputers integrate sophisticated on-chip peripheral functionality normally provided by external components. The device's internal 16-bit ALU and data paths, combined with a powerful instruction set and addressing, make the μ PD7810/11 appropriate in data processing as well as control applications. The devices integrate a 16-bit ALU, 4K-ROM, 256-byte RAM with an 8-channel A/D converter, a multifunction 16-bit timer/event counter, two 8-bit timers, a USART, and two zero-cross detect inputs on a single die, allowing their use in fast, high end processing applications. This involves analog signal interface and processing.

The μ PD7811 is the mask-ROM high volume production device embedded with custom customer program. The μ PD7810 is a ROM-less version for prototyping and small volume production. The μ PD78PG11E is a piggy-back EPROM version for design development.

Features

- ☐ NMOS silicon gate technology requiring +5 V power supply
- ☐ Complete single-chip microcomputer
 - 16-bit ALU
 - 4K x 8 ROM
 - 256-byte RAM
- □ 44 I/O lines
- ☐ Two zero-cross detect inputs
- ☐ Two 8-bit timers
- □ Expansion capabilities
 - 8085A bus-compatible
 - 60K-byte external memory address range
- ☐ 8-channel, 8-bit A/D converter
 - Autoscan mode
 - Channel select mode
- ☐ Full duplex USART
 - Synchronous and asynchronous
- ☐ 153 instructions
 - 16-bit arithmetic, multiply and divide
- \Box 1 μ s instruction cycle time (12 MHz operation)
- ☐ Prioritized interrupt structure
 - 3 external
 - 8 internal
- ☐ Standby function
- ☐ On-chip clock generator
- ☐ 64-pin plastic QUIP or shrink DIP

Pin Configuration

 igurati		1		
PA₀ □	1	$\overline{}$	64 □ V _{cc}	
PA, 🗖	2		63 □ V _{DD}	
PA ₂	3		62 PD,	
PA ₃	4		61 PD6	
PA ₄	5		60 PDs	
PA _s	6		59 PD4	
PA _e	7		58 D PD3	
PA, [8		57 PD2	
РВ₀ [9		56 🗖 PD,	
РВ, ┌	10		55 🕽 PD。	
PB ₂	11		54 PF,	
PB₃ 🗖			53 PF6	
PB₄ ☐	13		52 ☐ PF ₅	
PB₅ 🗖	14		51 PF4	
PB ₆		£	50 PF ₃	
РВ, □		PD7810/11	49 🗖 PF2	
PC _o 🗖		6	48 D PF,	
PC, 🗗	18	Ŧ	47 PF ₀	
PC₂ 🗖	19		46 ALE	
	20		45 WR	
	21		44 RD	
PC,	22		43 AVC	
	23		42 VARE	
	24		41 AN7	
NMI 🗆	25		40 AN6	
INT1 🗆	26		39 ☐ AN₅	
MODE1 [27		38 🗀 AN4	
RESET C	28		37 AN ₃	
MODE0 [29		36 ☐ AN₂	
×₂ 🗖 🤅	30		35 🕽 AN1	
x, d	31		34 AN	
V _{ss} □	32_		33 AVss	
				49-000601A
 	_			

Ordering Information

Part Number	Package Type	Max Frequency of Operation
μPD7810G-36 μPD7811G-36	64-pin plastic QUIP	12 MHz
μPD7810CW μPD7811CW	64-pin plastic shrink DIP	12 MHz

Pin Identification

No.	Symbol	Function
1-8	PA ₀ -PA ₇	Port A I/O
9-16	PB ₀ -PB ₇	Port B I/O
17	PC ₀ /TxD	Port C I/O line O/Transmit data output
18	PC ₁ /RxD	Port C I/O line 1/Receive data input
19	PC ₂ /SCK	Port C I/O line 2/Serial clock I/O
20	PC ₃ /TI/ INT2	Port C I/O line 3/Timer input/Interrupt request 2 input
21	PC ₄ /TO	Port C I/O line 4/Timer output
22	PC ₅ /Cl	Port C I/O line 5/Counter input
23, 24	PC ₆ , PC ₇ / CO ₀ , CO ₁	Port C I/O lines 6, 7/Counter outputs 0, 1
25	NMI	Nonmaskable interrupt input
26	INT1	Interrupt request 1 input
27	MODE1/M1	Mode 1 input/Memory cycle 1 output
28	RESET	Reset input
29	MODEO/ IO/M	Mode 0 input/I/O/Memory output
30, 31	X2, X1	Crystal connections 1, 2
32	V _{SS}	Ground
33	AVSS	Port T threshold voltage input
34-41	AN ₀ -AN ₇	A/D converter analog inputs 0-7
42	VAREF	A/D converter reference voltage
43	AV _{CC}	A/D converter power supply
44	RD	Read strobe output
45	WR	Write strobe output
46	ALE	Address latch enable output
47-54	PF ₀ -PF ₇	Port F I/O/Expansiom memory address bus (bits 8-15)
55-62	PD ₀ -PD ₇	Port D I/O/Expansion memory address/ data bus
63	V _{DD}	RAM backup power supply
64	V _{CC}	5 V power supply

Pin Functions

PA₀-PA₇ [Port A]

Port A is an 8-bit three-state port. Each bit is independently programmable as either input or output. Reset makes all lines of port A inputs.

PB₀-PB₇ [Port B]

Port B is an 8-bit three-state port. Each bit is independently programmable as either input or output. Reset makes all lines of port B inputs.

PC₀-PC₇ [Port C]

Port C is an 8-bit three-state port. Each bit is independently programmable as either input or output. Alternatively, the lines of port C can be used as control lines for the USART and timer. Reset puts all lines of port C in port mode, input.

TxD [Transmit Data]. Serial data output terminal.

RxD [Receive Data]. Serial data input terminal.

SCK [Serial Clock]. Output for the serial clock when internal clock is used. Input for serial clock when external clock is used.

TI [Timer Input]. Timer input terminal.

INT2 [Interrupt Request 2]. Falling-edge-triggered, maskable interrupt input terminal and AC-input, zero-cross detection terminal.

TO [Timer Output]. The output of TO is a square wave with a frequency determined by the timer/counter.

CI [Counter Input]. External pulse input to timer/event counter.

CO₀, CO₁ [Counter Outputs 0, 1]. Programmable rectangular wave outputs based on timer/event counter.

PD₀-PD₇ [Port D]

Port D is an 8-bit three-state port. It can be programmed as either 8 bits of input or 8 bits of output. When external expansion memory is used, port D acts as the multiplexed address/data bus.

PF₀-PF₇ [Port F]

Port F is an 8-bit three-state port. Each bit is independently programmable as an input or output. When external expansion memory is used, port F outputs the high-order address bits.

ANo-AN7

These are the eight analog inputs to the A/D converter. AN_4 - AN_7 can also be used as a digital input for falling edge detection.

AV_{SS} [A/D Converter Power Ground]

 $\mathrm{AV}_{\mathrm{SS}}$ is the ground potential for the A/D converter power supply.

NMI [Nonmaskable Interrupt]

Falling-edge-triggered nonmaskable interrupt input.

INT1 [Interrupt Request 1]

INT1 is a rising-edge-triggered, maskable interrupt input. It is also an AC-input, zero-cross detection terminal.

RESET [Reset]

When the $\overline{\text{RESET}}$ input is brought low, it initializes the $\mu\text{PD7810/11}$.

MODE1, MODE0 [Mode 1, 0]

The MODE1 and MODE0 inputs select the memory expansion mode. MODE1 also outputs the M1 signal during each opcode fetch. MODE0 outputs the IO/M signal.

V_{AREF} [A/D Converter Reference]

V_{AREF} set the upper limit for the A/D converter's conversion range.

AV_{CC} [A/D Converter Power]

This is the power supply voltage for the A/D converter.

RD [Read Strobe]

The RD output goes low to gate data from external devices onto the data bus. RD goes high during reset.

WR [Write Strobe]

The WR output goes low to indicate that the data bus holds valid data. It is a strobe signal for external memory or I/O write operations. WR goes high during reset.

ALE [Address Latch Enable]

The ALE output latches the address signal to the output of PD₀-PD₇.

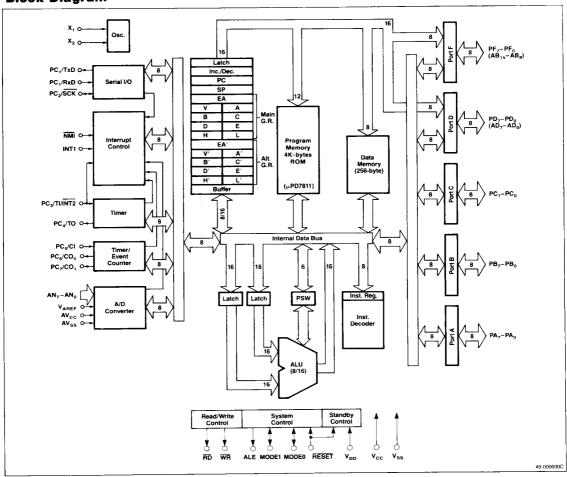
X1, X2 [Crystal Connections 1, 2]

X1 and X2 are the system clock crystal oscillator terminals. X1 is the input for an external clock.

V_{SS} [Ground]

Ground potential.

V_{DD} [Backup Power]


Backup power for on-chip RAM.

V_{CC} [Power Supply]

+5 V power supply.

Block Diagram

NEC

Functional Description

Memory Map

The µPD7811 can directly address up to 64K bytes of memory. Except for the on-chip ROM (0-4095) and RAM (65280-65535), any memory location can be used as ROM or RAM. The memory map, figure 1, defines the 0 to 64K byte memory space for the µPD7811.

Input/Output

The μ PD7810/11 has 8 analog input lines (AN₀-AN₇), 44 digital I/O lines, five 8-bit ports (port A, port B, port C, port D, port F), and 4 input lines (AN₄-AN₇).

Analog Input Lines. AN_0 - AN_7 are configured as analog input lines for on-chip A/D converter.

Port A, Port B, Port C, Port F. Each line of these ports can be individually programmed as an input or output. When used as I/O ports, all have latched outputs and high-impedance inputs.

Port D. Port D can be programmed as a byte input or a byte output.

 AN_4 - AN_7 . The high order analog input lines, AN_4 - AN_7 , can be used as digital input lines for falling edge detection.

