查询TMS320VC33-150PGE供应商

捷多邦,专业PCB打样工厂,24小时加急出**TM**S320VC33 DIGITAL SIGNAL PROCESSOR

SPRS087 - FEBRUARY 1999

- High-Performance Floating-Point Digital
 Signal Processor (DSP):
 - TMS320VC33-150
 13-ns Instruction Cycle Time
 150 MFLOPS, 75 MIPS
 - TMS320VC33-120)
 17-ns Instruction Cycle Time
 120 MFLOPS, 60 MIPS
- 32-Bit High-Performance CPU
- 16-/32-Bit Integer and 32-/40-Bit Floating-Point Operations
- Four Precoded Page Strobes to Simplify Interface to I/O and Memory Devices
- 32-Bit Instruction Word, 24-Bit Addresses
- Two 1K × 32-Bit Single-Cycle Dual-Access On-Chip RAM Blocks
- Two 16K × 32-Bit Single-Cycle Dual-Access On-Chip RAM Blocks
- Total of 1.1-Mbit On-Chip SRAM
- Boot-Program Loader
- x(TBD) PLL Clock Generator
- On-Chip Memory-Mapped Peripherals:
 - One Serial Port
 - Two 32-Bit Timers
 - One-Channel Direct Memory Access (DMA) Coprocessor for Concurrent I/O and CPU Operation

- Fabricated Using the 0.18-micron (l_{eff}-effective gate length) TImeline[™] Technology by Texas Instruments (TI[™])
- 144-Pin Thin Quad Flat Pack (TQFP) (PGE Suffix)
- Eight Extended-Precision Registers
- Two Address Generators With Eight Auxiliary Registers and Two Auxiliary Register Arithmetic Units (ARAUs)
- Two Low-Power Modes
- Two- and Three-Operand Instructions
- Parallel Arithmetic/Logic Unit (ALU) and Multiplier Execution in a Single Cycle
- Block-Repeat Capability
- Zero-Overhead Loops With Single-Cycle Branches
- Conditional Calls and Returns
- Interlocked Instructions for Multiprocessing Support
- Bus-Control Registers Configure Strobe-Control Wait-State Generation
- 3.3-V I/O Supply Voltage
- 1.8-V Core Supply Voltage
- Very Low Power: < 200 mW @ 150 MFLOPS

description

The TMS320VC33 DSP is a 32-bit, floating-point processor manufactured in 0.18-micron four-level-metal CMOS (TImeline) technology. The TMS320VC33 is part of the TMS320C3x generation of DSPs from Texas Instruments.

The TMS320C3x's internal busing and special digital-signal-processing instruction set have the speed and flexibility to execute up to 150 million floating-point operations per second (MFLOPS). The TMS320C3x optimizes speed by implementing functions in hardware that other processors implement through software or microcode. This hardware-intensive approach provides performance previously unavailable on a single chip.

The TMS320C3x can perform parallel multiply and ALU operations on integer or floating-point data in a single cycle. Each processor also possesses a general-purpose register file, a program cache, dedicated ARAUs, internal dual-access memories, one DMA channel supporting concurrent I/O, and a short machine-cycle time. High performance and ease of use are results of these features.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Timeline and TI are trademarks of Texas Instruments Incorporated.

SPRS087 - FEBRUARY 1999

description (continued)

General-purpose applications are greatly enhanced by the large address space, multiprocessor interface, internally and externally generated wait states, one external interface port, two timers, one serial port, and multiple-interrupt structure. The TMS320C3x supports a wide variety of system applications from host processor to dedicated coprocessor.

High-level-language support is easily implemented through a register-based architecture, large address space, powerful addressing modes, flexible instruction set, and well-supported floating-point arithmetic.

SPRS087 - FEBRUARY 1999

TMS320VC33 pinout (top view)

The TMS320VC33 device is packaged in 144-pin thin quad flatpacks (PGE Suffix).

TMS320VC33 PGE PACKAGE (TOP VIEW)

SPRS087 – FEBRUARY 1999

TMS320VC33 Terminal Assignments (Alphabetical)

The alphabetical list of terminal assignments is to be supplied.

SPRS087 - FEBRUARY 1999

TMS320VC33 Terminal Assignments (Numerical)

The numerical list of terminal assignments is to be supplied.

SPRS087 – FEBRUARY 1999

TERMINAL NAME QTY DESCRIPTION		DESCRIPTION	co	NDITIO		
NAME	TYPE [†] DESCRIPTION					
	-		PRIMARY-BUS INTERFACE			
D31-D0	32	I/O/Z	32-bit data port	S	Н	R
A23-A0	24	O/Z	24-bit address port	S	Н	R
R/\overline{W}	1	O/Z	Read/write. R/W is high when a read is performed and low when a write is performed over the parallel interface.	S	Н	R
STRB	1	O/Z	Strobe. For all external-accesses	S	Н	
PAGE0 – PAGE3	1	I/O/Z	Page strobes. Four decoded page strobes for external access			
RDY	1	I	Ready. RDY indicates that the external device is prepared for a transaction completion.			
HOLD	1	I	Hold. When \overline{HOLD} is a logic low, any ongoing transaction is completed. A23–A0, D31–D0, \overline{STRB} , and R/W are placed in the high-impedance state and all transactions over the primary-bus interface are held until HOLD becomes a logic high or until the NOHOLD bit of the primary-bus-control register is set.			
HOLDA	1	O/Z	Hold acknowledge. HOLDA is generated in response to a logic low on HOLD. HOLDA indicates that A23–A0, D31–D0, STRB, and R/W are in the high-impedance state and that all transactions over the bus are held. HOLDA is high in response to a logic high of HOLD or the NOHOLD bit of the primary-bus-control register is set.	S		
			CONTROL SIGNALS			
RESET	1	I	Reset. When RESET is a logic low, the device is in the reset condition. When RESET becomes a logic high, execution begins from the location specified by the reset vector.			
INT3-INT0	4	1	External interrupts			
IACK	1	O/Z	Interrupt acknowledge. IACK is generated by the IACK instruction. IACK can be used to indicate the beginning or the end of an interrupt-service routine.	s		
MCBL/MP	1	1	Microcomputer Bootloader/microprocessor mode-select			
SHZ	1	I	Shutdown high impedance. When active, \overline{SHZ} shuts down the device and places all pins in the high-impedance state. \overline{SHZ} is used for board-level testing to ensure that no dual-drive conditions occur. CAUTION: A low on \overline{SHZ} corrupts the device memory and register contents. Reset the device with \overline{SHZ} high to restore it to a known operating condition.			
XF1, XF0	2	I/O/Z	External flags. XF1 and XF0 are used as general-purpose I/Os or to support interlocked processor instruction.	s		R
			SERIAL PORT 0 SIGNALS			
CLKR0	1	I/O/Z	Serial port 0 receive clock. CLKR0 is the serial shift clock for the serial port 0 receiver.	S		R
CLKX0	1	I/O/Z	Serial port 0 transmit clock. CLKX0 is the serial shift clock for the serial port 0 transmitter.	S		R
DR0	1	I/O/Z	Data-receive. Serial port 0 receives serial data on DR0.	S		R
DX0	1	I/O/Z	Data-transmit output. Serial port 0 transmits serial data on DX0.	S		R
FSR0	1	I/O/Z	Frame-synchronization pulse for receive. The FSR0 pulse initiates the data-receive process using DR0.	s		R
FSX0	1	I/O/Z	Frame-synchronization pulse for transmit. The FSX0 pulse initiates the data-transmit process using DX0.	S		R

TMS320VC33 Terminal Functions

 † I = input, O = output, Z = high-impedance state ‡ S = SHZ active, H = HOLD active, R = RESET active

