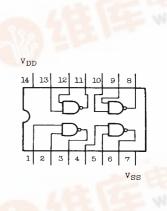
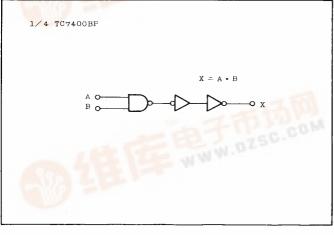


TC7400BP QUAD 2-INPUT POSITIVE NAND GATE

TC7400BP is two input positive logic NAND gate. Since all the outputs of this gate are equiped with buffers which consist of inverters, the input/output transmission characteristic has been improved and the variation of transmission time caused by increase of load capacity has been kept minimum.



ABSOLUTE MAXIMUM RATINGS


CHARACTERISTIC	SYMBOL	RATING UN			
DC Supply Voltage	VDD	$V_{SS}-0.5 \sim V_{SS}+20$			
Input Voltage	VIN	Vss-0.5~V _{DD} +0.5			
Output Voltage	VOUT	$V_{SS}-0.5 \sim V_{DD}+0.5$	v		
DC Input Current	IIN	±10	mA		
Power Dissipation	PD	300 1			
Storage Temperature Range	Tstg	-65 ~150			
Lead Temp./Time	Tsol	260°C • 10sec			

PIN ASSIGNMENT

TC7400BP

LOGIC DIAGRAM

RECOMMENDED OPERATING CONDITIONS (VSS=0V)

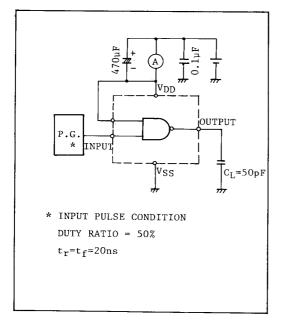
CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply Voltage	V _{DD}	3	-	18	v
Input Voltage	VIN	0	-	V _{DD}	v
Operating Temp.	Topr	-40	· _	85	°C

ELECTRICAL CHARACTERISTICS (VSS=0V)

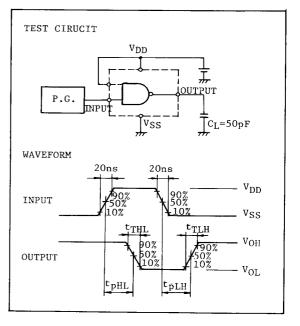
CHARACTERISTIC		SYMBOL	TEST CONDITIONS	VDD	-40°C		25°C			85°C		UNIT
omusorekistic	STIDUL	TEST CONDITIONS	(V)	MIN.	MAX.	MIN.	TYP.	MAX.	MIN.	MAX.	UNII	
"H" Lev Output	vel Voltage	v _{он}	I _{OUT} < 1µA V _{IN} = V _{SS} ,V _{DD}	5 10 15	4.95 9.95 14.95	-		5.00 10.00 15.00	-	4.95 9.95 14.95	-	v
"L" Lev Output	vel Voltage	VOL	$ I_{OUT} < 1_{M}$ $V_{IN} = V_{DD}$	5 10 15	- - -	0.05 0.05 0.05	- - -	1	0.05 0.05 0.05	- - -	0.05 0.05 0.05	
"H" Lev Output	rel Current	т _{он}	V _{OH} = 4.6V V _{OH} = 9.5V V _{OH} = 13.5V V _{IN} = V _{SS} ,V _{DD}	5 10 15	-0.2 -0.5 -1.4	- - -	-0.16 -0.4 -1.2	-0.5 -1.2 -6.0	- - -	-0.12 -0.3 -1.0	- - -	
"L" Lev Output		I _{OL}	$V_{OL} = 0.4V$ $V_{OL} = 0.5V$ $V_{OL} = 1.5V$ $V_{IN} = V_{DD}$	5 10 15	0.52 1.3 3.6	-	0.44 1.0 3.0	1.5 3.5 15	- - -	0.36 0.9 2.4	- -	mA
"H" Lev Voltage	el Input	VIH	Vout=0.5V,4.5V Vout=1.0V,9.0V Vout=1.5V,13.5V IOUT < 1µA	5 10 15	3.5 7.0 11.0		3.5 7.0 11.0	2.75 5.5 8.25	-	3.5 7.0 11.0	- - -	
"L" Lev Input	el Voltage	v _{IL}	VOUT= 4.5V VOUT= 9.0V VOUT= 13.5V IOUT < 1µA	5 10 15	- - -	1.5 3.0 4.0	-	2.25 4.5 6.75	1.5 3.0 4.0	-	$1.5 \\ 3.0 \\ 4.0$	v
Input	"H" Level		$V_{IH} = 18V$	18	-	0.3	-	10-5	0.3	-	1.0	
	"L" Level	IIL	$VIT = 0\Lambda$	18	-	-0.3	-	-10 ⁻⁵	-0.3	-	-1.0	Au
Quiesce Supply		IDD	V _{IN} = V _{SS} ,V _{DD}	5 10 15		1.0 2.0 4.0		0.001 0.001 0.002	1.0 2.0 4.0		7.5 15 30	Au

* All valid input combinations

SWITCHING CHARACTERISTICS (Ta=25°C, VSS=0V, CL=50pF)


CHARACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
Output Rise Time	t _{TLH}		5 10 15		130 65 50	400 200 160	
Output Fall Time	t _{THL}		5 10 15		100 50 40	200 100 80	ns

TC7400BP


CHAR	ACTERISTIC	SYMBOL	TEST CONDITIONS	V _{DD} (V)	MIN.	TYP.	MAX.	UNIT
TC7400BP -	(Low-High) Propagation Delay Time	tpLH		5 10 15		140 60 50	300 150 125	ns
	(High=Low) Propagation Delay Time	t _{pHL}		5 10 15	- - -	180 80 60	300 150 125	115
Input	Capacitance	CIN			-	5	7.5	pF

SWITCHING CHARACTERISTICS (Ta=25°C, V_{SS}-OV, C_L =50pF)

I_{T} TEST CIRCUIT

SWITCHING TIME TEST CIRCUIT AND WAVEFORM