Control Lines. Under software control, each line of port C can be configured individually to provide control lines for the serial interface, timer, and timer/counter.

Memory Expansion. In addition to the single-chip operation mode, the μ PD7811 has four memory expansion modes. Under software control, port D can provide a multiplexed low-order address and data bus; port F can provide a high-order address bus. Table 1 shows the relation between memory expansion modes and the pin configurations of port D and port F.

Table 1. Memory Expansion Modes and Port Configurations

Memory Expansion		Port Configuration
None	Port D Port F	I/O port I/O port
256 Bytes	Port D Port F	Multiplexed address/data bus I/O port
4K Bytes	Port D Port F ₀ -F ₃ Port F ₄ -F ₇	Multiplexed address/data bus Address bus I/O port
16K Bytes	Port D Port F ₀ -F ₅ Port F ₆ -F ₇	Multiplexed address/data bus Address bus I/O port
60K Bytes	Port D Port F	Multiplexed address/data bus Address bus

Timers

There are two 8-bit timers. The timers may be programmed independently or may be cascaded and used as an 8-bit timer with 8-bit prescaler. The timer can be software set to increment at intervals of four machine cycles (1 μ s at 12 MHz operation) or 128 machine cycles (32 μ s at 12 MHz), or to increment on receipt of a pulse at TI. Figure 2 shows the block diagram for the timer.

Timer/Event Counter

The 16-bit multifunctional timer/event counter (figure 3) can be used for the following operations:

- Interval timer
- External event counter
- Frequency measurement
- Pulse width measurement
- Programmable square-wave output

Figure 1. Memory Map

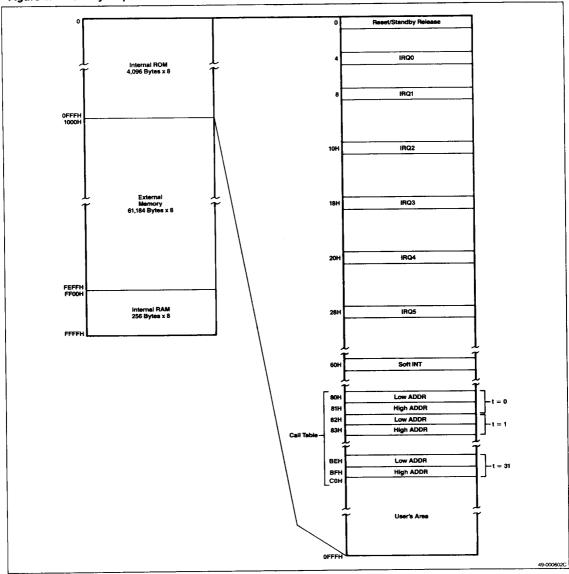
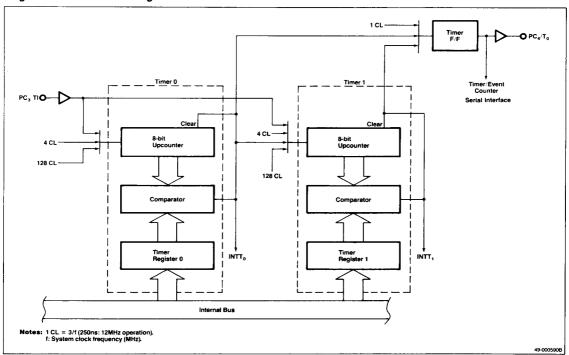
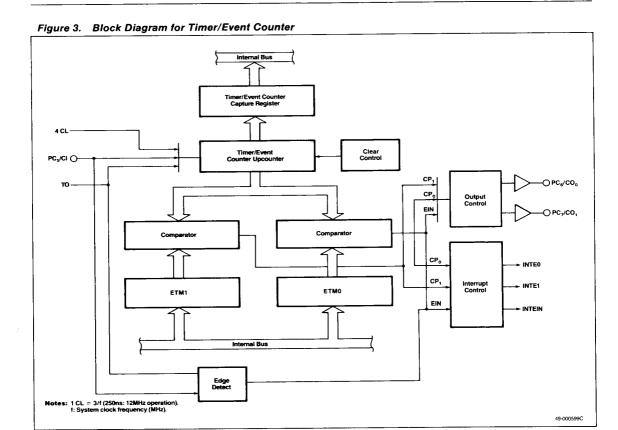




Figure 2. Timer Block Diagram

8-Bit A/D Converter

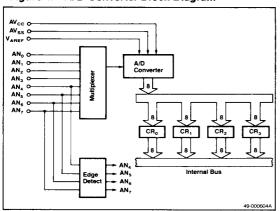
- 8 input channels
- 4 conversion result registers
- 2 powerful operation modes
 - Autoscan mode
 - Channel select mode
- Successive approximation technique
- Absolute accuracy: ±1.5 LSB (±0.6%)
- Conversion range: 0 to 5 V
- Conversion time: 48 μs
- Interrupt generation

Analog/Digital Converter

The μ PD7810/11 features an 8-bit, high speed, high accuracy A/D converter. The A/D converter is made up of a 256-resistor ladder and a successive approximation register (SAR). There are four conversion result registers (CR₀-CR₃). The 8-channel analog input may be operated in either of two modes. In the select mode, the conversion value of one analog input is sequentially stored in CR₀-CR₃. In the scan mode, the upper four channels or the lower four channels may be specified. Then those four channels will be consecutively selected and the conversion results stored sequentially in the four conversion result registers. Figure 4 shows the block diagram for the A/D converter.

Interrupt Structure

There are 11 interrupt sources. Three are external interrupts and eight are internal. The following, table 2, shows 11 interrupt sources divided into six priority levels. See figure 5.


Standby Function

The standby function saves the top 32 bytes of RAM with backup power (V_{CD}) if the main power (V_{CC}) fails. On power-up, you can check the standby flag (SB) to determine whether recovery was made from standby mode or from a cold start.

Table 2. Interrupt Sources

	000,000		
Interrupt Request	Interrupt Address	Type of Interrupt	internal/ External
IRQ0	4	NMI (Nonmaskable interrupt)	Ext
IRQ1	8	INTTO (Coincidence signal from timer 0)	int
		INTT1 (Coincidence signal from timer 1)	•
IRQ2	16	INT1 (Maskable interrupt)	Ext
		INT2 (Maskable interrupt)	
IRQ3	24	INTEO (Coincidence signal from timer/event counter)	Int
		INTE1 (Coincidence signal from timer/event counter)	
IRQ4	32	INTEIN (Falling signal of Cl and TO counter)	int/Ext
		INTAD (A/D converter interrupt)	
IRQ5	40	INTSR (Serial receive interrupt)	Int
		INST (Serial send interrupt)	

Figure 4. A/D Converter Block Diagram

Universal Serial Interface

The serial interface can operate in one of three modes: synchronous, asynchronous, and I/O interface. The I/O interface mode transfers data MSB first, for easy interfacing to certain NEC peripheral devices. Synchronous and asynchronous modes transfer data LSB first. Synchronous operation offers two modes of data reception: search and nonsearch. In the search mode, data is transferred one bit at a time from the serial register to the receive buffer. This allows a software search for a sync character. In the nonsearch mode, data transfer from the serial register to the transmit buffer occurs eight bits at a time. Figure 6 shows the universal serial interface block diagram.

Figure 5. Interrupt Structure Block Diagram

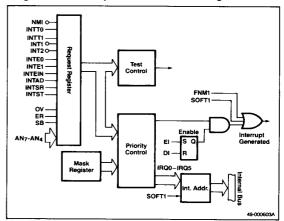
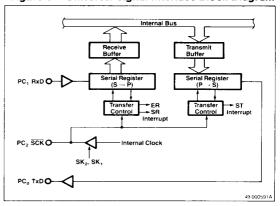
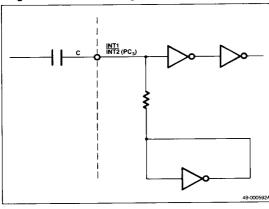



Figure 6. Universal Signal Interface Block Diagram

Zero-Crossing Detector

The INT1 and INT2 terminals (used common to TI and PC₃) can detect the zero-crossing point of low-frequency AC signals. When driven directly, these pins respond as a normal digital input. Figure 7 shows the zero-crossing detection circuitry.


The zero-crossing detection capability allows you to make the 50-60 Hz power signal the basis for system timing and to control voltage phase-sensitive devices.

To use the zero-cross detection mode, an AC signal of approximately 1-3 V AC (peak-to-peak) and a maximum frequency of 1 kHz is coupled through an external capacitor to the INT1 and INT2 pins.

For the INT1 pin, the internal digital state is sensed as a 0 until the rising edge crosses the average DC level, when it becomes a 1 and INT1 interrupt is generated.

For the INT2 pin, the state is sensed as a 1 until the falling edge crosses the average DC level, when it becomes a 0 and INT2 interrupt is generated.