SPRS087 - FEBRUARY 1999

TMS320VC33 Terminal Functions (Continued)

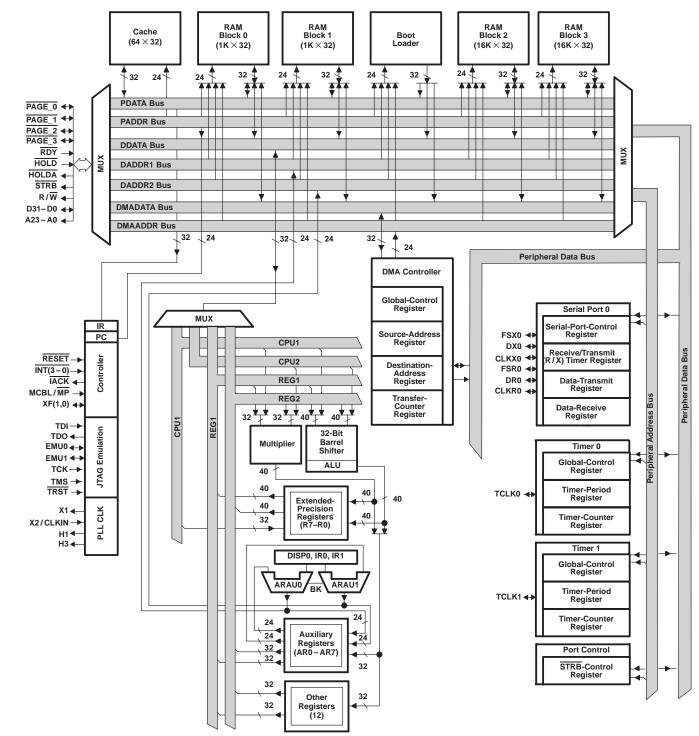
TERMINAL		TYPE [†]	DESCRIPTION	CONDITIONS WHEN
NAME	QTY			SIGNAL IS Z TYPE
			TIMER SIGNALS	-
TCLK0	1	I/O/Z	Timer clock 0. As an input, TCLK0 is used by timer 0 to count external pulses. As an output, TCLK0 outputs pulses generated by timer 0.	S R
TCLK1	1	I/O/Z	Timer clock 1. As an input, TCLK0 is used by timer 1 to count external pulses. As an output, TCLK1 outputs pulses generated by timer 1.	S R
		-	SUPPLY AND OSCILLATOR SIGNALS	
H1	1	O/Z	External H1 clock. H1 has a period equal to twice CLKIN.	S
H3	1	O/Z	External H3 clock. H3 has a period equal to twice CLKIN.	S
V _{DDL}	10	I	+V_DD. Dedicated 1.8-V power supply for the core CPU. All must be connected to a common supply plane.§	
V _{DDP}	10	I	+V_DD. Dedicated 3.3-V power supply for the I/O pins. All must be connected to a common supply plane.§	
V _{SS}	24	1	Ground. All grounds must be connected to a common ground plane.	
X1	1	0	Output from the internal-crystal oscillator. If a crystal is not used, X1 should be left unconnected.	
X2/CLKIN	1	1	Internal-oscillator input from a crystal or a clock	
			JTAG EMULATION	-
EMU1-EMU0	2	I	Emulation pins 0 and 1	
TDI	1	I	Test data input	
TDO	1	0	Test data output	
TCK	1	I	Test clock	
TMS	1	I	Test mode select	
TRST	1	I	Test reset	

† I = input, O = output, Z = high-impedance state

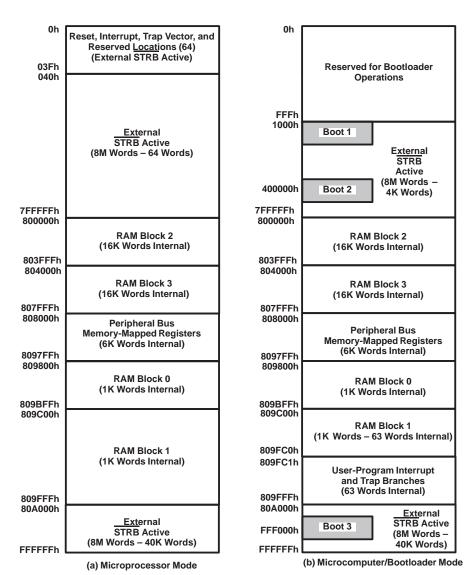
 \ddagger S = SHZ active, H = HOLD active, R = RESET active

 $\$ Recommended decoupling. Four 0.1 μF for V_DDL and eight 0.1 μF for V_DDP.

NOTES: 1. A test mode for measuring leakage currents in the TMS320C33 is implemented. This test mode powers down the clock oscillator circuit resulting in currents below 10 μA. The test mode is entered by asserting SHZ low, which tri–states all output pins and then holds both H1 and H3 at logic high. The test mode is not intended for application use because it does not preserve the processor state.


2. Since SHZ is a synchronized input and the clock is disabled, exiting the test mode occurs only when at least one of the H1/H3 pins is pulled low. Reset cannot be used to wake up in test mode since the SHZ pin is sampled and the clocks are not running.

3. On power up, the processor can be in an indeterminate state. If the state is SHZ mode and H1 and H3 are both held logic high by pull–ups, then shutdown will occur. Normally, if H1 and H3 do not have pull–ups, the rise time lag due to capacitive loading on a tri–state pin is enough to ensure a clean start. However, a slowly rising supply and board leakages to V_{CC} may be enough to cause a bad start. Therefore, a pulldown resistor on either H1 or H3 is recommended for proper wakeup.


SPRS087 - FEBRUARY 1999

functional block diagram

SPRS087 - FEBRUARY 1999

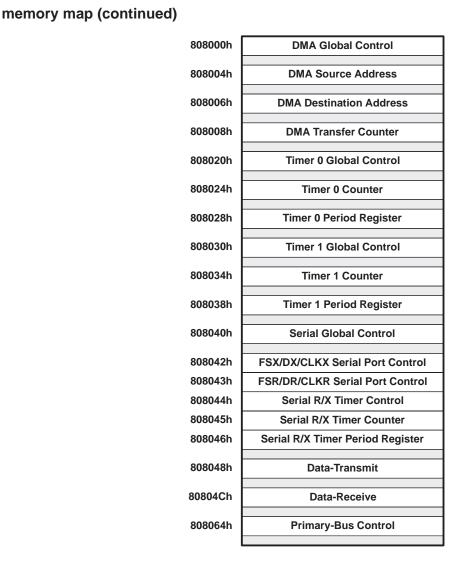
NOTE A: STRB is active over all external memory ranges. PAGE_0 to PAGE_3 are configured as external bus strobes. These are simple decoded strobes that have no configuration registers and are active only during external bus activity over the following ranges:

Active range
000000h – 03FFFFh
040000h – 07FFFFh
080000h - 0BFFFFh
0C0000h-0FFFFh
000000h – 0FFFFh

memory map

Figure 1. TMS320C33 Memory Maps

SPRS087 – FEBRUARY 1999


memory map (continued)

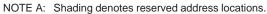

00h	Reset	809FC1h	ΙΝΤΟ
01h	ΙΝΤΟ	809FC2h	INT1
02h	INT1	809FC3h	INT2
03h	INT2	809FC4h	 INT3
04h	INT3		
05h	XINT0	809FC5h	XINTO
06h	RINT0	809FC6h	RINT0
07h 08h	Reserved	809FC7h 809FC8h	Reserved
09h	TINTO	809FC9h	ΤΙΝΤΟ
0Ah	TINT1	809FCAh	TINT1
0Bh	DINT	809FCBh	DINT
0Ch 1Fh	Reserved	809FCCh 809FDFh	Reserved
20h	TRAP 0	809FE0h	TRAP 0
	•		•
	•		•
3Bh	TRAP 27	809FFBh	TRAP 27
3Ch 3Fh	Reserved	809FFCh 809FFFh	Reserved
	(a) Microprocessor Mode	(b)	Microcomputer/Bootloader Mode

Figure 2. Reset, Interrupt, and Trap Vector/Branches Memory-Map Locations

SPRS087 - FEBRUARY 1999

Figure 3. Peripheral Bus Memory-Mapped Registers

clock generator

The clock generator provides clocks to the 'VC33 device, and consists of an internal oscillator and a phase-locked loop (PLL) circuit. The clock generator requires a reference clock input, which can be provided by using a crystal resonator with the internal oscillator, or from an external clock source. The PLL circuit generates the device clock by multiplying the reference clock frequency by a scale factor, allowing use of a clock source with a lower frequency than that of the CPU. The PLL is an adaptive circuit that, once synchronized, locks onto and tracks an input clock signal.

