加急出货

TC55329AP/AJ-15/20/25/35

SILICON GATE CMOS

32,768 WORD x 9 BIT CMOS STATIC RAM

Description

The TC55329AP/AJ is a 294,912 bit high speed CMOS static random access memory organized as 32,768 words by 9 bits and operated from a single 5V supply. Toshiba's advanced CMOS technology and circuit design enable high speed operation.

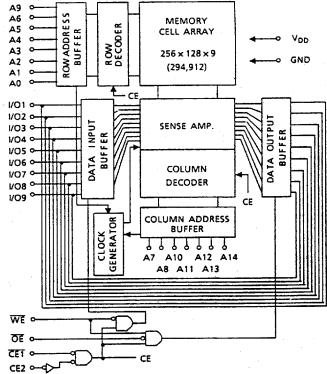
The TC55329AP/AJ features low power dissipation when the device is deselected using chip enable (CE1, CE2) and has an output enable input (OE) for fast memory access. Also, the device power between memory accesses is reduced by an automatic power down circuit.

The TC55329AP/AJ is suitable for use in high speed applications such as cache memory and high speed storage. All inputs and outputs are TTL compatible.

The TC55329AP/AJ is available in a 300mil width, 32-pin DIP and SOJ suitable for high density surface assembly.

Features

- Fast access time
 - TC55329AP/AJ-15 15ns (max.)TC55329AP/AJ-20 20ns (max.)
 - TC55329AP/AJ-25 25ns (max.)
 - TC55329AP/AJ-35 35ns (max.)
- Low power dissipation
- Operation:
- TC55329AP/AJ-15 140mA (max.)
- TC55329AP/AJ-20 140mA (max.) - TC55329AP/AJ-25 140mA (max.)
- TC55329AP/AJ-35 120mA (max.)
- Standby: 1mA (max.)
- Single 5V power supply: 5V±10%
- Fully static operation
- Inputs and outputs TTL compatible
- Output buffer control: OE
- Package:
 - TC55329AP: DIP32-P-300
 - TC55329AJ: SOJ32-P-300


Pin Names

A0 ~ A14	Address Inputs
1/01 ~ 1/09	Data Inputs/Outputs
CE1, CE2	Chip Enable Inputs
WE	Write Enable Input
ŌĒ	Output Enable Input
V _{DD}	Power (+5V)
GND	Ground
NC	No Connection

Pin Connection (Top View)

•	TC5	5329AP	TC5532	!9AJ
NC	1	32] V _{DD}	NC I T	32] V _{DO}
NC	2	31 A14	NC 2	31 A14
A8[3	30) CE2	A8[] 3	30 CE2
A7[4	29] WE	A7 🛚 4	29] WE
A6[5	28 A13	A6[5	28] A13
A5C	6	27 A9	A5[] 6	27] A9
A4[7	26] A10	A4[7	26 A10
A3[8	25 A11	A3[] 8	25 A11
A2[9	24]] <u>OE</u>	A2[] 9	24]] OE
A1[10	23]] A12	A1 🗓 10	23 A12
A0[11	22] <u>CE1</u>	A0[11	22] CE1
1/01 🗓	12	21 1/09	VO1[] 12	21 1/09
1/02 []	13	20]] 1/08	I/O2□ 13	20 11/08
1/03[14	19]] 1/07	· VO3□ 14	19 1/07
1/04	15	18]] 1/06	1/04[] 15	18 1/06
GND	16	17]] 1/05	GND 16	17 1/05
	([OIP)	(SO)))

Operating Mode

MODE	CE1	CE2	ŌĒ	WE	1/01 ~ 1/09	POWER
Read	L	Н	L	Н	Output	l _{DDO}
Write	L	н	*	L.	Input	l _{DDO}
Output Disable	L	Н	Н	Н	High Impedance	I _{DDO}
S. II	Н	*	*	*	High Impedance	I _{DDS}
Standby	*	L	*	*	High Impedance	I _{DDS}

^{*}H or L

Maximum Ratings

SYMBOL	ITEM	RATING	UNIT
V _{DD}	Power Supply Voltage	-0.5 ~ 7.0	V
V _{IN}	Input Voltage	-2.0 ~ 7.0	V
V _{I/O}	Input/Output Voltage	-0.5* ~ V _{DD} + 0.5	V
P _D	Power Dissipation	1.0	W
T _{SOLDER}	Soldering Temperature • Time	260 • 10	°C • sec
T _{STRG}	Storage Temperature	-65 ~ 150	°C
T _{OPR}	Operating Temperature	-10 ~ 85	°C