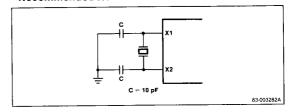
Figure 7. Zero-Crossing Detection Circuit

Absolute Maximum Ratings

Power supply voltages, V _{CC}		-0.5 V to +7.0 V		
	V _{DD}	−0.5 V to +7.0 V		
	AV _{CC}	−0.5 V to +7.0 V		
	AVSS	−0.5 V to +0.5 V		
Input voltage, V _I		−0.5 V to +7.0		
Output voltage, V _C		-0.5 V to +7.0 V		
Reference input voltage, VAREF		-0.5 V to V _{CC}		
Operating tempera 10 MHz ≤ f _{XTAL} ≤		−10°C to +70°C		
f _{XTAL} ≤ 10 MHz		-40°C to -85°C		
Storage temperati	ure, T _{STG}	-65°C to +150°C		

Comment: Exposing the device to stresses above those listed in absolute maximum ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Operating Conditions


Oscillating Frequency	TA	V _{CC} , AV _{CC}
f _{XTAL} ≤ 10 MHz	-40°C to +85°C	+5.0 V ±10%
10 MHz ≤ f _{XTAL} ≤ 12 MHz	-10°C to +70°C	+5.0 V ±5%

Capacitance

TA =25°C; VCC = VDD = VSS = 0 V

		Limits				Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Capacitance	Cı			10	pF	$Af_C = 1 MHz$. Unmeasured
Output capacitance	Co			20	pF	pins returned to 0 V.
I/O capacitance	C _{IO}			20	pF	

Recommended XTAL Oscillation Circuit

DC Characteristics $T_A = -10\,^{\circ}\text{C to } +70\,^{\circ}\text{C; V}_{CC} = +5.0 \text{ V } \pm5\%; \text{V}_{SS} = 0 \text{ V; V}_{DD} = \text{V}_{CC} \\ -0.8 \text{ V to V}_{CC}$

- 0.8 V to V _{CC}						
		L	imits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input low voltage	v_{lL}	0		8.0	٧	
Input high voltage	V _{IH1}	2.0		V _{CC}	٧	All except SCK, RESET, X1 and X2
	V _{IH2}	0.8 V _{CC}		V _{CC}	٧	SCK, X1, X2
	V _{IH3}	0.8 V _{DD}		V _{CC}	٧	RESET
Output low voltage	V _{OL}			0.45	٧	$I_{OL} = 2.0 \text{ mA}$
Output high voltage	V _{OH}	2.4			٧	$I_{OH} = -200 \mu\text{A}$
Data retention voltage	V _{DDDR}	3.2			٧	V _{CC} = 0 V; RESET = V _{IL}
Input current	l _i			±200	μΑ	$\begin{array}{l} \text{INT1, TI(PC}_3); + \\ 0.45 \text{ V} \leq \text{V}_1 < \\ \text{V}_{CC} \end{array}$
Input leakage current	ILI			±10	μΑ	All except INT, $TI(PC_3)$ $0 \text{ V} \leq \text{V}_1 \leq \text{V}_{CC}$
Output leakage current	lL0			±10	μΑ	$\begin{array}{l} +0.45 \text{ V} \leq \text{V}_0 \\ \leq \text{V}_{CC} \end{array}$
AV _{CC} supply current	AICC		6	12	mΑ	
V _{DD} supply current	IDD		1.5	3.5	mΑ	T _A = -40 to +85°C
				3.2	mA	$V_{CC} = V_{DD} = 5 \text{ V T}_{A} = -10 \text{ to} +70 \text{ °C}$
V _{CC} supply current	lcc		150	220	mA	T _A = -40 to +85°C; V _{CC} = V _{DD} = 5 V

Serial Operation

		Lin	nits		Test	
Parameter	Symbol	Min	Max	Unit	Conditions	
SCK cycle time	t _{CYK}	1		μS	SCK input (1)	
		500		ns	(2)	
		2		μS	SCK output	
SCK width low	tKKL	750		ns	SCK input(1)	
		200		ns	SCK input (2)	
		900		ns	SCK output	
SCK width high	^t ккн	750		ns	SCK input (1)	
		200		ns	SCK input (2)	
		900		пѕ	SCK output	
RxD set-up time to SCK 1	tRXK	80		ns	(1)	
RxD hold time after	t _{KRX}		80	ns	(1)	
SCK ↓ TxD delay time	t _{KTX}		210	ns	(1)	

Note:

- (1) 1x baud rate in asynchronous, synchronous, or I/O interface
- (2) 16x baud rate or 64x baud rate in asynchronous mode.

Zero-Cross Characteristics

	Limits				Test	
Parameter	Symbol	Min	Max	Ünit	Conditions	
Zero-cross detection input	V _{ZX}	1	3	V ac, p-p	Ac coupled	
Zero-cross accuracy	A _{ZX}		±135	mV	60-Hz sine wave	
Zero-cross detection input frequency	f _{ZX}	0.05	1	kHz	-	

μPD7810/11

AC Characteristics Read/Write Operation $V_{SS} = 0 \text{ V}, V_{CC} - 0.8 \text{ V} \le V_{DD} \le V_{CC}$

			Lin	iits			
		f _{XTAL} =	10 MHz	f _{XTAL} =	12 MHz		Test
Parameter	Symbol	Min	Max	Min	Max	Unit	Conditions (1)
RESET pulse width	t _{RP}	6.0		5.0		μS	
Interrupt pulse width	t _{IP}	3.6		3.0		μS	
Counter input pulse width	t _{Cl}	600		500		ns	Event counter mode
	t _{Cl}	4.8		4.0		μS	Pulse width measurement mode
Timer input pulse width	t _{Tl}	600		500		ns	
X1 Input cycle time	tcyc	100	250	83	250	ns	
Address set-up to ALE ↓	t _{AL}	100		65		ns	
Address hold after ALE	t _{LA}	70		50		ns	
Address to RD ↓ delay time	t _{AR}	200		150		ns	
RD ↓ to address floating	tAFR		20		20	ns	
Address to data input	t _{AD}		480		360	ns	
ALE ↓ to data input	t _{LDR}		300		215	ns	
RD ↓ to data input	t _{RD}		250		180	ns	
ALE ↓ to RD ↓ delay time	t _{LR}	50		35		ns	
Data hold time to RD 1	t _{RDH}	0		0		ns	
RD 1 to ALE 1 delay time	t _{RL}	150		115		ns	
RD width low	t _{RR}	350		280		ns	Data read
		650		530		ns	Opcode fetch
ALE width high	tLL	160		125	_	ns	
M1 setup time to ALE ↓	t _{ML}	100		65		ns	
M1 hold time after ALE ↓	t _{LM}	70		50		ns	
IO/M setup time to ALE ↓	t _{IL}	100		65		ns	
IO/M hold time after ALE ↓	t _{Ll}	70		50		ns	
Address to WR ↓ delay	t _{AW}	200		150		ns	
ALE ↓ to data output	t _{LDW}		210		195	ns	
WR ↓ to data output	t _{WD}		100		100	ns	
ALE ↓ to WR ↓ delay	t _{LW}	50		35		ns	
Data set-up time to WR 1	t _{DW}	300		230		ns	
Data hold time to WR 1	twDH	130		95		ns	
WR † to ALE † delay time	twL	150		115		ns	
WR width low	tww	350		280		ns	

(1) Load capacitance: $C_L = 150 \text{ pF}$.

A/D Converter Characteristics

 $\rm T_A=-10\,^{\circ}C$ to +70 $^{\circ}C;$ V $_{CC}=\rm AV_{CC}=5.0~V~\pm5\%;$ V $_{SS}=\rm AV_{SS}=0~V;$ V $_{AREF}=\rm AV_{CC}-0.5~V$ to AV $_{CC}$

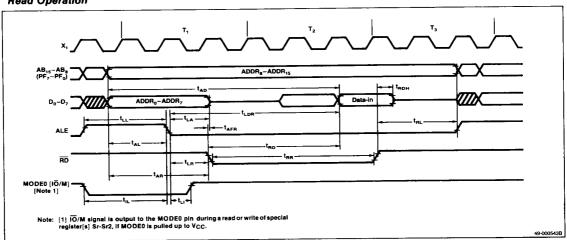
			Limits			Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Resolution		8		-	Bits	
Absolute accuracy				0.4% ± 1/2	LSB	T _A = -10 °C to +50 °C
				0.6% ±1/2	LSB	$T_A = -10$ °C to $+70$ °C (Note 1)
Conversion time	tconv	576			t _{CYC}	83 ns ≤ t _{CYC} ≤ 110 ns
		432			t _{CYC}	110 ns ≤ t _{CYC} ≤ 170 ns
Sampling time	tsamp	96			tcyc	83 ns \leq t _{CYC} \leq 110 ns
		72			t _{CYC}	110 ns ≤ t _{CYC} ≤ 170 ns
Analog input voltage	VIA	0		VAREF	٧	
Analog resistance	R _{AN}		1000		MΩ	
Analog reference current	AREF	0.2	0.5	1.5	mA	

Note:

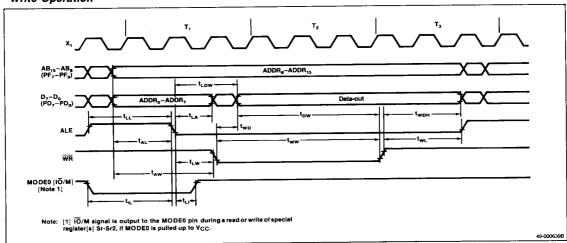
(1) In case of $f_{XTAL} \le 10$ MHz, $T_A = -40$ °C to +85 °C.

Bus Timing Depending on tcyc

Symbol	Calculating Expression	Min/Max
t _{RP}	60T	Min
t _{T1}	6T	Min
t _{CI} (2)	6T	Min
t _{CI} (3)	48T	Min
t _{IP}	36T	Min
t _{AL}	2T — 100	Min
LA	T - 30	Min
t _{AR}	3T — 100	Min
t _{AD}	7T — 220	Max
LDR	5T — 200	Max
t _{RD}	4T — 150	Max
t _{LR}	T — 50	Min
RL	2T — 50	Min
t _{RR}	4T — 50 (Data Read)	Min
	7T — 50 (Opcode Fetch)	
LL	2T — 40	Min
AW	3T -100	Min
t _{LDW}	T + 110	Max
LW	T — 50	Min
t _{DW}	4T — 100	Min
WDH	2T — 70	Min
WL	2T - 50	Min
tww	4T — 50	Min
tcyk	20T (SCK input)(1)	Min
	24T (SCK output)	
tkkl	10T — 80 (SCK input)(1)	Min
	12T — 100 (SCK output)	
tkkh	10T — 80 (SCK input)(1)	Min
	12T — 100 (SCK output)	

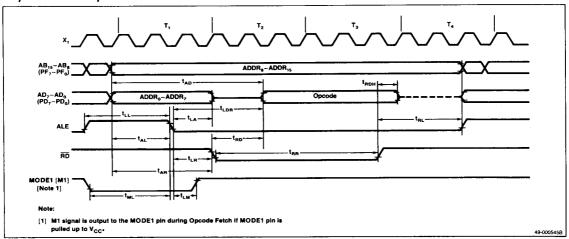

- (1) 1x Baud rate in asynchronous, synchronous, or I/O interface mode.

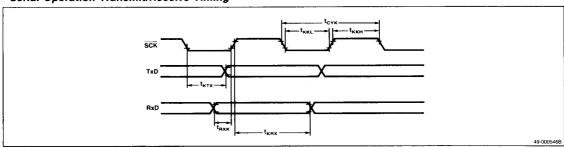
 - $T = t_{CYC} = 1/f_{XTAL}.$ The items not included in this list are independent of oscillator frequency (f_{XTAL}).
- (2) Event counter mode.
- (3) Pulse width measurement mode.