SPRS087 - FEBRUARY 1999

clock generator (continued)

When the PLL is initially started, it enters a transitional mode during which the PLL acquires lock with the input signal. Once the PLL is locked, it continues to track and maintain synchronization with the input signal.

This clock generator allows system designers to select the clock source. The sources that drive the clock generator are:

- A crystal resonator circuit. The crystal resonator circuit is connected across the X1 and X2/CLKIN pins of the 'VC33 to enable the internal oscillator.
- An external clock. The external clock source is directly connected to the X2/CLKIN pin, and X1 is left unconnected.

The PLL features a fixed rate clock scaler and the capability to directly enable and disable the PLL. The PLL can be configured in one of two clock modes:

- PLL mode. The input clock (X2/CLKIN) is multiplied by a ratio of TBD:1.
- DIV (divider) mode. The input clock is divided by 2. Note that when DIV mode is used, the PLL can be completely disabled in order to minimize power dissipation.

SPRS087 - FEBRUARY 1999

absolute maximum ratings over specified temperature range (unless otherwise noted)[†]

Supply voltage range, V _{DDL} (see Note 4)	0.3 V to 2 V
Input voltage range, V _I		–0.3 V to 4.5 V
Output voltage range, VO		0.3 V to 4.5 V
Continuous power dissipation (worst cas	e) (see Note 5)	
Operating case temperature range, T_C	PQL (commercial)	0°C to 85°C
	PQA (industrial) .	– 40°C to 125°C
Storage temperature range, T _{stg}		– 55°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 4. All voltage values are with respect to V_{SS}.
 - 5. Actual operating power is less. This value was obtained under specially produced worst-case test conditions for the TMS320C33, which are not sustained during normal device operation. These conditions consist of continuous parallel writes of a checkerboard pattern to the external bus at the maximum possible rate with a maximum capacitive load of 40 pF. See normal (I_{CC}) current specification in the electrical characteristics table and also read *Calculation of TMS320C30 Power Dissipation Application Report* (literature number SPRA020).

recommended operating conditions (see Note 6)

		MIN	NOM	MAX	UNIT
VDDL	Supply voltage for the core CPU	1.71	1.8	1.89	V
VDDP	Supply voltage for the I/O pins	3.13	3.3	3.47	V
V _{SS}	Supply ground		0		V
VIH	High-level input voltage	1.8		V _{DD} + 0.3	V
VIL	Low-level input voltage	- 0.3‡		0.6	V
ЮН	High-level output current			- 300	μA
IOL	Low-level output current			2	mA
ТС	Operating case temperature (commercial)	0		85	°C
	Operating case temperature (industrial)				°C
VTH	High-level input voltage for CLKIN	2.2		V _{DD} + 0.3	V

NOTE 6: All voltage values are with respect to $\mathsf{V}_{SS}.$ CLKIN can be driven by a CMOS clock.

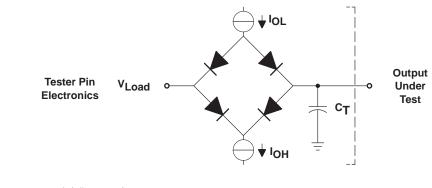
SPRS087 - FEBRUARY 1999

electrical characteristics over recommended ranges of supply voltage (unless otherwise noted) (see Note 6) $\!\!\!\!^\dagger$

	PARAMETER	TES	T CONDITION	S	MIN	TYP‡	MAX	UNIT
Vон	High-level output voltage	$V_{DD} = MIN, I_C$	V _{DD} = MIN, I _{OH} = MAX					V
VOL	Low-level output voltage	$V_{DD} = MIN, I_C$	H = MAX				0.4	V
ΙZ	High-impedance current	$V_{DD} = MAX$			- 5		+5	μA
Ц	Input current	$V_{I} = V_{SS}$ to V_{D}	D		- 5		+ 5	μA
Ι _Ρ	Input current (with internal pullup)	Inputs with inter	Inputs with internal pullups§				10	μA
	Supply current, pins ^{¶#}	T _A = 25°C,	f _X = 120 MHz	'VC33-120		20	120	mA
IDDP	Supply current, pins ""	$DV_{DD} = MAX$	f _X = 150 MHz	'VC33-150		25	150	ША
	Supply current, core CPU1#	T _A = 25°C,	f _X = 120 MHz	'VC33-120		40	50	mA
¹ DDL	Supply current, core CPO ""	$CV_{DD} = MAX$	f _X = 150 MHz	'VC33-150		45	60	ША
	Supply current, IDPP plus IDDC (PLL enabled)	Standby IF	LE2 Clocks	abut off		5		
IDD	Supply current, IDPP plus IDDC (PLL disabled)	Standby, ID	LEZ CIUCKS	Shut on		500		μA
<u></u>			All inputs except CLKIN				10	рF
Ci	Input capacitance	CLKIN					25	ΡΓ
Co	Output capacitance						10	pF

[†] All input and output voltage levels are TTL compatible.

[‡] For 'VC33, all typical values are at DV_{DD} = 3.3, CV_{DD} = 1.8 V, T_A (air temperature) = 25°C.


§ Pins with internal pullup devices: TDI, TCK, and TMS. Pin with internal pulldown device: TRST.

Actual operating current is less than this maximum value. This value was obtained under specially produced worst-case test conditions, which are not sustained during normal device operation. These conditions consist of continuous parallel writes of a checkerboard pattern at the maximum rate possible. See *Calculation of TMS320C30 Power Dissipation Application Report* (literature number SPRA020).

 $^{\#}f_{X}$ is the PLL output clock frequency.

NOTE 6: All voltage values are with respect to VSS. CLKIN can be driven by a CMOS clock.

PARAMETER MEASUREMENT INFORMATION

Where: I_{OL} = 1.5 mA (all outputs) I_{OH} = 300 μ A (all outputs)

 $V_{LOAD} = 1.5 V$ $C_T = 40$ -pF typical load-circuit capacitance

Figure 4. TMS320VC33 Test Load Circuit

SPRS087 - FEBRUARY 1999

PARAMETER MEASUREMENT INFORMATION

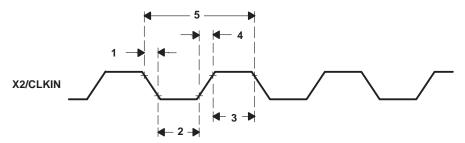
timing parameter symbology

Timing parameter symbols used herein were created in accordance with JEDEC Standard 100-A. In order to shorten the symbols, some of the pin names and other related terminology have been abbreviated as follows, unless otherwise noted:

А	A23-A0	Н	H1 and H3
ASYNCH	Asynchronous reset signals	HOLD	HOLD
С	CLKX0	HOLDA	HOLDA
CI	CLKIN	IACK	IACK
CLKR	CLKR0	INT	INT3-INT0
CONTROL	Control signals	RDY	RDY
D	D31-D0	RW	R/W
DR	DR	RESET	RESET
DX	DX	S	STRB
FS	FSX/R	SCK	CLKX/R
FSX	FSX0	SHZ	SHZ
FSR	FSR0	TCLK	TCLK0, TCLK1, or TCLKx
GPI	General-purpose input	XF	XF0, XF1, or XFx
GPIO	General-purpose input/output; peripheral pin	XFIO	XFx switching from input to output
GPO	General-purpose output		

SPRS087 - FEBRUARY 1999

timing


Timing specifications apply to the TMS320VC33.

