查询HD6435348F8供应商 Section 20 Electrical 与那个方面的 Electrical 与 10 mail 10

20.1 Absolute Maximum Ratings

Table 20-1 lists the absolute maximum ratings.

Table 20-1 Absolute Maximum	Ratings
-------------------------------------	---------

	Symbol	Rating	Unit
θ	Vcc	-0.3 to +7.0	V
	VPP	-0.3 to +13.5	V
(except port 8)	Vin	-0.3 to Vcc + 0.3	V
(port 8)	Vin	-0.3 to AVcc + 0.3	V
voltage	AVcc	-0.3 to +7.0	V
	VAN	-0.3 to AVcc + 0.3	V
ating temperature Topr		Regular specifications: -20 to +75	°C
		Wide-range specifications: -40 to +85	°C
erature	Tstg	-55 to +125	°C
	(port 8) v voltage voltage nperature	e Vcc voltage VPP (except port 8) Vin (port 8) Vin voltage AVcc voltage VAN perature Topr	e Vcc -0.3 to +7.0 voltage VPP -0.3 to +13.5 (except port 8) Vin -0.3 to Vcc + 0.3 (port 8) Vin -0.3 to AVcc + 0.3 (voltage AVcc -0.3 to +7.0 voltage Van -0.3 to AVcc + 0.3 perature Topr Regular specifications: -20 to +75 Wide-range specifications: -40 to +85

Note: Permanent LSI damage may occur if maximum ratings are exceeded. Normal operation should be under recommended operating conditions.

20.2 Electrical Characteristics

20.2.1 DC Characteristics

Table 20-2 lists the DC characteristics.

Table 20-2 DC Characteristics

Conditions: $VCC = 5.0V \pm 10\%*1$, $AVCC = 5.0V \pm 10\%*1$, VSS = AVSS = 0V, $T_a = -20$ to $+75^{\circ}C$ (Regular Specifications) $T_a = -40$ to $+85^{\circ}C$ (Wide-Range Specifications)

		Sym-					Measurement
ltem		bol	Min	Тур	Max		Conditions
Input High voltage	RES, STBY,	Vін	Vcc – 0.7	-	Vcc+0.3	V	
	MD2, MD1, MD0						-
	EXTAL		Vcc × 0.7	-	Vcc+0.3	V	-
	Port 8		2.2	-	AVcc+0.3		-
	Other input pins		2.2		Vcc+0.3	V	
	(except port 7)						
Input Low voltage	RES, STBY,	VIL	-0.3	-	0.5	V	
	MD2, MD1, MD0						-
	Other input pins		-0.3	-	0.8	V	
	(except port 7)						
Schmitt trigger	Port 7	Vt-	1.0	-	2.5	V	
input voltage		VT+	2.0		3.5	V	_
, ,		VT+-VT-	0.4	-	-	V	
Input leakage	RES	lin	-	-	10.0	μA	_ Vin = 0.5 to
current	STBY, NMI,		-		1.0	μA	Vcc-0.5V
	MD2, MD1, MD0						
	port 8		_	_	1.0	μA	Vin = 0.5 to
	•						AVcc-0.5V
Leakage current	Port 9,	ITSI	_	-	1.0	μA	$V_{in} = 0.5 to$
in 3-state	ports 7 to 1						Vcc-0.5V
(off state)							
Input pull-up	Ports 6 and 5	-1P	50	-	200	μA	Vin = 0V
MOS current							
Output High	All output pins	Voн	Vcc-0.5	-	-	V	ЮН = -200μА
Voltage			3.5	-	-	V	IOH =1mA
Output Low	All output pins	VOL	_		0.4	V	IOL = 1.6mA
Voltage	Port 4	-		-	1.0	V	IOL = 8mA
				_	1.2	V	IOL = 10mA
Input capacitance	RES	Cin			60	pF	Vin = 0 V
	NMI	-			30	pF	f = 1MHz
	All input pins	-		_	15	pF	 Ta = 25°C
	except RES, NM	41					

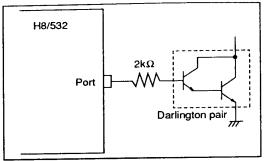
Note: *1 AVcc must be connected to a power supply line, even when the A/D converter is not used.