Timing Waveforms

Read Operation


Write Operation



Timing Waveforms (cont)

Opcode Fetch Operation

Serial Operation Transmit/Receive Timing

Operand Format/Description

Format	Description
r r1 r2	V, A, B, C, D, E, H, L EAH, EAL, B, C, D, E, H, L A, B, C
sr	PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, SML, EOM, ETMM, TMM, MM, MCC, MA, MB, MC, MF, TxB, TM ₀ , TM ₁
sr1	PA, PB, PC, PD, PF, MKH, MKL, ANM, SMH, EOM, TMM, RXB, CRO, CR1, CR2, CR3
sr2 sr3 sr4	PA, PB, PC, PD, PF, MKH, ANM, MKL, SMH, EOM, TMM ETM ₀ , ETM ₁ ECNT, ECPT
rp rp1 rp2 rp3	SP, B, D, H V, B, D, H, EA SP, B, D, H, EA B, D, H
rpa rpa1 rpa2 rpa3	B, D, H, D+, H+, D-, H- B, D, H B, D, H, D+, H+, D-, H-, D+ byte, H+A, H+B, H+EA, H+ byte D, H, D++, H++, D+ byte, H+A, H+B, H+EA, H+ byte
wa	8-Bit immediate data
word byte bit	16-Bit immediate data 8-Bit immediate data 3-Bit immediate data
f	CY, HC, Z
irf	FNMI, FT0, FT1, F1, F2, FE0, FE1, FEIN, FAD, FSR, FST, ER, OV, AN ₄ , AN ₅ , AN ₆ , AN ₇ , SB

Instruction Set Symbol Definitions

Symbol	Description
-	Transfer direction, result
٨	Logical product (logical AND)
V	Logical sum (logical OR)
+	Exclusive OR
-	Complement
•	Concatenation

Remarks

1. sr-sr4 (special register)	
PA = Port A	ECNT = Timer/Event
PB = Port B	Counter Upcounter
PC = Port C	ECPT = Timer/Event
PD = Port D	Counter Capture
PF = Port F	•
MA = Mode A	ETMM = Timer/Event
MB = Mode B	Counter Mode
MC = Mode C	EOM = Timer/Event
MCC = Mode Control C	Counter Output Mode
MF = Mode F	
	TxB = TX Buffer
MM = Memory Mapping	RxB = RX Buffer
TM ₀ = Timer Register 0	SMH = Serial Mode High
TM ₁ = Timer Register 1	SML = Serial Mode Low
TMM = Timer Mode	MKH = Mask High
ETM ₀ = Timer/Event	MKL = Mask Low
Counter Register 0	ANM = A/D Channel Mode
ETM ₁ = Timer/Event Counter	$CR_0 = A/D$ Conversion Result 0-3
Register 1	to CR ₃
2. rp-rp3 (register pair)	
SP = Stack Pointer	H = HL
B = BC	V = VA
D = DE	EA = Extended Accumulator
3. rpa-rpa3 (rp addressing)	
B = (BC)	D + + = (DE) + +
D = (DE)	H + + = (HL) + +
H = (HL)	D + byte = (DE) + byte
D + = (DE) +	H + A = (HL) + (A)
H - = (HL) +	H + B = (HL) + (B)
D -= (DE) -	H + EA = (HL) + (EA)
H -= (HL) -	H + byte = (HL) + byte
4. f (flag)	
CY = Carry HC = H	alf Carry $Z = Zero$
5. irf (interrupt flag)	
NMI = NMi* Input	FEIN = INTFEIN
·	FAD = INTFAD
FTO = INTFTO	FSR = INTFSR
FT1 = INTFT1	FST = INTFST
F1 = INTF1	ER = Error
F2 == INTF2	0V = 0verflow
F2 = INTF2 FE0 = INTFE0	OV = Overflow AN ₄ to AN ₇ = Analog Input 4-7 SB = Standby

Instruction Set

			Operati	Operation Code			
				82			
Mnemonic Operand	Operand	Operation	83 7 6 5 4 3 2 1 0	B4 7 6 5 4 3 2 1 0	State(1)	Bytes	Skip Condition
8-Bit Data Transfer	ansfer						
MOV	r1,A	(r1) ← (A)	0 0 0 1 1 T ₂ T ₁ T ₀		4	+	
	A, r1	(A) ← (r1)	0 0 0 0 1 72 71 70		4	-	
	*sr,A	(sr) ← (A)	0 1 0 0 1 1 0 1	1 1 S ₅ S ₄ S ₃ S ₂ S ₁ S ₀	10	2	
	*A,sr1	(A) ← (sr1)	0 1 0 0 1 1 0 0	1 1 S ₅ S ₄ S ₃ S ₂ S ₁ S ₀	10	2	
	r,word	(r) ← (word)	0 1 1 1 0 0 0 0	0 1 1 0 1 R2 R1 R0	17	4	
			Low addr	High addr			
	word,r	word,r (word) \leftarrow (r)	0 1 1 1 0 0 0 0	0 1 1 1 1 R ₂ R ₁ R ₀	17	4	
			Low addr	High addr			
MVI	*r,byte		0 1 1 0 1 R ₂ R ₁ R ₀	Data	7	5	: 1
		set L1 if r = A set L0 if r = L				- 9	L1 = 1 and $r = AL0 = 1$ and $r = L$
	sr2,byte	sr2,byte (sr2) ← byte	0 1 1 0 0 1 0 0	S ₃ 0 0 0 0 S ₂ S ₁ S ₀	14	6	- Programme
			Data				
MVIW	*wa, byte	*wa, byte ((V)•(wa)) ← byte	0 1 1 1 0 0 0 1	Offset	ಕಾ	က	
			Data				
MVIX	*rpa1,byt	*rpa1,byte (rpa1) *- byte	0 1 0 0 1 0 A ₁ A ₀	Data	2	2	
STAW	*wa	$((V)_{\bullet}(wa)) \leftarrow A$	0 1 1 0 0 0 1 1	Offset	10	2	
LDAW	*wa	(A) ← ((V)•(wa))	0 0 0 0 0 0 0 1	Offset	10	2	
STAX	*rpa2	$(rpa2) \leftarrow (A)$	A ₃ 0 1 1 1 A ₂ A ₁ A ₀	Data (2)	7/13(3)	2	
LDAX	*rpa2	(A) ← ((rpa2))	A ₃ 0 1 0 1 A ₂ A ₁ A ₀	Data (2)	7/13(3)	2	
EXX		$(B) \leftarrow (B'), (C) \leftarrow (C'), (D) \leftarrow (D')$ $(E) \leftarrow (E'), (H) \leftarrow (H'), (L) \leftarrow (L')$	0 0 0 1 0 0 0 1		4	-	
EXA		$(V) \leftarrow (V'), (A) \leftarrow (A'), (EA) \leftarrow (EA')$	0 0 0 1 0 0 0 0		4	-	
EXH		(H) ↔ (H),(L) ↔ (L)	0 1 0 1 0 0 0 0		4	-	
16-Bit Data Transfer	ransfer						
BLOCK	Q	((DE)) \leftarrow ((HL)), (DE) \leftarrow (DE + 1), (HL) \leftarrow (HL) + 1, (G) \leftarrow (C) - 1	0 0 1 1 0 0 0 1		13 x (C + 1)	-	
DMOV	rp3, EA	1	1 0 1 1 0 1 P ₁ P ₀		4	-	
	EA,rp3	(EAL) ← (rp3 _L),(EAH) ← (rp3 _H)	1 0 1 0 0 1 P ₁ P ₀	THE	4	-	

			Operation Code	on Code			
			18	8			į
Mnemonic	Operand	Operation	83 7 6 5 4 3 2 1 0	84 7 6 5 4 3 2 1 0	State(1)	Bytes	Skip Condition
6-Bit Data Ti							
DMOV	sr3, EA	(sr3) ← (EA)	0 1 0 0 1 0 0 0	1 1 0 1 0 0 1 U ₀	14	2	
	EA.sr4	(EA) ← (sr4)	0 1 0 0 1 0 0 0	1 1 0 0 0 0 V ₁ V ₀	14	2	
SBCD	word	$(word) \leftarrow (C), (word + 1) \leftarrow (B)$	0 1 1 1 0 0 0 0 0	0 0 0 1 1 1 1 0	20	4	
			Low addr	High addr	1		
SDED	word	$(word) \leftarrow (E), (word + 1) \leftarrow (D)$	0 1 1 1 0 0 0 0	0 0 1 0 1 1 1 0	20	4	
			dr.	High addr			
SHLD	word	$(word) \leftarrow (L), (word + 1) \leftarrow (H)$	0 1 1 1 0 0 0 0 0 Low addr	0 0 1 1 1 1 1 0 High addr	50	4	
SSPD	word	$(word) \leftarrow (SP_L).(word + 1) \leftarrow (SP_H)$	0 1 1 1 0 0 0 0 0	0 0 0 0 1 1 1 0	20	4	
		1	Low addr	High addr			
STEAX	rpa3	((rpa3)) ← (EAL),((rpa3) + 1 ← (EAH)	0 1 0 0 1 0 0 0	1 0 0 1 C ₃ C ₂ C ₁ C ₀	14/20(3)	ო	
			Data(4)				
LBCD	word	(C) \leftarrow (word),(B) \leftarrow (word + 1)	0 1 1 1 0 0 0 0 0 Low addr	0 0 0 1 1 1 1 1 High addr	50	4	
LOED	word	$(E) \leftarrow (word), (D) \leftarrow (word + 1)$	0 1 1 1 0 0 0 0 0	0 0 1 0 1 1 1 1	20	4	
			Low addr	High addr			
HD	word	(L) ← (word),(H) ← (word + 1)	0 1 1 1 0 0 0 0	0 0 1 1 1 1 1 1	8	4	
			Low addr	High addr			
LSPD	word	$(SP_L) \leftarrow (word), (SP_H) \leftarrow ((word) + 1)$	0 1 1 1 0 0 0 0 0	0 0 0 0 1 1 1 1	8	4	
			Low addr	High addr			
LDEAX	rpa3	(EAL) ← ((rpa3)),(EAH) ← ((rpa3) + 1)	0 1 0 0 1 0 0 0 0 Data(4)	1 0 0 0 63 62 61 60	14/20(3)	က	
PUSH	rg.	$((SP) - 1) \leftarrow (rp1_H) ((SP) - 2) \leftarrow (rp1_L)$ $(SP) \leftarrow (SP) - 2$	1 0 1 1 0 02 01 00	**************************************	13	 -	
POP	rp1	$(rp1_{\bigcup}) \leftarrow ((SP)), (rp1_{H}) \leftarrow ((SP) + 1)$ $(SP) \leftarrow (SP) + 2$	1 0 1 0 0 02 01 00		10	-	i 1
×	*rp2,wor	*rp2,word (rp2) ← (word) set L0 if rp2 = H	0 P ₂ P ₁ P ₀ 0 1 0 0 High byte	Low byte	10	ဗ	L0 = 1 and rp2 = H
TABLE		(C) \leftarrow ((PC)+3+(A)),B \leftarrow ((PC)+3+(A)+1)	0 1 0 0 1 0 0 0	1 0 1 0 1 0 0 0	17	2	
3-Bit Arithm	8-Bit Arithmetic (Register						
ADD	A,r	$(A) \leftarrow (A) + (r)$	0 1 1 0 0 0 0 0	Æ	80	2	
	L'A	$(r) \leftarrow (r) + (A)$	0 1 1 0 0 0 0 0	0 0 R ₂ R ₁	80	2	
ADC	A,r	$(A) \leftarrow (A) + (r) + (CY)$	0 1 1 0 0 0 0 0 0	Œ	8	2	
					•	•	