X2/CLKIN, H1, and H3 timing

The following table defines the timing parameters for the X2/CLKIN, H1, and H3 interface signals. The numbers shown in Figure 5 and Figure 6 correspond with those in the NO. column of the table below.

timing parameters for X2/CLKIN, H1, H3 (see Figure 5 and Figure 6)

NO.			'VC33-120		'VC33-120 'VC33-150		UNIT
NO.			MIN	MAX	MIN	MAX	UNIT
1	^t f(CI)	Fall time, CLKIN					ns
2	^t w(CIL)	Pulse duration, CLKIN low t _{c(CI)} = min					ns
3	^t w(CIH)	Pulse duration, CLKIN high t _{C(CI)} = min					ns
4	^t r(Cl)	Rise time, CLKIN					ns
5	^t c(CI)	Cycle time, CLKIN					ns
6	^t f(H)	Fall time, H1 and H3					ns
7	^t w(HL)	Pulse duration, H1 and H3 low					ns
8	^t w(HH)	Pulse duration, H1 and H3 high					ns
9	^t r(H)	Rise time, H1 and H3					ns
10	^t d(HL-HH)	Delay time. from H1 low to H3 high or from H3 low to H1 high					ns
11	^t c(H)	Cycle time, H1 and H3					ns

Figure 5. Timing for X2/CLKIN

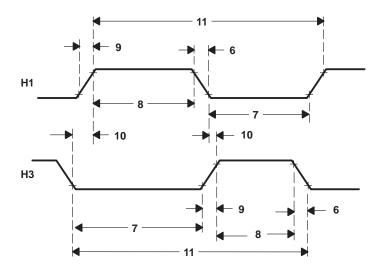
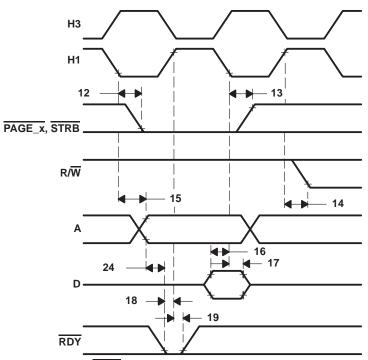


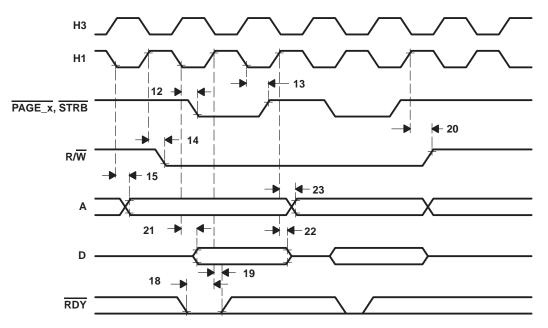
Figure 6. Timing for H1 and H3

memory read/write timing

The following table defines memory read/write timing parameters for STRB. The numbers shown in Figure 7 and Figure 8 correspond with those in the NO. column of the table below.


timing parameters for memory (STRB = 0) read/write (see Figure 7 and Figure 8)

NO.			'VC33-120		'VC33-120 'VC33-150		UNIT
NO.			MIN	MAX	MIN	MAX	UNIT
12	^t d(H1L-SL)	Delay time, H1 low to STRB low					ns
13	^t d(H1L-SH)	Delay time, H1 low to STRB high					ns
14	^t d(H1H-RWL)R	Delay time, H1 high to R/W low (read)					ns
15	^t d(H1L-A)	Delay time, H1 low to A valid					ns
16	^t su(D-H1L)R	Setup time, D before H1 low (read)					ns
17	^t h(H1L-D)R	Hold time, D after H1 low (read)					ns
18	t _{su} (RDY-H1H)	Setup time, RDY before H1 high					ns
19	^t h(H1H-RDY)	Hold time, RDY after H1 high					ns
20	^t d(H1H-RWH)W	Delay time, H1 high to R/\overline{W} high (write)					ns
21	^t v(H1L-D)W	Valid time, D after H1 low (write)					ns
22	^t h(H1H-D)W	Hold time, D after H1 high (write)					ns
23	^t d(H1H-A)W	Delay time, H1 high to A valid on back-to-back write cycles (write)					ns
24	^t d(A-RDY)	Delay time, RDY from A valid					ns
24A	T _{aa}	Address valid to data valid (read)					ns


SPRS087 - FEBRUARY 1999

memory read/write timing (continued)

NOTE B: STRB remains low during back-to-back read operations.

SPRS087 - FEBRUARY 1999

XF0 and XF1 timing when executing LDFI or LDII

The following tables define the timing parameters for XF0 and XF1 during execution of LDFI or LDII. The numbers shown in Figure 9 correspond with those in the NO. column of the tables below.

timing parameters for XF0 and XF1 when executing LDFI or LDII for TMS320VC33 (see Figure 9)

NO.			'VC33-120		'VC33-150		
NO.		MIN	MAX	MIN	MAX	UNIT	
25	t _{d(H3H-XF0L)} Delay time, H3 high to XF0 low					ns	
26	tsu(XF1-H1L) Setup time, XF1 before H1 low					ns	
27	th(H1L-XF1) Hold time, XF1 after H1 low					ns	

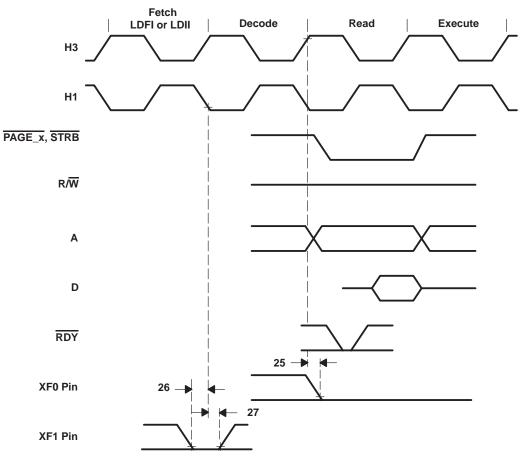


Figure 9. Timing for XF0 and XF1 When Executing LDFI or LDII

SPRS087 - FEBRUARY 1999

XF0 timing when executing STFI and STII[†]

The following table defines the timing parameters for the XF0 pin during execution of STFI or STII. The number shown in Figure 10 corresponds with the number in the NO. column of the table below.

timing parameters for XF0 when executing STFI or STII (see Figure 10)

NO.			'VC3	3-120	'VC3	3-150	UNIT
NO.	NO.		MIN	MAX	MIN	MAX	UNIT
28	^t d(H3H-XF0H)	Delay time, H3 high to XF0 high †					ns

[†] XF0 is always set high at the beginning of the execute phase of the interlock-store instruction. When no pipeline conflicts occur, the address of the store is also driven at the beginning of the execute phase of the interlock-store instruction. However, if a pipeline conflict prevents the store from executing, the address of the store will not be driven until the store can execute.