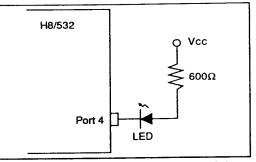
Table 20-2 DC Characteristics (cont)

		Sym-					Measurement
Item		bol	Min	Тур	Мах	Unit	Conditions
Current dissipation*2	Normal operation	lcc	-	20	30	mA	f = 6MHz
			-	25	40	mA	f = 8MHz
			_	30	50	mA	f = 10MHz
	Sleep mode		_	12	20	mA	f = 6MHz
			-	16	25	mA	f = 8MHz
			_	20	30	mA	f = 10MHz
	Standby		_	0.01	5.0	μA	Ta ≤ 50°C
			_	_	20	μA	Ta > 50°C
Analog supply	During A/D	Alcc	-	1.2	2.0	mA	
current	conversion						
	While waiting		_	0.01	5.0	μA	
RAM standby voltage	the corn to all the of shares	VRAM	2.0	-	-	V	

*2 Current dissipation values assume that VIH min = Vcc - 0.5V, VIL max = 0.5V, all output pins are in the no-load state, and all MOS input pull-ups are off.

Table 20-3 Allowable Output Current Sink Values


Conditions: VCC = $5.0V \pm 10\%$, AVCC = $5.0V \pm 10\%$, VSS = AVSS = 0V,


 $T_a = -20$ to +75°C (Regular Specifications)

 $T_a = -40$ to +85°C (Wide-Range Specifications)

Item		Symbol	Min	Тур	Max	Unit
Allowable output Low	Port 4	IOL	_	-	10	mA
current sink (per pin)	Other output pins		_	-	2.0	mA
Allowable output Low	Port 4, total of 8 pins	Σlol	_	_	40	mA
current sink (total)	Total of all other		-	_	80	mA
	output pins					
Allowable output High	All output pins	-юн		_	2.0	mA
current sink (per pin)						
Allowable output High	Total of all output	Σ-Юн		-	25	mA
current sink (total)	pins					

Note: To avoid degrading the reliability of the chip, be careful not to exceed the output current sink values in table 20-3. In particular, when driving a Darlington transistor pair or LED directly, be sure to insert a current-limiting resistor in the output path. See figures 20-1 and 20-2.

Darlington Transistor Pair

Figure 20-1 Example of Circuit for Driving a Figure 20-2 Example of Circuit for Driving an LED

20.2.2 AC Characteristics

The AC characteristics of the H8/532 chip are listed in three tables. Bus timing parameters are given in table 20-4, control signal timing parameters in table 20-5, and timing parameters of the on-chip supporting modules in table 20-6.

Table 20-4 Bus Timing

Conditions: VCC = $5.0V \pm 10\%$, AVCC = $5.0V \pm 10\%$, $\phi = 0.5$ to 10MHz, VSS = 0V $T_a = -20$ to +75°C (Regular Specifications) $T_a = -40$ to +85°C (Wide-Range Specifications)

		6MHz		8MHz		10MHz			Measurement	
Item	Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions	
Clock cycle time	tcyc	166.7	2000	125	2000	100	2000	ns	See figure 20-4	
Clock pulse width Low	tCL	65		45	-	35	-	ns	_	
Clock pulse width High	tCH	65	_	45	-	35	-	ns	_	
Clock rise time	tCr	_	15	-	15	-	15	ns	_	
Clock fall time	tCf		15	-	15	-	15	ns	_	
Address delay time	tAD	-	70	-	65	-	65	ns	_	
Address hold time	tah	30	_	25	-	20	-	ns	_	
Data strobe delay time 1	tDSD1	-	70	_	60	_	40	ns	_	
Data strobe delay time 2	tDSD2		70	-	60	_	50	ns	_	
Data strobe delay time 3	tDSD3		70	-	60	-	50	ns	-	
Write data strobe pulse width	tDSWW	200	-	150	-	120	-	ns	_	
Address setup time 1	tAS1	25	_	20	-	15	-	ns		