Instruction Set (cont)

			≅ €	22 2			
Mnemonic Operand	Operan	d Operation	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	State(1)	Bytes	Skip Condition
8-Bit Arithmetic [Register] (cont	rtic (Regist	er] (cont)					
ADDNC	A,r	$(A) \leftarrow (A) + (r)$	0 1 1 0 0 0 0 0	1 0 1 0 0 R ₂ R ₁ R ₀	œ	2	No carry
	r,A	$(r) \leftarrow (r) + (A)$	0 1 1 0 0 0 0 0	0 0 1 0 0 R ₂ R ₁ R ₀	œ	2	No carry
SUB	A,r	$(A) \leftarrow (A) - (r)$	0 1 1 0 0 0 0 0	1 1 1 0 0 R ₂ R ₁ R ₀	œ	2	
	r,A	$(r) \leftarrow (r) - (A)$	0 1 1 0 0 0 0 0	0 1 1 0 0 R ₂ R ₁ R ₀	8	2	
SBB	A,r	$(A) \leftarrow (A) - (r) - (CY)$	0 1 1 0 0 0 0 0	æ	∞	2	
	r,A	$(r) \leftarrow (r) - (A) - (CY)$	0 1 1 0 0 0 0 0		80	2	
SUBNB	A,r	$(A) \leftarrow (A) - (r)$	0 1 1 0 0 0 0 0	1 0 1 1 0 R ₂ R ₁ R ₀	œ	2	No borrow
	r,A	$(r) \leftarrow (r) - (A)$	0 1 1 0 0 0 0 0	0 0 1 1 0 R ₂ R ₁ R ₀	8	2	No borrow
ANA	A,r	$(A) \leftarrow (A) \land (r)$	0 1 1 0 0 0 0 0	1 0 0 0 1 R ₂ R ₁ R ₀	œ	2	
	r,A	$(r) \leftarrow (r) \land (A)$	0 1 1 0 0 0 0 0	0 0 0 0 1 R ₂ R ₁ R ₀	œ	2	
ORA	A,r	$(A) \leftarrow (A) \lor (r)$	0 1 1 0 0 0 0 0	1 0 0 1 1 R ₂ R ₁ R ₀	∞	2	
	r,A	$(r) \leftarrow (r) V(A)$	0 1 1 0 0 0 0 0	0 0 0 1 1 R2 R1 R0	œ	2	
XRA	A,r	(A) ← (A) ♦ (r)	0 1 1 0 0 0 0 0	1 0 0 1 0 R ₂ R ₁ R ₀	œ	2	
	r,A	$(r) \leftarrow (r) \forall (A)$	0 1 1 0 0 0 0 0	0 0 0 1 0 R ₂ R ₁ R ₀	œ	2	
GTA	A,r	(A) - (r) - 1	0 1 1 0 0 0 0 0	1 0 1 0 1 R ₂ R ₁ R ₀	œ	2	No borrow
	r,A	(r) - (A) - 1	0 1 1 0 0 0 0 0	0 0 1 0 1 R ₂ R ₁ R ₀	∞	2	No borrow
LIA	A,r	(A) - (r)	0 1 1 0 0 0 0 0	1 0 1 1 1 R ₂ R ₁ R ₀	80	2	Borrow
	r,A	(r) - (A)	0 1 1 0 0 0 0 0	0 0 1 1 1 R ₂ R ₁ R ₀	œ	2	Borrow
NEA	A,r	(A) - (r)	0 1 1 0 0 0 0 0	1 1 1 0 1 R ₂ R ₁ R ₀	æ	2	No zero
	r,A	(r) – (A)	0 1 1 0 0 0 0 0	0 1 1 0 1 R ₂ R ₁ R ₀	œ	2	No zero
EOA	A,r	(A) – (r)	0 1 1 0 0 0 0 0	1 1 1 1 1 R ₂ R ₁ R ₀	œ	2	Zero
	r,A	(r) - (A)	0 1 1 0 0 0 0 0	0 1 1 1 1 R ₂ R ₁ R ₀	80	2	Zero
ONA	A,r	(A) ∧ (r)	0 1 1 0 0 0 0 0	1 1 0 0 1 R ₂ R ₁ R ₀	œ	2	No zero
0FFA	A,r	(A) ∧ (r)	0 1 1 0 0 0 0 0	1 1 0 1 1 R2 R1 R0	œ	2	Zero
8-Bit Arithmetic (Memor	tic (Memo	(A)					
ADDX	rpa	$(A) \leftarrow (A) + ((rpa))$	0 1 1 1 0 0 0 0	1 1 0 0 0 A2 A1 A0	#	2	
ADCX	rpa	$(A) \leftarrow (A) + ((rpa)) + (CY)$	0 1 1 1 0 0 0 0	1 1 0 1 0 A ₂ A ₁ A ₀	=	2	
ADDNCX	rpa	$(A) \leftarrow (A) + ((rpa))$	0 1 1 1 0 0 0 0	1 0 1 0 0 A ₂ A ₁ A ₀	=	2	No carry
SUBX	rpa	$(A) \leftarrow (A) - ((rpa))$	0 1 1 1 0 0 0 0	1 1 1 0 0 A ₂ A ₁ A ₀	F	2	
SBBX	rpa	$(A) \leftarrow (A) - ((rpa)) - (CY)$	0 1 1 1 0 0 0 0	1 1 1 1 0 A ₂ A ₁ A ₀	11	2	
SUBNBX	rpa	$(A) \leftarrow (A) - ((rpa))$	0 1 1 1 0 0 0 0	1 0 1 1 0 A ₂ A ₁ A ₀	11	2	No borrow
ANAX	rpa	$(A) \leftarrow (A) \land ((rpa))$	0 1 1 1 0 0 0 0	1 0 0 0 1 A2 A1 A0	Ħ	2	
ORAX							

			Operation Code	n Code			
			= 1	B2			Skin
Mnemonic Operand	Operand	Operation	83 7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	State(1)	Bytes	Condition
8-Bit Arithmetic (Memory) (cont)	(Memory) (c	ont)					
XRAX	rpa (A	(A) ← (A) ∀ ((rpa))	0 1 1 1 0 0 0 0 0	1 0 0 1 0 A ₂ A ₁ A ₀	=	2	
GTAX		(A) – ((rpa)) – 1	0 1 1 1 0 0 0 0	1 0 1 0 1 A2 A1 A0	F	2	No borrow
LTAX	rpa (A	(A) – ((rpa))	0 1 1 1 0 0 0 0	1 0 1 1 1 A ₂ A ₁ A ₀	=	2	Borrow
NEAX		(A) – ((rpa))	0 1 1 1 0 0 0 0	1 1 1 0 1 A ₂ A ₁ A ₀	=	2	No zero
EOAX		(A) – ((rpa))	0 1 1 1 0 0 0 0	1 1 1 1 A ₂ A ₁ A ₀	=	2	Zero
ONAX		(A) A ((rpa))	0 1 1 1 0 0 0 0	0 1 A ₂ A ₁	=	2	No zero
OFFAX	rpa (A	(A) A ((rpa))	0 1 1 1 0 0 0 0	1 1 0 1 1 A ₂ A ₁ A ₀	=	2	Zero
Immediate Data							
		*A,byte (A) ← (A) + byte	0 1 0 0 0 1 1 0	Data	7	2	
	r,byte (r	(r) ← (r) + byte	0 1 1 1 0 1 0 0 Data	0 1 0 0 0 R ₂ R ₁ R ₀	=	က	
S	sr2, byte (\$	sr2, byte (sr2) (sr2) + byte	0 1 1 0 0 1 0 0	S ₃ 1 0 0 0 S ₂ S ₁ S ₀	20	3	
	- 1	$(A) \leftarrow (A) + but_0 + (CV)$	Data Data 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0	Data	7	2	
AC.		4) (A) + Dyte + (O1)	-		*	,	
	r,byte (r	$(r) \leftarrow (r) + byte + (CY)$	0 1 1 1 0 1 0 0 Data	0 1 0 1 0 12 11 110	=	0	
1 "	sr2,byte (s	$(sr2) \leftarrow (sr2) + byte + (CY)$	0 1 1 0 0 1 0 0	S ₃ 1 0 1 0 S ₂ S ₁ S ₀	8	က	
			Data				
ADINC	*A.byte ((A) ← (A) + byte	0 0 1 0 0 1 1 0	Data	7	2	No carry
1	1	(r) ← (r) + byte	0 1 1 1 0 1 0 0 Data	0 0 1 0 0 R ₂ R ₁ R ₀	=	က	No carry
1 "	sr2,byte (9	(sr2) ← (sr2) + byte	0 1 1 0 0 1 0 0 Data	S ₃ 0 1 0 0 S ₂ S ₁ S ₀	70	က	No carry
SUI	*A.bvte	*A.byte (A) \to (A) - byte	0 1 1 0 0 1 1 0	Data	7	2	į
l	r,byte ((r) ← (r) – byte	0 1 1 1 0 1 0 0 Data	0 1 1 0 0 R ₂ R ₁ R ₀	=	က	
1	sr2,byte ((sr2) ← (sr2) – byte	0 1 1 0 0 1 0 0 Data	S ₃ 1 1 0 0 S ₂ S ₁ S ₀	50	m	
SBI	*A,byte ($(A) \leftarrow (A) - byte - (CY)$	0 1 1 1 0 1 1 0	Data	7	2	
ı	Į.	$(r) \leftarrow (r) - byte - (CY)$	0 1 1 1 0 1 0 0 Data	Œ	=	က	
1 "	sr2,byte ($sr2,byte (sr2) \leftarrow (sr2) - byte - (CY)$	0 1 1 0 0 1 0 0	S ₃ 1 1 1 0 S ₂ S ₁ S ₀	82	က	