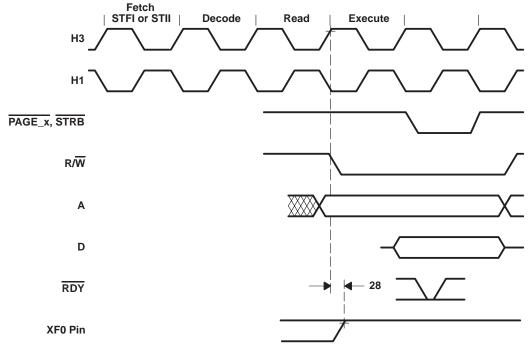


Figure 10. Timing for XF0 When Executing an STFI or STII

SPRS087 - FEBRUARY 1999

XF0 and XF1 timing when executing SIGI

The following tables define the timing parameters for the XF0 and XF1 pins during execution of SIGI. The numbers shown in Figure 11 correspond with those in the NO. column of the tables below.

timing parameters for XF0 and XF1 when executing SIGI (see Figure 11)

NO.			VC3	3-120	'VC33	3-150	UNIT
NO.			MIN	MAX	MIN	MAX	UNIT
29	^t d(H3H-XF0L)	Delay time, H3 high to XF0 low					ns
30	^t d(H3H-XF0H)	Delay time, H3 high to XF0 high					ns
31	^t su(XF1-H1L)	Setup time, XF1 before H1 low					ns
32	^t h(H1L-XF1)	Hold time, XF1 after H1 low					ns

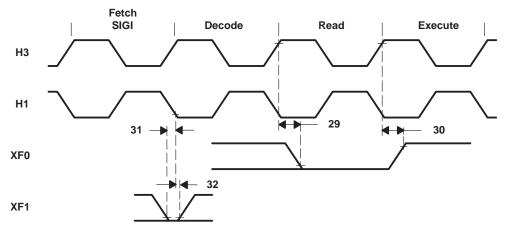
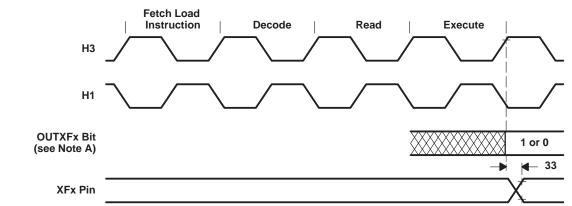


Figure 11. Timing for XF0 and XF1 When Executing SIGI


SPRS087 - FEBRUARY 1999

loading when XF is configured as an output

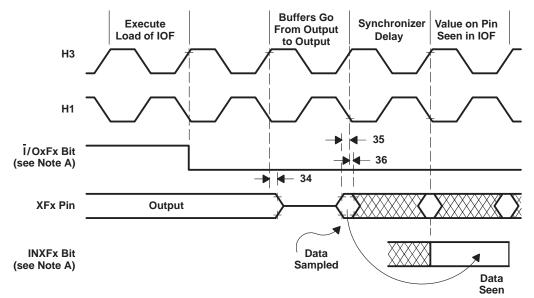
The following table defines the timing parameter for loading the XF register when the XFx pin is configured as an output. The number shown in Figure 12 corresponds with the number in the NO. column of the table below.

timing parameters for loading the XF register when configured as an output pin (see Figure 12)

NO.			'VC33-120		3-150	UNIT
NO.		MIN	MAX	MIN	MAX	UNIT
33	t _{v(H3H-XF)} Valid time, H3 high to XFx					ns

NOTE A: OUTXFx represents either bit 2 or 6 of the IOF register.

Figure 12. Timing for Loading XF Register When Configured as an Output Pin



changing XFx from an output to an input

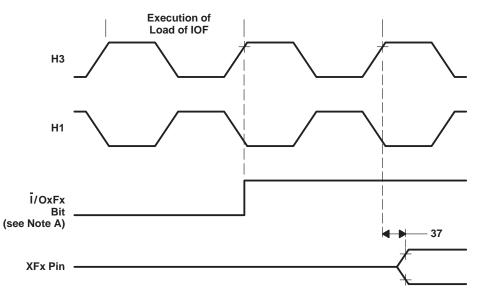
The following table defines the timing parameters for changing the XFx pin from an output pin to an input pin. The numbers shown in Figure 13 correspond with those in the NO. column of the table below.

timing parameters of XFx changing from output to input mode (see Figure 13)

NO.			'VC33-120		'VC33-150		UNIT
NO.			MIN	MAX	MIN	MAX	UNIT
34	^t h(H3H-XF)	Hold time, XFx after H3 high					ns
35	t _{su(XF-H1L)}	Setup time, XFx before H1 low					ns
36	^t h(H1L-XF)	Hold time, XFx after H1 low					ns

NOTE A: I/OxFx represents either bit 1 or bit 5 of the IOF register, and INXFx represents either bit 3 or bit 7 of the IOF register.

Figure 13. Timing for Change of XFx From Output to Input Mode


SPRS087 – FEBRUARY 1999

changing XFx from an input to an output

The following table defines the timing parameter for changing the XFx pin from an input pin to an output pin. The number shown in Figure 14 corresponds with the number in the NO. column of the table below.

timing parameters of XFx changing from input to output mode (see Figure 14)

	NO.		'VC33-120		'VC33-150		UNIT	
Ľ	NO.				MAX	MIN	MAX	UNIT
	37	^t d(H3H-XFIO)	Delay time, H3 high to XFx switching from input to output					ns

NOTE A: I/OxFx represents either bit 1 or bit 5 of the IOF register.

Figure 14. Timing for Change of XFx From Input to Output Mode

reset timing

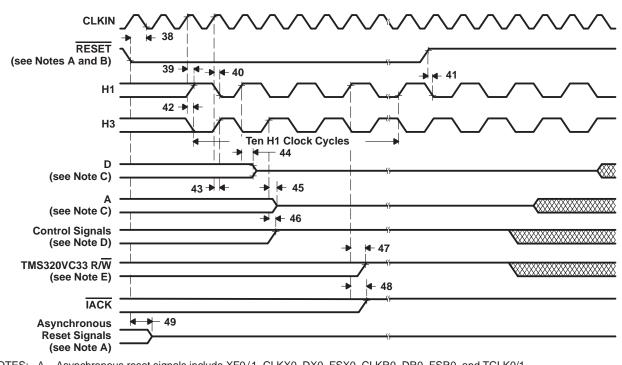
RESET is an asynchronous input that can be asserted at any time during a clock cycle. If the specified timings are met, the exact sequence shown in Figure 15 occurs; otherwise, an additional delay of one clock cycle is possible.

The asynchronous reset signals include XF0/1, CLKX0, DX0, FSX0, CLKR0, DR0, FSR0, and TCLK0/1.

The following table defines the timing parameters for the RESET signal. The numbers shown in Figure 15 correspond with those in the NO. column of the following table.

Resetting the device initializes the bus control register to seven software wait states and therefore results in slow external accesses until these registers are initialized.

HOLD is an asynchronous input and can be asserted during reset.