Table 20-4 Bus Timing (cont)

		6 N	lHz	8MHz		10	MHz		Measurement
Item	Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
Address setup time 2	tAS2	105	-	80	-	65	-	ns	See figure 20-4
Read data setup time	tRDS	60	-	50	-	40	-	ns	_
Read data hold time	trd H	0	-	0	-	0	-	ns	
Read data access time	tACC	_	280		190	-	160	ns	
Write data delay time	twdd	-	70	-	65	-	65	ns	_
Write data setup time	twDs	30	-	15	-	10	-	ns	_
Write data hold time	twDH	30		25	-	20	-	ns	
Wait setup time	twrs	40	-	40	_	40	-	ns	See figure 20-5
Wait hold time	twth	10	_	10	-	10	-	ns	
Bus request setup time	tBRQS	40	_	40	_	40	-	ns	See figure 20-10
Bus acknowledge delay time 1	tBACD1	-	70	-	60	-	55	ns	_
Bus acknowledge delay time 2	tBACD2		70	-	60	-	55	ns	
Bus floating delay time	tBZD	-	tBACD1	-	t BACD	1-	tBACD	1 115	
E clock delay time	tED		20	_	15	-	15	ns	See figure 20-11
E clock rise time	tEr	-	15	-	15	-	15	ns	
E clock fall time	tEf	-	15	-	15	-	15	ns	
Read data hold time	TRDHE	0		0	_	0	-	ns	See figure 20-6
(E clock sync)									_
Write data hold time	tWDHE	50	_	40	_	30	_	ns	-
(E clock sync)									

Table 20-5 Control Signal Timing

Conditions: VCC = $5.0V \pm 10\%$, AVCC = $5.0V \pm 10\%$, $\phi = 0.5$ to 10MHz, VSS = 0V T_a = -20 to +75°C (Regular Specifications) T_a = -40 to +85°C (Wide-Range Specifications)

		6M	Hz	8MHz		10	MHz		Measurement
Item	Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
RES setup time	tRESS	200		200	_	200	-	ns	See figure 20-7
RES pulse width	tRESW	6.0	_	6.0	-	6.0		tcyc	-
Mode programming	tMDS	4.0	_	4.0	-	4.0	-	tcyc	
setup time									0 1 00 0
NMI setup time	tNMIS	150	-	150		150		ns	_See figure 20-8
NMI hold time	tNMIH	10	-	10		10	-	ns	_
IRQo setup time	tIRQ0S	50	-	50		50		ns	-
IRQ1 setup time	tIRQ1S	50		50	-	50	-	ns	_
IRQ1 hold time	tIRQ1H	10		10		10	-	ns	
NMI pulse width	tNMIW	200	-	200	-	200	-	ns	See figure 20-9
(for recovery from									
software standby mode)									
Crystal oscillator settling	tOSC1	20		20	-	20	-	ms	See figure 20-12
time (reset)									
Crystal oscillator settling time	tosc2	10	-	10	-	10	-	ms	See figure 18-1
(software standby)				<u></u>	<u></u>				

Table 20-6 Timing Conditions of On-Chip Supporting Modules

Conditions: Vcc = $5.0V \pm 10\%$, AVcc = $5.0V \pm 10\%$, $\phi = 0.5$ to 10MHz, Vss = 0VT_a = -20 to +75°C (Regular Specifications) T_a = -40 to +85°C (Wide-Range Specifications)