Instruction Set (cont)

		18	82			
Mnemonic	Mnemonic Operand Operation	on 7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	State(1)	Bytes	Skip Condition
Immediate Data (cont)						
SUINB	*A,byte (A) \leftarrow (A) – byte	0 0 1 1 0 1 1 0	Data	7	2	No borrow
	$r,byte$ $(r) \leftarrow (r) - byte$	0 1 1 1 0 1 0 0	0 0 1 1 0 R ₂ R ₁ R ₀	=	က	No borrow
		Data				
	sr2,byte (sr2) ← (sr2) – byte	0 1 1 0 0 1 0 0	S ₃ 0 1 1 0 S ₂ S ₁ S ₀	20	က	No borrow
		Data				
ANI	*A,byte (A) ← (A) ∧ byte	0 0 0 0 0 1 1 1	Data	7	2	
	r,byte (r) ← (r) ∧ byte	0 1 1 1 0 1 0 0	0 0 0 0 1 R ₂ R ₁ R ₀	-	m	
		Data				
	sr2,byte (sr2) ← (sr2) ∧ byte	0 1 1 0 0 1 0 0	S ₃ 0 0 0 1 S ₂ S ₁ S ₀	20	က	
		Data				
OH!	*A,byte (A) ← (A) V byte	0 0 0 1 0 1 1 1	Data	7	2	
	r,byte (r) ← (r) V byte	0 1 1 1 0 1 0 0	0 0 0 1 1 R ₂ R ₁ R ₀	F	က	
		Data				
	sr2,byte (sr2) ← (sr2) V byte	0 1 1 0 0 1 0 0	S ₃ 0 0 1 1 S ₂ S ₁ S ₀	20	3	
		Data				
XRI	*A,byte (A) ← (A) ♥ byte	0 0 0 1 0 1 1 0	Data	7	2	
	r,byte (r) ← (r) ₩ byte	0 1 1 1 0 1 0 0	0 0 0 1 0 R ₂ R ₁ R ₀	=	က	
		Data				
	sr2,byte (sr2) ← (sr2) V byte	0 1 1 0 0 1 0 0	S ₃ 0 0 1 0 S ₂ S ₁ S ₀	20	က	
		Data				
GTI	*A,byte (A) - byte - 1	0 0 1 0 0 1 1 1	Data	7	2	No borrow
	r,byte (r) - byte - 1	0 1 1 1 0 1 0 0	0 0 1 0 1 R ₂ R ₁ R ₀	F	က	No borrow
		Data				:
	sr2,byte (sr2) - byte - 1	0 1 1 0 0 1 0 0	S ₃ 0 1 0 1 S ₂ S ₁ S ₀	44	က	No borrow
		Data				
III	*A,byte (A) - byte	0 0 1 1 0 1 1 1	Data	7	2	Borrow
	r,byte (r) – byte	0 1 1 1 0 1 0 0	0 0 1 1 1 R ₂ R ₁ R ₀	=	ဇ	Borrow
		Data				
	sr2,byte (sr2) byte	0 1 1 0 0 1 0 0	S ₃ 0 1 1 1 S ₂ S ₁ S ₀	14	3	Borrow
		Data				:
ΝĒ	*A,byte (A) - byte	0 1 1 0 0 1 1 1	Data	7	2	No zero
	r,byte (r) - byte	0 1 1 1 0 1 0 0	0 1 1 0 1 R2 R1 R0	=	3	No zero

			Operation Code	n Code			
		;	, 22 ,	75 F	State(1)	Rytes	Skip Condition
Mnemonic Operand	Operand	Operation			()		
immediate uata (cont	ata (cont)	4.4	0 1 1 0 0 1 0 0	S. 1 1 0 1 S. S. S.	4	₆	No zero
Ę	srz, by te	srz,byte (srz) – byte	Data	3			
EOI	*A hvte	(A) — hyte	0 1 1 1 0 1 1 1	Data	7	2	Zero
į	r.byte	(r) – byte	0 1 1 1 0 1 0 0	0 1 1 1 1 R ₂ R ₁ R ₀	1	က	Zero
			Data				
	sr2,byte	sr2,byte (sr2) - byte	0 1 1 0 0 1 0 0	S ₃ 1 1 1 1 S ₂ S ₁ S ₀	4	က	Zero
			Data		,	,	
INO	*A,byte	(A) A byte	0 1 0 0 0 1 1 1		7	2	No zero
	1	(r) ∧ byte	0 1 1 1 0 1 0 0	0 1 0 0 1 R ₂ R ₁ R ₀	=	က	No zero
			Data]	
	sr2,byte	sr2,byte (sr2) A byte	0 1 1 0 0 1 0 0	S ₃ 1 0 0 1 S ₂ S ₁ S ₀	1 4	က	No zero
	4.4	(A) A buch	Data D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Data	7	2	Zero
드	A,Dyte	A, byte (A) A byte		4 A D. D.	F	۳	Zero
	r,byte	r,byte (r) A byte	Data	Zu - 0	=	o	5
	er? hyte	sr? hyte (sr?) A hyte	0 1 1 0 0 1 0 0	S ₃ 1 0 1 1 S ₂ S ₁ S ₀	4	8	Zero
			Data				
Working Reg	ister						
ADDW	wa	$(A) \leftarrow (A) + ((V) \bullet (wa))$	0 1 1 1 0 1 0 0	1 1 0 0 0 0 0 0 0	14	က	
		!	Offset				
ADCW	wa	$(A) \leftarrow (A) + ((V) \bullet (Wa)) + (CY)$	0 1 1 1 0 1 0 0	1 1 0 1 0 0 0 0	<u>4</u>	က	
ADDNCW	wa	$(A) \leftarrow (A) + ((V) \bullet (wa))$	0 1 1 1 0 1 0 0	1 0 1 0 0 0 0 0 0	14	က	No carry
			Offset		7	۳	
SUBW	wa	$(A) \leftarrow (A) - ((V) \bullet (Wa))$	0 1 1 1 0 1 0 0		T	·	
SBBW	wa	$(A) \leftarrow (A) - ((V) \bullet (Wa)) - (CY)$	0 1 1 1 0 1 0 0 Offset	1 1 1 1 0 0 0 0	1	ო	
SUBNBW	wa	$(A) \leftarrow (A) - ((V) \bullet (Wa))$	0 1 1 1 0 1 0 0 Offset	1 0 1 1 0 0 0 0	14	က	No borrow
ANAW	wa	$(A) \leftarrow (A) \land ((V) \bullet (wa))$	0 1 1 1 0 1 0 0	1 0 0 0 1 0 0 0	4	က	
			Officet				

Instruction Set (cont)