SPRS087 - FEBRUARY 1999

NO			'VC3	3-120	'VC33	s-150	
NO.			MIN	MAX	MIN	MAX	UNIT
38	^t su(RESET-CIL)	Setup time, RESET before CLKIN low					ns
39	^t d(CLKINH-H1H)	Delay time, CLKIN high to H1 high					ns
40	^t d(CLKINH-H1L)	Delay time, CLKIN high to H1 low					ns
41	^t su(RESETH-H1L)	Setup time, $\overline{\text{RESET}}$ high before H1 low and after ten H1 clock cycles					ns
42	^t d(CLKINH-H3L)	Delay time, CLKIN high to H3 low					ns
43	^t d(CLKINH-H3H)	Delay time, CLKIN high to H3 high					ns
44	^t dis(H1H-DZ)	Disable time, H1 high to D (high impedance)					ns
45	^t dis(H3H-AZ)	Disable time, H3 high to A (high impedance)					ns
46	^t d(H3H-CONTROLH)	Delay time, H3 high to control signals high					ns
47	^t d(H1H-RWH)	Delay time, H1 high to R/W high					ns
48	^t d(H1H-IACKH)	Delay time, H1 high to IACK high					ns
49	^t dis(RESETL-ASYNCH)	Disable time, RESET low to asynchronous reset signals disabled (high impedance)					ns

timing parameters for RESET for the TMS320VC33 (see Figure 15)

SPRS087 - FEBRUARY1999

timing parameters for RESET for the TMS32V0C33 (continued)

NOTES: A. Asynchronous reset signals include XF0/1, CLKX0, DX0, FSX0, CLKR0, DR0, FSR0, and TCLK0/1.

Β. RESET is an asynchronous input and can be asserted at any point during a clock cycle. If the specified timings are met, the exact sequence shown occurs; otherwise, an additional delay of one clock cycle is possible.

In microprocessor mode, the reset vector is fetched twice, with seven software wait states each time. In microcomputer mode, the C. reset vector is fetched twice, with no software wait states.

D. Control signals include $\overline{\text{STRB}}$ and $\overline{\text{PAGE}_x}$.

E. The R/W outputs are placed in a high-impedance state during reset and can be provided with a resistive pullup, nominally 18–22 k Ω , if undesirable spurious writes are caused when these outputs go low.

Figure 15. Timing for RESET

interrupt response timing

The following table defines the timing parameters for the \overline{INT} signals. The numbers shown in Figure 16 correspond with those in the NO. column of the table below.

timing parameters for INT3-INT0 response (see Figure 16)

NO.	NO		'VC33-120		'VC33	UNIT	
NO.			MIN	MAX	MIN	MAX	UNIT
50	^t su(INT-H1L)	Setup time, INT3- INT0 before H1 low					ns
51	^t w(INT)	Pulse duration, interrupt to ensure only one interrupt					ns

The interrupt (INT) pins are asynchronous inputs that can be asserted at any time during a clock cycle. The TMS320C3x interrupts are level-sensitive, not edge-sensitive. Interrupts are detected on the falling edge of H1. Therefore, interrupts must be set up and held to the falling edge of H1 for proper detection. The CPU and DMA respond to detected interrupts on instruction-fetch boundaries only.

For the processor to recognize only one interrupt on a given input, an interrupt pulse must be set up and held to:

- A minimum of one H1 falling edge
- No more than two H1 falling edges

The TMS320C3x can accept an interrupt from the same source every two H1 clock cycles.

If the specified timings are met, the exact sequence shown in Figure 16 occurs; otherwise, an additional delay of one clock cycle is possible.

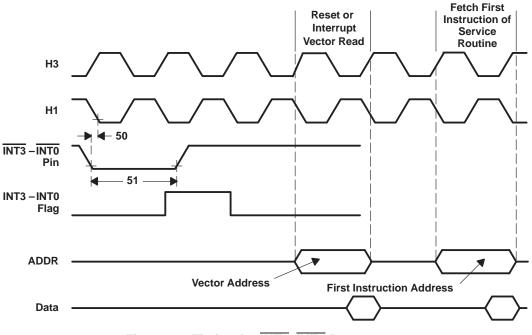
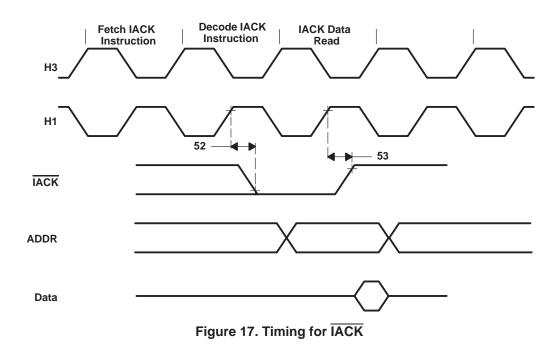


Figure 16. Timing for INT3–INT0 Response

SPRS087 - FEBRUARY1999


interrupt-acknowledge timing

The IACK output goes active on the first half-cycle (HI rising) of the decode phase of the IACK instruction and goes inactive at the first half-cycle (HI rising) of the read phase of the IACK instruction.

The following table defines the timing parameters for the \overline{IACK} signal. The numbers shown in Figure 17 correspond with those in the NO. column of the table below.

timing parameters for IACK (see Figure 17)

NO.		'VC3	'VC33-120		3-150	UNIT
NO.		MIN	MAX	MIN	MAX	UNIT
52	t _{d(H1H-IACKL)} Delay time, H1 high to IACK low					ns
53	td(H1H-IACKH) Delay time, H1 high to IACK high					ns

SPRS087 - FEBRUARY1999

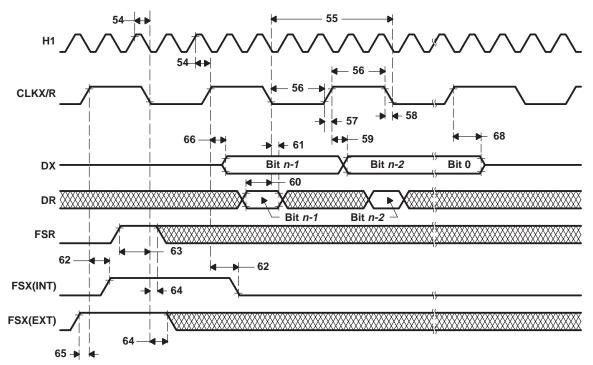
				'VC33	3-120	
NO.			F	MIN	MAX	
54	^t d(H1H-SCK)	Delay time, H1 high to internal CLKX/R				ns
<i>EE</i>	1	Cuala time, CLKX/P	CLKX/R ext			
55	^t c(SCK)	Cycle time, CLKX/R	CLKX/R int			ns
56	t (eeu	Pulse duration, CLKX/R high/low	CLKX/R ext			ns
50	^t w(SCK)	Fulse duration, CERA/R high/low	CLKX/R int			115
57	^t r(SCK)	Rise time, CLKX/R				ns
58	^t f(SCK)	Fall time, CLKX/R				ns
59	t	Delay time, CLKX to DX valid	CLKX ext			
59	^t d(C-DX)	Delay time, CLKA to DA valid	CLKX int			- ns
60		Satur time DD before CLKD low	CLKR ext			
60	^t su(DR-CLKRL)	Setup time, DR before CLKR low	CLKR int			ns
64	4		CLKR ext			
61	^t h(CLKRL-DR)	Hold time, DR from CLKR low	CLKR int			ns
<u></u>	4	Deleviting OLICY to internal FOX high flow	CLKX ext			
62	^t d(C-FSX)	Delay time, CLKX to internal FSX high/low	CLKX int			- ns
63		Satur time, FSD before CLKD low	CLKR ext			
63	^t su(FSR-CLKRL)	Setup time, FSR before CLKR low	CLKR int			- ns
64		Hold time FSY/D input from CLIXY/D low	CLKX/R ext			
64	^t h(SCKL-FS)	Hold time, FSX/R input from CLKX/R low	CLKX/R int			ns
65		Satur time, outernal ESV before CLKV	CLKX ext			
60	^t su(FSX-C)	Setup time, external FSX before CLKX	CLKX int			ns
66	t.vov. =	Delay time, CLKX to first DX bit, FSX	CLKX ext			
66	^t d(CH-DX)∨	precedes CLKX high	CLKX int			ns
67	^t d(FSX-DX)V	Delay time, FSX to first DX bit, CLKX precede	es FSX			ns
68	^t d(CH-DXZ)	Delay time, CLKX high to DX high impedance bit	e following last data			ns

serial-port timing parameters for TMS320VC33-120 (see Figure 18 and Figure 19)