^{*-3}V with a pulse width of 10ns

DC Recommended Operating Conditions

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{DD}	Power Supply Voltage	4.5	5.0	5.5	٧
V _{iH}	Input High Voltage	2.2	-	V _{DD} + 0.5	V
V _{IL}	Input Low Voltage	0.5*		0.8	V

^{* -3}V with a pulse width of 10ns

DC Characteristics (Ta = 0 ~ 70°C, V_{DD} = 5V±10%)

SYMBOL	PARAMETER	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
I _{LI}	Input Leakage Current	_	-	±1	μА		
I _{LO}	Output Leakage Current	$\overline{CE1} = V_{IH}$ or $\overline{CE2} = V_{IL}$ or $\overline{OE} = V_{IH}$ $\overline{WE} = V_{IL}$, $V_{OUT} = 0 \sim V_{DD}$	-	-	±1	μА	
I _{OH}	Output High Current	V _{OH} = 2.4V		-4	-	-	mA
l _{OL}	Output Low Current	V _{OL} = 0.4V		8	-	-	mA
			-15	-	-	140	
1	Operating Current	t _{cycle} = Min cycle	-20	_	-	140	1
IDDO	Operating Current	CE1 = V _{IL} or CE2 = V _{IH} Other Inputs = V _{IH} /V _{II}	-25	_	-		mA
		THE STATE OF THE S	-35	-	-	120	
		* * * * * * * * * * * * * * * * * * * *	-15				
ì		t _{cycle} = Min cycle CE1 = V _{IH} or CE2 = V _{II}	-20				
DDS1	Standby Current	Other Inputs = V _{IH} /V _{II}	-25	_	_	20	mA
	January January	The second secon	-35	1			I TOPA
I _{DDS2}		$\overline{\text{CE1}} = \text{V}_{\text{DD}} - 0.2 \text{V} \text{ or CE2} = 0.2 \text{V}$ Other Inputs = $\text{V}_{\text{DD}} - 0.2 \text{V} \text{ or } 0.2 \text{V}$		_	-	1	

Capacitance* (Ta = 25°C, f = 1.0MHz)

SYMBOL	PARAMETER	TEST CONDITION	MAX.	UNIT
C _{IN}	Input Capacitance	V _{IN} = GND	6	pF
C _{I/O}	Input/Output Capacitance	V _{I/O} = GND	. 8	pF

^{*}This parameter is periodically sampled and is not 100% tested.

AC Characteristics (Ta = $0 \sim 70^{\circ}C^{(1)}$, $V_{DD} = 5V\pm10\%$)

Read Cycle

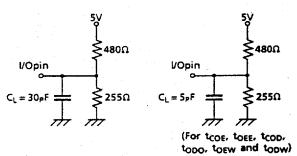
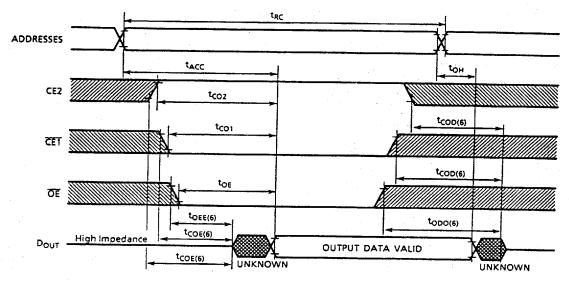
0,44001		TC55329AP/AJ-15		TC55329AP/AJ-20		TC55329AP/AJ-25		TC55329AP/AJ-35		UNIT
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNII
t _{RC}	Read Cycle Time	15		20	-	25	-	35	_	
tACC	Address Access Time	_	15		20	_	25	_	35	
t _{CO1}	CE1 Access Time	-	15	-	20	_	25	_	35	
t _{CO2}	CE2 Access Time	-	15	-	20	-	25	_	35	
t _{OE}	OE Access Time		8	-	10	-	12	-	15	
tон	Output Data Hold Time from Address Change	5		5	_	. 5	_	5	-	ns
tcoe	Output Enable Time from CE1 or CE2	5	-	5	-	5	-	5	-	
t _{COD}	Output Disable Time from CE1 or CE2	-	8	-	8	-	10	_	15.	
toee	Output Enable Time from OE	1	-	1	_	1	_	1	_	
t _{ODO}	Output Disable Time from OE	_	8	_	8	_	10	-	15	