#3	Operat	Operation Code			
Operand Operation 7 6 5 4 3 2 1 0 7 7 6 5 4 3 2 1 0 7 7 6 5 4 3 2 1 0 7 7 6 3 2 1 0 7 7 6 3 2 1 0 7 7 6 3 2 1 0 7 7 6 3 2 1 0 7 7 7 6 3 2 1 0 7 7 7 6 3 2 1 0 7 7 7 6 3 2 1 0 7 7 7 6 3 2 1 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		B2			
wa (A) ← (A) ∀ ((V)•(wa)) wa (A) ← (A) ∀ ((V)•(wa)) wa (A) ← (A) ∀ ((V)•(wa)) wa (A) − ((V)•(wa)) wa (A) Λ ((83 6 5 4 3 2 1		State(1)	Bytes	Skip Condition
wa (A) ← (A) V ((V)•(wa))					
wa (A) ← (A) ♦ ((V)•(wa)) −1 0 1 1 1 0 0 1 1 wa (A) − ((V)•(wa)) −1 0 1 1 1 0 0 1 1 wa (A) − ((V)•(wa)) −1 0 1 1 1 0 0 1 1 wa (A) − ((V)•(wa)) − ((V)•(wa)) Λ byte 0 0 0 1 0 1 0 1 wa, byte ((V)•(wa)) − byte −1 0 0 1 1 1 0 1 0 0 1 wa, byte ((V)•(wa)) − byte −1 0 0 1 1 1 0 1 0 1 0 1 wa, byte ((V)•(wa)) − byte −1 0 0 1 1 1 0 1 0 1 0 1 wa, byte ((V)•(wa)) − byte −1 0 0 1 0 1 0 1 0 1 wa, byte ((V)•(wa)) − byte −1 0 0 1 0 1 0 1 0 1 wa, byte ((V)•(wa)) − byte −1 0 0 1 0 1 0 1 0 1 wa, byte ((V)•(wa)) − byte −1 0 0 1 1 1 0 1 0 1 wa, byte ((V)•(wa)) − byte −1 0 0 1 0 1 0 1 wa, byte ((V)•(wa)) − byte −1 0 0 1 1 1 0 1 0 1 wa, byte ((V)•(wa)) − byte −1 0 0 1 1 1 0 1 0 1 wa, byte ((V)•(wa)) − byte −1 0 0 1 1 1 0 1 0 1 wa, byte ((V)•(wa)) − byte −1 0 1 1 1 0 1 0 1 wa, byte ((V)•(wa)) − byte −1 0 1 1 1 0 1 0 1 wa, byte ((V)•(wa)) − byte −1 0 1 1 1 0 1 0 1 wa, byte ((V)•(wa)) − byte −1 0 1 1 1 0 1 0 1 wa, byte ((V)•(wa)) ∧ byte 0 1 0 1 0 1 0 1 wa, byte ((V)•(wa)) ∧ byte 0 1 0 1 0 1 0 1 0 1 wa, byte ((V)•(wa)) ∧ byte 0 1 0 1 0 1 0 1 0 1 wa, byte ((V)•(wa)) ∧ byte 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	1 1 1 0 1 0	1 0 0 1 0 0 0 0	14	8	
wa (A) - ((V)•(wa)) - 1 0 1 1 0 1 wa (A) - ((V)•(wa)) 0 1 1 0 0 1 wa (A) - ((V)•(wa)) 0 1 1 0 0 1 wa (A) - ((V)•(wa)) 0 1 1 0 1 0 0 1 wa (A) - ((V)•(wa)) 0 1 1 0 1 0 0 1 wa (A) - ((V)•(wa)) - ((V)•(wa)) - ((V)•(wa)) - (V)•(wa) 0 </td <td>1 1 1 0 1 0</td> <td></td> <td>14</td> <td>8</td> <td></td>	1 1 1 0 1 0		14	8	
wa (A) – ((V)•(wa)) wa (A) – (V)•(wa)	1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		14	က	No borrow
wa (A) – ((V)=(wa)) wa (A) – (V)=(wa) wa (A) – (V)=(1 1 1 0 1 0 Offset	1 1	14	က	Borrow
wa (A) – ((V)•(wa)) wa (A) – ((V)•(wa)) wa (A) Λ ((V)•(wa)) wa byte ((V)•(wa)) – ((V)•(wa)) Λ byte "wa byte ((V)•(wa)) – byte "a bata "	1 1 1 0 1 0 Offset		14	3	No zero
wa (A) ∧ ((V)•(wa)) wa (A) ∧ ((V)•(wa)) wa (A) ∧ ((V)•(wa)) wa.byte ((V)•(wa)) ← ((V)•(wa)) ∧ byte *wa.byte ((V)•(wa)) − byte *wa.byte ((V)•(wa)) − byte *wa.byte ((V)•(wa)) − byte *wa.byte ((V)•(wa)) ∧ byte	1 1 1 0 1 0 Offset		14	က	Zero
wa (A) ∧ ((V)•(wa)) ← ((V)•(wa)) ∧ byte 0 0 1 1 1 0 1 0 0 1 "wa.byte ((V)•(wa)) ← ((V)•(wa)) ∧ byte 0 0 0 0 1 0 1 0 1 "wa.byte ((V)•(wa)) − byte − 1 0 0 1 1 0 1 0 1 "wa.byte ((V)•(wa)) − byte − 1 0 0 1 1 0 0 1 "wa.byte ((V)•(wa)) − byte 0 0 1 1 0 0 1 0 1 "wa.byte ((V)•(wa)) − byte 0 0 1 1 1 0 0 1 "wa.byte ((V)•(wa)) − byte 0 0 1 1 1 0 0 1 "wa.byte ((V)•(wa)) ∧ byte 0 0 1 0 1 0 1 "wa.byte ((V)•(wa)) ∧ byte 0 0 1 0 1 0 1 "wa.byte ((V)•(wa)) ∧ byte 0 0 1 0 0 0 1 0 1 "wa.byte ((V)•(wa)) ∧ byte 0 0 1 0 1 0 1 0 1 "wa.byte ((V)•(wa)) ∧ byte 0 0 1 0 1 0 1 0 1 "wa.byte ((V)•(wa)) ∧ byte 0 0 1 0 1 0 1 0 1	1 1 1 0 1 0 Offset	Į I	14	က	No zero
wa.byte ((V)(wa)) ← ((V)*(wa)) ∧ byte 0 0 0 0 0 0 1 *wa.byte ((V)*(wa)) − ((V)*(wa)) ∨ byte − 1 0 0 0 1 0 0 1 *wa.byte ((V)*(wa)) − byte − 1 0 0 0 1 1 0 0 1 *wa.byte ((V)*(wa)) − byte 0 0 1 1 0 0 0 1 *wa.byte ((V)*(wa)) − byte 0 0 1 1 0 0 0 1 *wa.byte ((V)*(wa)) − byte 0 0 1 1 0 0 0 1 *wa.byte ((V)*(wa)) ∧ byte 0 0 1 0 0 0 0 1 *wa.byte ((V)*(wa)) ∧ byte 0 0 1 0 0 0 0 1 *wa.byte ((V)*(wa)) ∧ byte 0 0 1 0 0 0 1 *wa.byte ((V)*(wa)) ∧ byte 0 0 1 0 0 0 1 *wa.byte ((V)*(wa)) ∧ byte 0 0 1 0 0 1 0 0 0 1 *wa.byte ((V)*(wa)) ∧ byte 0 0 1 0 0 1 0 0 1 0 0 1	1 1 1 0 1 0 Offset		14	9	Zero
wa.byte ((V)(wa)) ← ((V)*(wa)) byte −1 0 0 0 1 0 0 1 *wa.byte ((V)*(wa)) − byte −1 0 0 1 0 0 0 1 *wa.byte ((V)*(wa)) − byte −1 0 0 1 1 0 0 1 *wa.byte ((V)*(wa)) − byte −0 0 1 1 0 0 1 *wa.byte ((V)*(wa)) − byte −0 0 1 1 1 0 0 *wa.byte ((V)*(wa)) ∧ byte −0 0 1 0 0 0 1 *wa.byte ((V)*(wa)) ∧ byte −0 0 1 0 0 0 1 *wa.byte ((V)*(wa)) ∧ byte −0 0 1 0 0 0 1	0 0 0 0 1 Data	Offset	6	9	į
wa.byte ((V)(wa)) - byte - 1	0 0 1 0 1 Data	Offset	19	က	
wa.byte ((V)(wa)) – byte 0 0 1 1 0 1 *wa.byte ((V)*(wa)) – byte 0 1 1 0 0 1 *wa.byte ((V)*(wa)) – byte 0 1 1 1 0 1 *wa.byte ((V)*(wa)) ∧ byte 0 1 0 0 0 1 *wa.byte ((V)*(wa)) ∧ byte 0 1 0 0 0 1 *wa.byte ((V)*(wa)) ∧ byte 0 1 0 1 0 1 0 1 0 1	0 1 0 0 1 Data	Offset	13	က	No borrow
wa.byte ((V)(wa)) – byte 0 1 1 0 0 1 Data *wa.byte ((V)*(wa)) – byte 0 1 1 1 0 1 Data *wa.byte ((V)*(wa)) ∧ byte 0 1 0 0 0 1 *wa.byte ((V)*(wa)) ∧ byte 0 1 0 0 1 0 0 1 *wa.byte ((V)*(wa)) ∧ byte 0 1 0 1 0 1 0 1	0 1 1 0 1 Data	Offset	13	က	Borrow
wa.byte ((V)(wa)) – byte 0 1 1 1 0 1 Data *wa.byte ((V)*(wa)) ∧ byte 0 1 0 0 0 1 Data *wa.byte ((V)*(wa)) ∧ byte 0 1 0 1 0 0 1 *wa.byte ((V)*(wa)) ∧ byte 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	1 1 0 0 1 Data	Offset	13	က	No zero
wa.byte ((V)(wa)) A byte 0 1 0 0 0 1 Data *wa.bute ((V)*(wa)) A byte 0 1 0 1 0 1	1 1 1 0 1 Data	Offset	13	3	Zero
wis hute ((V)(wis)) A hute	1 0 0 0 1 Data	Offset	13	က	No zero
Data Data	0 1 0 1 0 1 0 1 0 1 Data	Offset	13	က	Zero

			Operation Code	n Code			
			B 81	88			Skip
Mnemonic Operand	Operand	Operation	7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	State(1)	Bytes	Condition
16-Bit Arithmetic	atic						
EADD	EA,r2	$(EA) \leftarrow (EA) + (r2)$	0 1 1 1 0 0 0 0 0		=	2	
DADD	EA.rp3	(EA) ← (EA) + (rp3)	0 1 1 1 0 1 0 0	1 1 0 0 0 1 P ₁ P ₀	=	2	
DADC	EA.rp3	(EA) ← (EA) + (rp3) + (CY)	0 1 1 1 0 1 0 0	1 1 0 1 0 1 P ₁ P ₀	=	2	
DADDNC	EA.rp3	(EA) ← (EA) + (rp3)	0 1 1 1 0 1 0 0	1 0 1 0 0 1 P ₁ P ₀	=	2	No carry
FSUB	EA.r2	(EA) ← (EA) − (r2)	0 1 1 1 0 0 0 0	0 1 1 0 0 0 R ₁ R ₀	=	2	
DSUB	EA.rp3	(EA) ← (EA) − (rp3)	0 1 1 1 0 1 0 0	1 1 1 0 0 1 P ₁ P ₀	=	2	
DSBB	EA.rp3	$(EA) \leftarrow (EA) - (rp3) - (CY)$	0 1 1 1 0 1 0 0	1 1 1 1 0 1 P ₁ P ₀	=	2	
DSUBNB	EA.rp3	(EA) ← (EA) − (rp3)	0 1 1 1 0 1 0 0	1 0 1 1 0 1 P ₁ P ₀	=	2	No borrow
DAN	EA.rp3	(EA) ← (EA) ∧ (rp3)	0 1 1 1 0 1 0 0	1 0 0 0 1 1 P ₁ P ₀	=	2	
DOR	EA,rp3	(EA) ← (EA) V (rp3)	0 1 1 1 0 1 0 0	1 0 0 1 1 1 P ₁ P ₀	=	2	
DXR	EA,rp3	$(EA) \leftarrow (EA) + (rp3)$	0 1 1 1 0 1 0 0	1 0 0 1 0 1 P ₁ P ₀	F	2	
DGT	EA.rp3	1	0 1 1 1 0 1 0 0	1 0 1 0 1 1 P ₁ P ₀	=	2	No borrow
110	EA,rp3		0 1 1 1 0 1 0 0	1 0 1 1 1 1 P ₁ P ₀	=	2	Borrow
DNE	EA,rp3		0 1 1 1 0 1 0 0	1 1 1 0 1 1 P ₁ P ₀	=	2	No zero
050	EA,rp3	(EA) – (rp3)	0 1 1 1 0 1 0 0		=	2	Zero
DON	EA,rp3	1	0 1 1 1 0 1 0 0	- 1	=	2	No zero
DOFF	EA.rp3	(EA) A (rp3)	0 1 1 1 0 1 0 0	1 1 0 1 1 1 P ₁ P ₀	=	2	0.ez
Multiply/Divide	ide						
MUL	1.2	$(EA) \leftarrow (A) \times (r2)$	0 1 0 0 1 0 0 0	0 1 0 1 1 R ₁	32	2	
DIV	12	(EA) ← (EA) + (r2), (r2) ← Remainder	0 1 0 0 1 0 0 0	0 0 1 1 1 1 R ₁ R ₀	29	2	
Increment/Decrement	ecrement					,	
INR	22	$(r2) \leftarrow (r2) + 1$	0 1 0 0 0 0 R ₁ R ₀		4	-	Carry
INRW	*wa	$((V) \bullet (wa)) \leftarrow ((V) \bullet (wa)) + 1$	0 0 1 0 0 0 0 0	Offset	10	2	Carry
INX	ď	(rp) ← (rp) + 1	0 0 P ₁ P ₀ 0 0 1 0		7	- -	
	EA	$(EA) \leftarrow (EA) + 1$	1 0 1 0 1 0 0 0		_	-	
DCR	12	$(r2) \leftarrow (r2) - 1$	0 1 0 1 0 0 R ₁ R ₀		4	-	Borrow
DCRW	*wa	$((V)\bullet(wa)) \longleftarrow ((V)\bullet(wa)) - 1$	0 0 1 1 0 0 0 0	Offset	9	2	Borrow
DCX	d.	(rp) ← (rp) − 1	0 0 P ₁ P ₀ 0 0 1 1		7	-	
	EA	$(EA) \leftarrow (EA) - 1$	1 0 1 0 1 0 0 1		7	-	
Others						,	
DAA		Decimal Adjust Accumulator	0 0 0		4		
STC		$(CY) \leftarrow 1$	0 1 0 0 1 0 0 0	0 1 0 1 0 1	80	2	
6		4			0		