SPRS087 - FEBRUARY1999

serial-port timing parameters for TMS320VC33-150 (see Figure 18 and Figure 19)

NO				'VC33	3-150	
NO.			ſ	MIN	MAX	
54	^t d(H1H-SCK)	Delay time, H1 high to internal CLKX/R				ns
55	t (00)0	Cycle time, CLKX/R	CLKX/R ext			
55	^t c(SCK)	Cycle liffle, CERA/R	CLKX/R int			ns
56	t (agus	Pulse duration, CLKX/R high/low	CLKX/R ext			ns
50	^t w(SCK)		CLKX/R int			115
57	^t r(SCK)	Rise time, CLKX/R				ns
58	^t f(SCK)	Fall time, CLKX/R				ns
59	t vo pvo	Delay time, CLKX to DX valid	CLKX ext			ns
39	^t d(C-DX)	Delay lime, CERX to DX valid	CLKX int			115
60		Setup time, DR before CLKR low	CLKR ext			
00	^t su(DR-CLKRL)	Setup time, DR beible CERR low	CLKR int			ns
61		Hold time, DB from CLKB low	CLKR ext			
01	^t h(CLKRL-DR)	Hold time, DR from CLKR low	CLKR int			ns
62		Delay time CLKX to internal FSX high law	CLKX ext			
62	^t d(C-FSX)	Delay time, CLKX to internal FSX high/low	CLKX int			ns
63	•	Setup time, FSR before CLKR low	CLKR ext			
03	^t su(FSR-CLKRL)	Setup time, FSR before CLRR low	CLKR int			ns
64		Hold time, FSX/R input from CLKX/R low	CLKX/R ext			
04	^t h(SCKL-FS)	Hold time, PSX/R input from CERX/R low	CLKX/R int			ns
65		Setup time, external FSX before CLKX	CLKX ext			ns
05	^t su(FSX-C)	Setup time, external FSX before CEXX	CLKX int			115
66		Delay time, CLKX to first DX bit, FSX	CLKX ext			ns
00	^t d(CH-DX)V	precedes CLKX high	CLKX int			115
67	^t d(FSX-DX)V	Delay time, FSX to first DX bit, CLKX preced	es FSX			ns
68	^t d(CH-DXZ)	Delay time, CLKX high to DX high impedanc bit	e following last data			ns

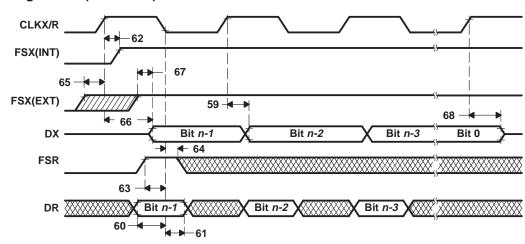


SPRS087 - FEBRUARY1999

data-rate timing modes

Unless otherwise indicated, the data-rate timings shown in Figure 18 and Figure 19 are valid for all serial-port modes, including handshake. For a functional description of serial-port operation refer to subsection 8.2.12 of the *TMS320C3x User's Guide* (literature number SPRU031).

The serial-port timing parameters for seven 'C3x devices are defined in the preceding "serial-port timing parameters" tables. The numbers shown in Figure 18 and Figure 19 correspond with those in the NO. column of each table.



NOTES: A. Timing diagrams show operations with CLKXP = CLKRP = FSXP = FSRP = 0.
 B. Timing diagrams depend on the length of the serial-port word, where n = 8, 16, 24, or 32 bits, respectively.

Figure 18. Timing for Fixed Data-Rate Mode

SPRS087 - FEBRUARY1999

data-rate timing modes (continued)

- B. Timing diagrams depend on the length of the serial-port word, where n = 8, 16, 24, or 32 bits, respectively.
 - C. The timings that are not specified expressly for the variable data-rate mode are the same as those that are specified for the fixed data-rate mode.

Figure 19. Timing for Variable Data-Rate Mode

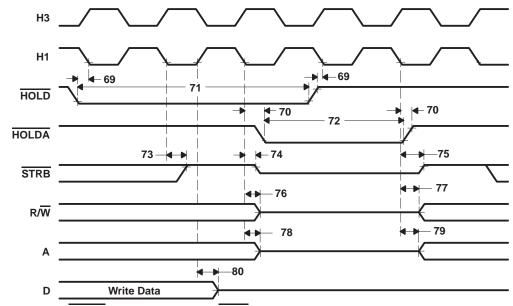
HOLD timing

HOLD is an asynchronous input that can be asserted at any time during a clock cycle. If the specified timings are met, the exact sequence shown in Figure 27 occurs; otherwise, an additional delay of one clock cycle is possible.

The table, "timing parameters for HOLD/HOLDA", defines the timing parameters for the HOLD and HOLDA signals. The numbers shown in Figure 20 correspond with those in the NO. column of the table.

The NOHOLD bit of the primary-bus control register overrides the HOLD signal. When this bit is set, the device comes out of hold and prevents future hold cycles.

Asserting HOLD prevents the processor from accessing the primary bus. Program execution continues until a read from or a write to the primary bus is requested. In certain circumstances, the first write is pending, thus allowing the processor to continue until a second write is encountered.


timing parameters for HOLD/HOLDA (see Figure 20)

NO.			'VC33	-120	'VC33-	150	UNIT
NO.			MIN	MAX	MIN	MAX	UNIT
69	^t su(HOLD-H1L)	Setup time, HOLD before H1 low					ns
70	^t v(H1L-HOLDA)	Valid time, HOLDA after H1 low					ns
71	^t w(HOLD)	Pulse duration, HOLD low					ns
72	^t w(HOLDA)	Pulse duration, HOLDA low					ns
73	^t d(H1L-SH)H	Delay time, H1 low to STRB high for a HOLD					ns
74	^t dis(H1L-S)	Disable time, H1 low to STRB to the high-impedance state					ns
75	^t en(H1L-S)	Enable time, H1 low to STRB enabled (active)					ns
76	^t dis(H1L-RW)	Disable time, H1 low to R/\overline{W} to the high-impedance state					ns
77	^t en(H1L-RW)	Enable time, H1 low to R/W enabled (active)					ns
78	^t dis(H1L-A)	Disable time, H1 low to address to the high-impedance state					ns
79	^t en(H1L-A)	Enable time, H1 low to address enabled (valid)					ns
80	^t dis(H1H-D)	Disable time, H1 high to data to the high-impedance state					ns

SPRS087 – FEBRUARY1999

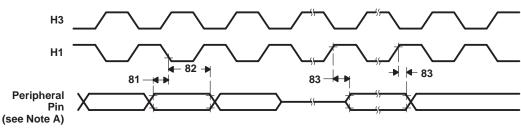
HOLD timing (continued)

NOTE A: HOLDA goes low in response to HOLD going low and continues to remain low until one H1 cycle after HOLD goes back high.