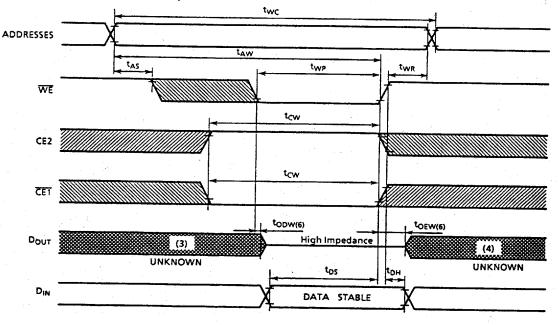
Write Cycle

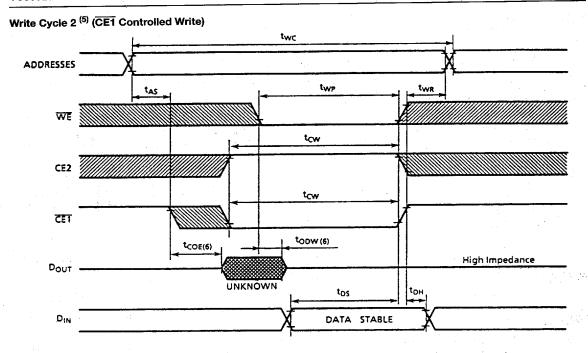
		TC55329AP/AJ-15		TC55329AP/AJ-20		TC55329AP/AJ-25		TC55329AP/AJ-35		UNIT
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN:	MAX.	MIN.	MAX.	UNII
t _{WC}	Write Cycle Time	15	-	20	-	25	-	35	-	
t _{WP}	Write Pulse Width	10	_	11	-	13	- 1	18	-	
t _{AW}	Address Valid to End of Write	12	_	13	-	15	-	20		
t _{CW}	Chip Enable to End of Write	12	-	13	-	15	-	20		
t _{AS}	Address Setup Time	0	_	0		0		0	-	ns
t _{WR}	Write Recovery Time	0	-	0	-	0		0	-	115
t _{DS}	Data Setup Time	8		10	-	12	_	15		
t _{DH}	Data Hold Time	0	_	. 0	_	0	-	0		
t _{OEW}	Output Enable Time from WE	1	-	1	-	. 1		1	-	
topw	Output Disable Time from WE	_	8	_	8.		10	-	15	

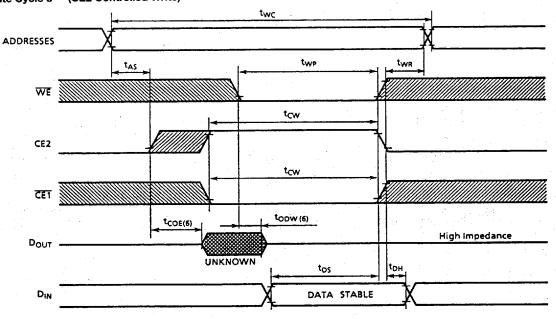
AC Test Conditions

Input Pulse Levels	3.0V/0.0V
Input Pulse Rise and Fall Time	3ns
Input Timing Measurement Reference Levels	2.2V/0.8V
Output Timing Measurement Reference Levels	2.0V/0.8V
Output Load	Fig. 1

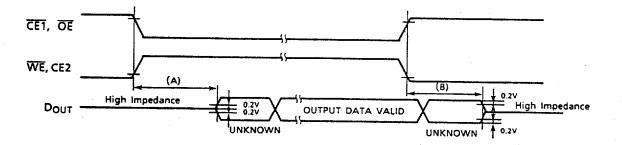




Figure 1.


Timing Waveforms



Write Cycle 1 (5) (WE Controlled Write)



Notes:

- 1. The operating temperature (Ta) is guaranteed with transverse air flow exceeding 400 linear feet per minute.
- 2. WE is high for read cycles.
- 3. If the CE1 low transition or CE2 high transition occurs coincident with or after the WE low transition, outputs remain in a high impedance state.
- 4. If the CE1 high transition or CE2 low transition occurs coincident with or prior to the WE high transition, outputs remain in a high impedance state.
- 5. If OE is high during a write cycle, the outputs are in a high impedance state during this period.
- 6. The following parameters are measured using the load shown in Fig. 1.
 - (A) t_{COE}, t_{OEE}, t_{OEW} Output Enable Time
 - (B) t_{COD} , t_{ODO} , t_{ODW} Output Disable Time