							Operat	Operation Code	g.,							
					=					8						
Mnemonic Operand	Operand	Operation	9 /	ıs V	2 2 2 2	8	-	7	5	•	m	2	0	State(1)	Bytes	Skip Condition
Others (cont)																
NEGA		$(A) \leftarrow (\overline{A}) + 1$	0	0	1	0	0 0	0	0	-	-	0	0	80	2	
Rotate and Shift																
RLD		Rotate left digit	0	0	-	0	0	0	0	-	-	٥	0 0	17	2	
RRD		Rotate right digit	-	0	-	0	0 0	0	0	-	-	0	0 1	17	2	
RLL	12	$(r2_m + 1) \leftarrow (r2_m), (r2_0) \leftarrow (CY),$ $(CY) \leftarrow (r2_7)$	0	0	-	0	0 0	0	0	-	0	-	R ₁	80	2	
RLR	12	$(r_m - 1) \leftarrow (r_m), (r_2) \leftarrow (c_Y),$ $(c_Y) \leftarrow (r_2)$	-	0	0	0	0 0	0	0	-	0	0 R	R ₁ R ₀	8	2	
SLL	72	$(r2_{m+1}) \leftarrow (r2_m), (r2_0) \leftarrow 0, (CY) \leftarrow (r2_7)$	0	0	-	0	0 0	0	0	0	0	- 8	R ₁ R ₀	8	2	
SLR	75	$(r2_{m-1}) \leftarrow (r2_{m}), (r2_{7}) \leftarrow 0, (CY) \leftarrow (r2_{0})$	0	0	0 1	0	0 0	0	0	0	0	0 8	R ₁	80	2	:
SLLC	r2	$(r2_{m+1}) \leftarrow (r2_m).(r2_0) \leftarrow 0, (CY) \leftarrow (r2_7)$	0	0	-	0	0 0	0	0 0	0	0		R ₁ R ₀	8	2	Carry
SLRC	r2	$(r2_{m-1}) \leftarrow (r2_{m}), (r2_{7}) \leftarrow 0, (CY) \leftarrow (r2_{0})$	0	0	-	0	0 0	0	0	0	0	0 R	R ₁ R ₀	80	2	Carry
DRLL	EA	$(EA_n + 1) \leftarrow (EA_n), (EA_0) \leftarrow (CY),$ $(CY) \leftarrow (EA_{15})$	1	0	-	0	0	-	0	-	0	_	0 0	ω	2	
DRLR	EA	$(EA_n-1) \leftarrow (EA_n), (EA_{15}) \leftarrow (CY),$ $(CY) \leftarrow (EA_0)$	0	0		0	0 0	-	0	-	0	0	0 0	80	2	
DSCL	EA	$(EA_n + 1) \leftarrow (EA_n), (EA_0) \leftarrow 0,$ $(CY) \leftarrow (EA_{15})$	0	0	-	0	0 0	-	0	0	0	-	0 0	8	2	
DSLR	EA	$(EA_n-1) \leftarrow (EA_n), (EA_{15}) \leftarrow 0,$ $(CY) \leftarrow (EA_0)$	0	0	0 1	0	0 0	-	0	0	0	0	0 0	&	2	
E S																
JMP	*word	(PC) ← word	0 -	0	1 0 High addr		0 0			Low	Low addr			9	က	
JB		$(PC_H) \leftarrow (B), (PC_L) \leftarrow (C)$	0 0	-	0 0	0	0 1							4	-	
5	word	(PC) ← (PC) + 1 + jdisp 1	-	ļ	ij	jdisp1	1							9	-	
JRE	*word	(PC) ← (PC) + 2 + jdisp	0	0	0	-	ļ			gibi			↑	9	2	
JEA		(PC) ← (EA)	0 1	0 (1 0	0	0 0	0	0 1	0	-	0	0 0	80	2	
Call																
CALL	*word	$((SP) - 1) \leftarrow ((PC) + 3)H$, $((SP) - 2) \leftarrow ((PC) + 3)L$, $(PC) \leftarrow word, (SP) \leftarrow (SP) \leftarrow 2$	0 1	0 =	0 0 High addr		0 0			Low	Low addr			9	က	
CALB		$(SP) - 1) \leftarrow (PC) + 2)H$, $(SP) - 2) \leftarrow (PC) + 2)I$, $(PC_H) \rightarrow (B)$, $(PC_L) \rightarrow (C)$, $(SP) \leftarrow (SP) - 2$	0 1	0	0 1	0	0	0	1 0	0	-	0	1	17	2	
CALF	*word	((SP) -1) \leftarrow ((PC) $+2$)H. ((SP) -2) \leftarrow ((PC) $+2$)L. ((SP) -2) \leftarrow ((PC) $+2$)L. (PC-G-11) \leftarrow 00001.	0	-	_	1				fa	_		t	5	2	

			Operation Code	on Code			
			5	88			Skin
Mnemonic	Mnemonic Operand	Operation	83 7 6 5 4 3 2 1 0	7 6 5 4 3 2 1 0	State(1)	Bytes	Condition
Call (cont)							
CALT	word	$\begin{array}{l} ((SP)-1) \stackrel{\longleftarrow}{\leftarrow} ((PC)+1)_{H}, \\ ((SP)-2) \stackrel{\longleftarrow}{\leftarrow} ((PC)+1)_{L} \\ (PC_{L}) \stackrel{\longleftarrow}{\leftarrow} (128+213), (PC_{H}) \stackrel{\longleftarrow}{\leftarrow} \\ (129+213), (SP) \stackrel{\longleftarrow}{\leftarrow} (SP)-2 \end{array}$	1 0 0 ← ta →		စ္	-	i e
S0FTI		$((SP) - 1) \leftarrow (PSW), ((SP) - 2) \leftarrow ((PC) + 1)_{H}, ((SP) - 3) \leftarrow ((PC) + 1)_{L}, ((SP) \leftarrow (SP) \leftarrow (SP) - 3)$	0 1 1 1 0 0 1 0		9	-	
Return							
RET		$(PC_{L}) \leftarrow ((SP)), (PC_{H}) \leftarrow ((SP) + 1)$ $(SP) \leftarrow (SP) + 2$	1 0 1 1 1 0 0 0		2	-	
RETS		$(PC_L) \leftarrow ((SP)), (PC_H) \leftarrow ((SP) + 1)$ $(SP) \leftarrow (SP) + 2, (PC) \leftarrow (PC) + n$	1 0 1 1 1 0 0 1		9	-	Unconditional
RETI		$(PC_{\downarrow}) \leftarrow ((SP), (PC_{H}) \leftarrow ((SP) + 1)$ $(PSW) \leftarrow ((SP) + 2), (SP) \leftarrow (SP) + 3$	0 1 1 0 0 0 1 0		5	-	
Skip							
Bit		bit, wa	0 1 0 1 1 B ₂ B ₁ B ₀	Offset	2	2	Bit lest
CPU Control	_			- 1			
SK	-	Skip if 1 = 1	0 1 0 0 1 0 0 0	0 0 1 F ₂ F ₁	80	2	=
SKN	-	Skip if $f = 0$	0 1 0 0 1 0 0 0	0 0 0 1 1 F ₂ F ₁ F ₀	æ	2	0=1
SKIT	Ë	Skip if irf = 1, then reset irf	0 1 0 0 1 0 0 0	1 0 14 13 12 11	σ o	2	
SKNIT	Ē	Skip if irf = 0 Reset irf if irf = 1	0 1 0 0 1 0 0 0	0 1 1 14 13 12 11 10	× -	7	
NOP		No operation	0 0 0 0 0 0 0		4	- -	
Ш		Enable interrupt	1 0 1 0 1 0 1 0		4	- -	
ā		Disable interrupt	1 0 1 1 1 0 1 0		4	-	
主		Halt	0 1 0 0 1 0 0 0	0 0 1 1 1 0 1 1	=	2	
Notes:	-	Notes:		(2) B2 (Data): rpa2 = D + byte, H + byte.	<u>o</u> j		
1) in the 7- 3-	byte instructure byte instructure byte instructure	The case of skip contained, the four sources are as recovery. 1-byte instruction: 8 states 2-byte instruction (with "): 7 2-byte instruction (with "): 1 3-byte instruction: 14 states 4-byte instruction: 14 states	on (with *): 7 states on (with *): 10 states on: 14 states	(3) Right side of slash (/) in states indicates case rpa2, rpa3 = D + byte, H + A, H + B, H + EA, H + byte.	cates case rpa - EA, H + byte	2, 3	
)				(4) B3 (Data): rpa $3 = D + byte$, $H + byte$	e e		