			6MHz		8MHz 10MHz					Measurement	
ltem			Symbol	Min	Max	Min	Max	Min	Max	Unit	Conditions
FRT	Timer output delay time		t F TOD		100	_	100	-	100	ns	See figure 20-14
	Timer input setup time		1FTIS	50		50	-	50	-	ns	-
	Timer clock input setup tir	ne	T FTCS	50	-	50	-	50	-	ns	See figure 20-15
	Timer clock pulse width		TFTCWL,								
			IFTCWH	1.5	-	1.5	-	1.5	-	tcyc	
TMR	Timer output delay time		T MOD		100	_	100	-	100	ns	See figure 20-16
	Timer clock input setup time Timer clock pulse width		trmcs	50	-	50	-	50	-	ns	See figure 20-17
			tTMCWL,				_				
			T MCWH	1.5	-	1.5	-	1.5	-	İ cyc	
	Timer reset input setup time		TMRS	50	-	50	-	50	-	ns	See figure 20-18
PWM	Timer output delay time		1PWOD	_	100		100	-	100	ns	See figure 20-19
SCI	Input clock cycle	(Async)	tScyc	2	-	2	_	2	-	lcyc	See figure 20-20
		(Sync)		4	-	4	-	4	-	tcyc	_
	Input clock pulse width		t SCKW	0.4	0.6	0.4	0.6	0.4	0.6	tScyc	
	Transmit data delay time	(Sync)	trxd		100	-	100	-	100	ns	See figure 20-21
	Receive data setup time	(Sync)	tRXS	100	-	100	-	100	_	ns	_
	Receive data hold time	(Sync)	t RXH	100	-	100	-	100		ns	
Port	Output data delay time		tPWD	-	100		100	-	100	ns	See figure 20-13
	Input data setup time		I PRS	50	-	50	-	50	-	ns	_
	Input data hold time		t PRH	50	_	50	-	50	-	ns	

• Measurement Conditions for AC Characteristics

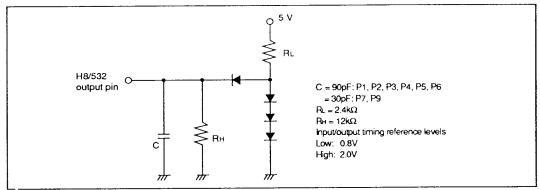


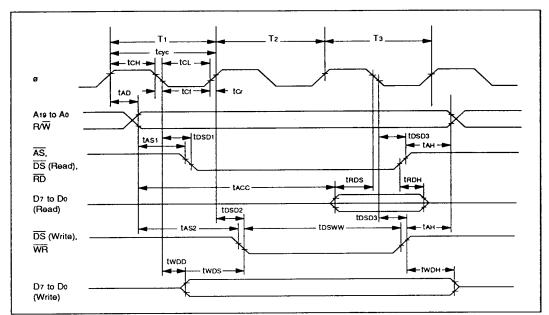
Figure 20-3 Output Load Circuit

20.2.3 A/D Converter Characteristics

Table 20-7 lists the characteristics of the on-chip A/D converter.

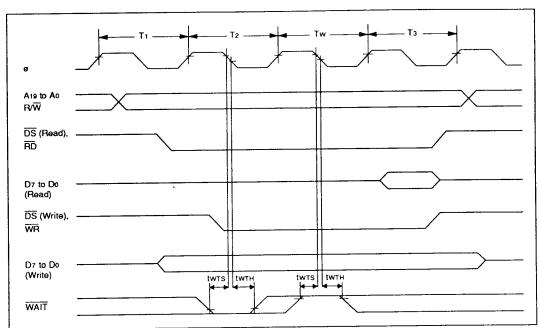
Table 20-7 A/D Converter Characteristics

Conditions: $VCC = 5.0V \pm 10\%$, $AVCC = 5.0V \pm 10\%$, VSS = AVSS = 0V, $T_a = -20$ to +75°C (Regular Specifications) $T_a = -40$ to +85°C (Wide-Range Specifications)


	(5MHz		8	3MHz		1	0MHz	:	
Item	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Resolution	10	10	10	10	10	10	10	10	10	Bits
Conversion time			23.0			17.25	—		13.8	μs
Analog input capacitance			20			20	_		20	рF
Allowable signal-source impedance			10			10			10	kΩ
Nonlinearity error			±2.0	_		±2.0			±2.0	LSB
Offset error			±2.0	_	_	±2.0		_	±2.0	LSB
Full-scale error			±2.0		_	±2.0		-	±2.0	LSB
Quantizing error			±0.5			±0.5	_		±0.5	LSB
Absolute accuracy			±2.5			±2.5			±2.5	LSB