Figure 20. Timing for HOLD/HOLDA

general-purpose I/O timing

Peripheral pins include CLKX0, CLKR0, DX0, DR0, FSX0, FSR0, and TCLK0/1. The contents of the internal control registers associated with each peripheral define the modes for these pins.


peripheral pin I/O timing

The table, timing parameters for peripheral pin general-purpose I/O, defines peripheral pin general-purpose I/O timing parameters. The numbers shown in Figure 21 correspond with those in the NO. column of the table below.

timing parameters for peripheral pin general-purpose I/O (see Note 7 and Figure 21)

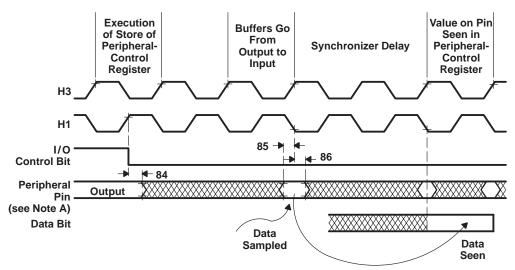
NO.			'VC3	'VC33-120		6-150	UNIT
NO.			MIN	MAX	MIN	MAX	UNIT
81	t _{su} (GPIO-H1L)	Setup time, general-purpose input before H1 low					ns
82	^t h(H1L-GPIO)	Hold time, general-purpose input after H1 low					ns
83	^t d(H1H-GPIO)	Delay time, general-purpose output after H1 high					ns

NOTE 7: Peripheral pins include CLKX0, CLKR0, DX0, DR0, FSX0, FSR0, and TCLK0/1. The modes of these pins are defined by the contents of internal-control registers associated with each peripheral.

NOTE A: Peripheral pins include CLKX0, CLKR0, DX0, DR0, FSX0, FSR0, and TCLK0/1.

Figure 21. Timing for Peripheral Pin General-Purpose I/O

SPRS087 – FEBRUARY1999


changing the peripheral pin I/O modes

The following tables show the timing parameters for changing the peripheral pin from a general-purpose output pin to a general-purpose input pin and vice versa. The numbers shown in Figure 22 and Figure 23 correspond to those shown in the NO. column of the tables below.

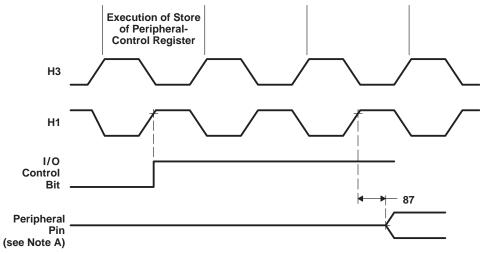
timing parameters for peripheral pin changing from general-purpose output to input mode (see Note 7 and Figure 22)

NO.			'VC3	3-120	'VC33-150		UNIT
NO.			MIN	MAX	MIN	MIN MAX	UNIT
84	^t h(H1H)	Hold time, peripheral pin after H1 high					ns
85	^t su(GPIO-H1L)	Setup time, peripheral pin before H1 low					ns
86	^t h(H1L-GPIO)	Hold time, peripheral pin after H1 low					ns

NOTE 7: Peripheral pins include CLKX0, CLKR0, DX0, DR0, FSX0, FSR0, and TCLK0/1. The modes of these pins are defined by the contents of internal-control registers associated with each peripheral.

NOTE A: Peripheral pins include CLKX0, CLKR0, DX0, DR0, FSX0, FSR0, and TCLK0/1.

Figure 22. Timing for Change of Peripheral Pin From General-Purpose Output to Input Mode



SPRS087 - FEBRUARY1999

timing parameters for peripheral pin changing from general-purpose input to output mode (see Note 7 and Figure 23)

NO		'VC33-120		'VC33-150		UNIT
NO.			MAX	MIN	MAX	UNIT
87	t _{d(H1H-GPIO)} Delay time, H1 high to peripheral pin switching from input to output					ns

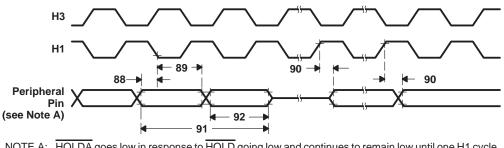
NOTE 7: Peripheral pins include CLKX0, CLKR0, DX0, DR0, FSX0, FSR0, and TCLK0/1. The modes of these pins are defined by the contents of internal-control registers associated with each peripheral.

NOTE A: Peripheral pins include CLKX0, CLKR0, DX0, DR0, FSX0, FSR0, and TCLK0/1.

Figure 23. Timing for Change of Peripheral Pin From General-Purpose Input to Output Mode

SPRS087 - FEBRUARY1999

timer pin timing


Valid logic-level periods and polarity are specified by the contents of the internal control registers.

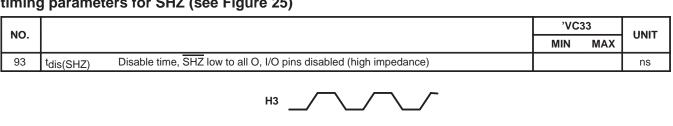
The following tables define the timing parameters for the timer pin. The numbers shown in Figure 24 correspond with those in the NO. column of the tables below.

timing parameters for timer pin for TMS320VC33-120 (see Figure 24) [†]

NO.	DESCRIPTION [‡]		'VC33-120		'VC33-150		
			MIN	MAX	MIN	MAX	UNIT
88	^t su(TCLK-H1L)	Setup time, TCLK external before H1 low					ns
89	^t h(H1L-TCLK)	Hold time, TCLK external after H1 low					ns
90	^t d(H1H-TCLK)	Delay time, H1 high to TCLK internal valid					ns
91	^t c(TCLK)	TCLK ext					ns
91		TCLK int					
92	^t w(TCLK)	TCLK ext					
92		TCLK int					ns

[†] Timing parameters 88 and 89 are applicable for a synchronous input clock. Timing parameters 91 and 92 are applicable for an asynchronous input clock.

NOTE A: HOLDA goes low in response to HOLD going low and continues to remain low until one H1 cycle after HOLD goes back high.


Figure 24. Timing for Timer Pin

SHZ pin timing

The following table defines the timing parameter for the \overline{SHZ} pin. The number shown in Figure 25 corresponds with that in the NO. column of the table below.

SPRS087 - FEBRUARY1999

H1

SHZ

All I/O Pins

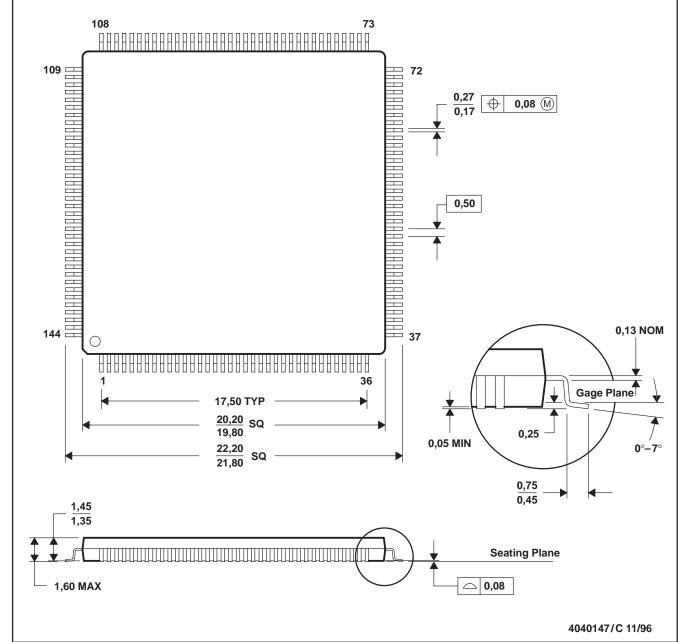
condition.

timing parameters for SHZ (see Figure 25)

k

- 93 —

NOTE A: Enabling \overline{SHZ} destroys TMS320C3x register and memory contents. Assert $\overline{SHZ} = 1$ and reset the TMS320C3x to restore it to a known


SPRS087 - FEBRUARY1999

MECHANICAL DATA

TMS320VC33 144-Pin Plastic Thin Quad Flatpack (TQFP)

PGE (S-PQFP-G144)

PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MS-026

Thermal Resistance Characteristics

PARAMETER	°C/W		
R _{OJA}	56		
R _{OJC}	5		

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated