

查询BA4112供应商

#### 捷多邦,专业PCB打样工厂,24小时 加急出货

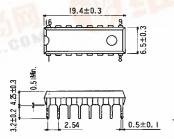
## BA4112

### FM-IF detector

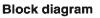
BA4112 (DIP16)

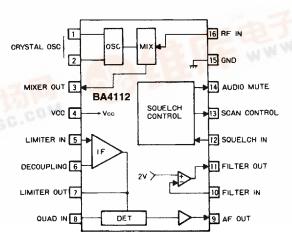
Dimensions (Units : mm)

WW.DZ


The BA4112 IC is a narrow band FM-IF detection IC that is designed to be used in FM transceivers.

#### Features


- available in a DIP16 package that is compatible with Motorola part no. MC3357P
- low power consumption (typically 3.0 mA)
- limiting sensitivity is typically -3 dB at  $5.0 \text{ }\mu\text{V}$
- circuit between 2nd mixer and detector output requires few external components, which allows smaller transceiver sizes


#### Applications

- VHF-band FM transceivers
- cordless telephones



7.62 0.3±0.1







## ROHM

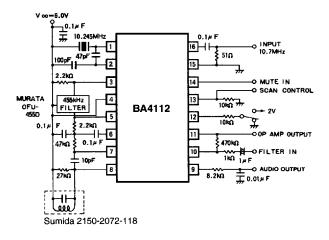
7828999 0010140 896

#### BA4112 Communications equipment: FM-IF detector

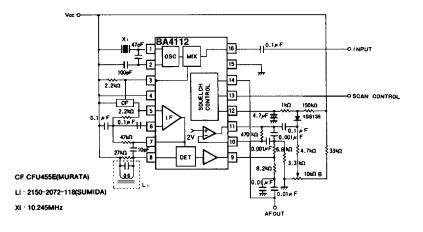
#### Absolute maximum ratings (T<sub>a</sub> = 25°C)

| Parameter             | Symbol           | Limits    | Unit | Conditions                                          |
|-----------------------|------------------|-----------|------|-----------------------------------------------------|
| Power supply voltage  | V <sub>CC</sub>  | 12        | V    |                                                     |
| Power dissipation     | Pd               | 500       | mW   | Reduce power by 5 mW/°C for each degree above 25°C. |
| Operating temperature | T <sub>opr</sub> | -10 ~ +60 | °C   | 7                                                   |
| Storage temperature   | T <sub>stg</sub> | -25 ~ +75 | °C   |                                                     |

١


# Electrical characteristics (unless otherwise noted, $T_a$ = 25°C, $V_{CC}$ = 6.0 V, $f_{IN}$ = 10.7 MHz, $\Delta f$ = $\pm 3$ kHz, $f_m$ = 1 kHz)

| Parameter                         | Symbol             | Min | Typical | Мах | Unit | Conditions                    |
|-----------------------------------|--------------------|-----|---------|-----|------|-------------------------------|
| Quiescent current                 | ΙQ                 | 2.0 | 3.0     | 5.0 | mA   | No signal, squelch on         |
| 20 dB signal/noise<br>sensitivity | 20 dB<br>S/N       | 15  | -20     | 25  | dBµV |                               |
| Detector output level             | V <sub>ODC</sub>   | 250 | 350     | 500 | mV   | $V_{IN} = 80 \text{ dB}\mu V$ |
| Detector output distortion        | THD                |     | 1.8     | 3.0 | %    | $V_{IN} = 80 \text{ dB}\mu V$ |
| Detector output DC voltage        | V <sub>ODC</sub>   | 2.0 | 3.0     | 4.0 | v    | V <sub>IN</sub> = 0 V         |
| Detector output<br>impedance      | Z <sub>OUT</sub>   | 280 | 400     | 520 | Ω    |                               |
| Filter amplifier gain             | Gv                 | 41  | 46      |     | dB   | V <sub>IN</sub> = 1 mV 10 kHz |
| Filter output DC voltage          | V <sub>ODC-f</sub> | 1.5 | 2.0     | 2.5 | V    |                               |
| Squelch hysteresis                | Hys                | 50  | 100     | 150 | mV   |                               |
| Mute low resistance               | R <sub>m</sub> L.  |     | 10      | 50  | Ω    | $V_{12} = GND$                |
| Mute high resistance              | R <sub>m</sub> H   | 1.0 | 10      |     | ΜΩ   | $V_{12} = 2.0 V$              |
| Scan low voltage                  | V <sub>Sc</sub> L  |     | 0       | 0.5 | V    | $V_{12} = 2.0 V$              |
| Scan high voltage                 | V <sub>Sc</sub> H  | 3.0 | 5.0     | 5.9 | V    | $V_{12} = GND$                |
| Mixer conversion gain             | Avm                | 17  | 20      |     | dB   | f <sub>IN</sub> = 10.7 MHz    |


Note: For the test circuit, see Figure 1

ROHM

#### Figure 1 Test circuit



#### Figure 2 Application example



,