20.3 MCU Operational Timing

This section provides the following timing charts:


20.3.1	Bus timing	Figures 20-4 to 20-6
20.3.2	Control Signal Timing	Figures 20-7 to 20-10
20.3.3	Clock Timing	Figures 20-11 and 20-12
20.3.4	I/O Port Timing	Figure 20-13
20.3.5	16-Bit Free-Running Timer Timing	Figures 20-14 and 20-15
20.3.6	8-Bit Timer Timing	Figures 20-16 to 20-18
20.3.7	Pulse Width Modulation Timer Timing	Figure 20-19
20.3.8	Serial Communication InterfaceTiming	Figure 20-20 and 20-21

20.3.1 Bus Timing

1. Basic Bus Cycle (without Wait States) in Expanded Modes

2. Basic Bus Cycle (with 1 Wait State) in Expanded Modes

Figure 20-5 Basic Bus Cycle (with 1 Wait State) in Expanded Modes

3. Bus Cycle Synchronized with E Clock

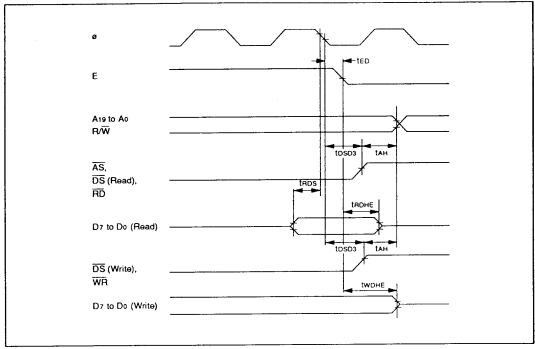


Figure 20-6 Bus Cycle Synchronized with E Clock

20.3.2 Control Signal Timing

1. Reset Input Timing

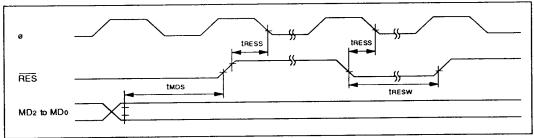


Figure 20-7 Reset Input Timing

2. Interrupt Input Timing

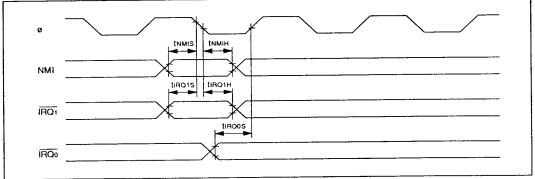


Figure 20-8 Interrupt Input Timing

3. NMI Pulse Width

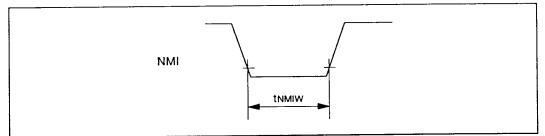
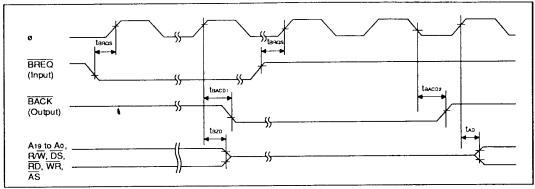



Figure 20-9 NMI Pulse Width (for Recovery from Software Standby Mode)

4. Bus Release State Timing

20.3.3 Clock Timing

1. E Clock Timing

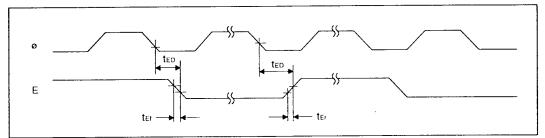


Figure 20-11 E Clock Timing

tosci 华 ja to to to <u>STBY</u> RES 82

2. Clock Oscillator Stabilization Timing

Figure 20-12 Clock Oscillator Stabilization Timing

HITACHI

20.3.4 I/O Port Timing

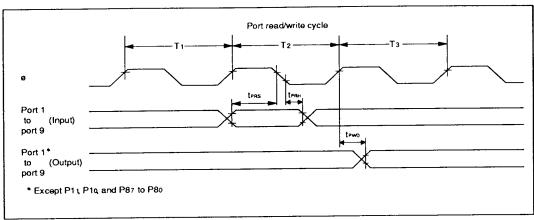
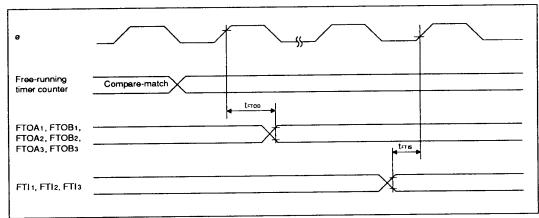



Figure 20-13 I/O Port Input/Output Timing

20.3.5 16-Bit Free-Running Timer Timing

1. Free-Running Timer Input/Output Timing

Figure 20-14 Free-Running Timer Input/Output Timing

2. External Clock Input Timing for Free-Running Timers

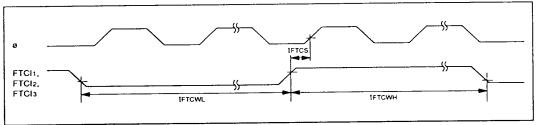


Figure 20-15 External Clock Input Timing for Free-Running Timers

20.3.6 8-Bit Timer Timing

1. 8-Bit Timer Output Timing

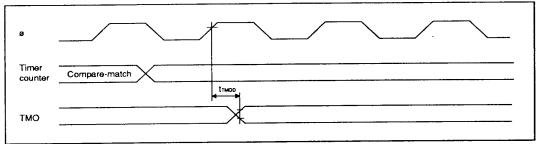


Figure 20-16 8-Bit Timer Output Timing

2. 8-Bit Timer Clock Input Timing

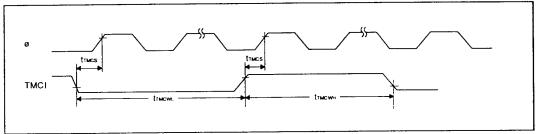


Figure 20-17 8-Bit Timer Clock Input Timing

3. 8-Bit Timer Reset Input Timing

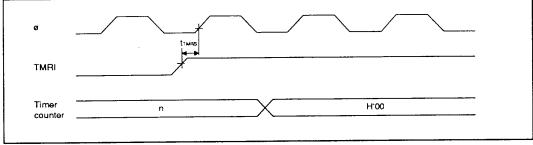
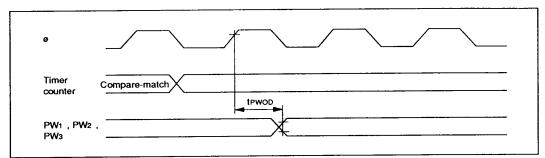



Figure 20-18 8-Bit Timer Reset Input Timing

20.3.7 Pulse Width Modulation Timer Timing

20.3.8 Serial Communication Interface Timing

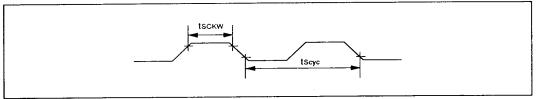


Figure 20-20 SCI Input Clock Timing

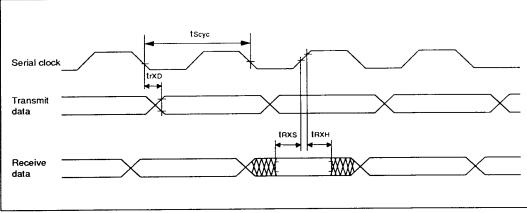


Figure 20-21 SCI Input/Output Timing (Synchronous Mode)