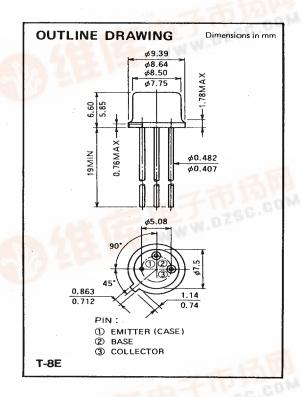
MITSUBISHI RF POWER TRANSISTOR 2SC2131

NPN EPITAXIAL PLANAR TYPE

DESCRIPTION


2SC2131 is a silicon NPN epitaxial planar type transistor designed for RF power amplifiers in UHF band mobile radio applications.

FEATURES

- High power gain: G_{pe} ≥ 6.7dB $@V_{CC} = 13.5V, P_0 = 1.4W, f = 500MHz$
- TO-39 metal seeled package for high reliability.
- Emitter ballasted construction, gold metallization for good performances.
- Emitter electrode is connected electrically to the case.

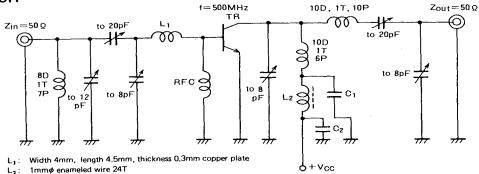
APPLICATION

1 watt power amplifiers in UHF band mobile radio applications and driver amplifiers in general.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
V _{CBO}	Collector to base voltage		40	V
V _{EBO}	Emitter to base voltage		4	V
VCEO	Collector to emitter voltage	R _{BE} = ∞	18	V
Ic	Collector current	120.00	0.6	A
Pc	Collector dissipation	Ta = 25°C	0.8	w
		T _C = 25°C	4	w
Ti	Junction temperature		175	°C
Tstg	Storage temperature		55 to 175	.c
Rth-a		Junction to ambient	187.5	°C/W
Rth-c	Thermal resistance	Junction to case	37.5	°C/W

ELECTRICAL CHARACTERISTICS (T_C=25°C unless otherwise specified)


Symbol	Parameter Test conditions	Limits				
		rest conditions	Min	Тур	Max	Unit
V _{(BR)EBO}	Emitter to base breakdown voltage	$I_E = 1$ mA, $I_C = 0$	4			٧
V(BR)CBO	Collector to base breakdown voltage	I _C =5mA, I _E =0	40			V
V _{(BR)CEO}	Collector to emitter breakdown voltage	I _C =50mA, R _{BE} =∞	18			V
сво	Collector cutoff current	$V_{CB}=25V, I_{E}=0$			100	μА
I _{EBO}	Emitter cutoff current	V _{EB} =3V, I _C =0			100	μА
hfE	DC forward current gain*	V _{CE} = 10 V, I _C = 0.1A	10	50	180	
P ₀	Output power	V _{CC} =13.5V, P _{in} =0.3W, f=500MHz	1.4	1.6		w
$\eta_{\rm C}$	Collector efficiency		50	60		%

*Pulse test, $P_W=150\mu s$, duty=5%. Above parameters, ratings, limits and conditions are subject to change.

NPN EPITAXIAL PLANAR TYPE

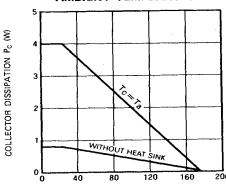
TEST CIRCUIT

RFC: 0.3mmø enameled wire 25T to 30T

C₁: 50pF, 100pF, 2200pF, 0.005µF, 0.0022µF in parallel

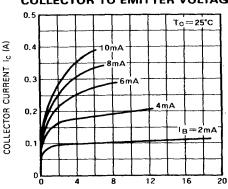
 C_2 : 0.02 μ F, 0.047 μ F, 0.47 μ F in parallel

Notes: Coils are made from 1.5mm¢ silver plated copper wire except L₁, L₂ & RFC

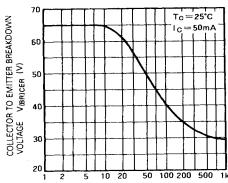

D: Inner diameter of coil P: Pitch of coil

T: Turn number of coil

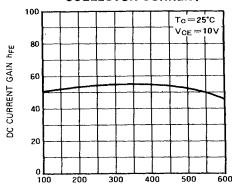
Coil dimensions in milli-meter


TYPICAL PERFORMANCE DATA

COLLECTOR DISSIPATION VS. AMBIENT TEMPERATURE


AMBIENT TEMPERATURE Ta (°C)

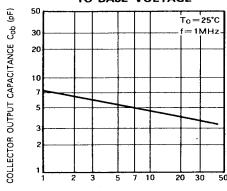
COLLECTOR CURRENT VS. COLLECTOR TO EMITTER VOLTAGE


COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR TO EMITTER BREAKDOWN VOLTAGE VS. BASE TO EMITTER RESISTANCE

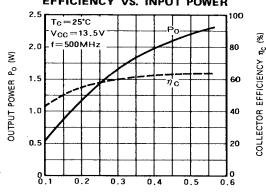
BASE TO EMITTER RESISTANCE R_{BE} (Ω)

DC CURRENT GAIN VS. COLLECTOR CURRENT



COLLECTOR CURRENT Ic (mA)

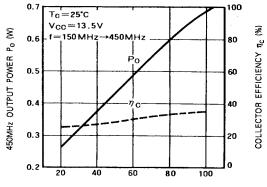
MITSUBISHI RF POWER TRANSISTOR 2SC2131


NPN EPITAXIAL PLANAR TYPE

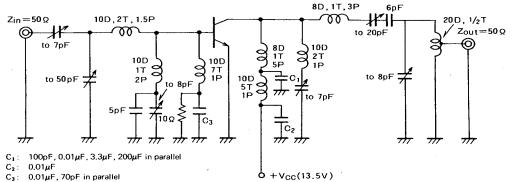
COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE

COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER


INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE


COLLECTOR SUPPLY VOLTAGE VCC (V)

TRIPLER OUTPUT POWER, COLLECTOR EFFICIENCY **VS. INPUT POWER**

150MHz INPUT POWER Pin (mW)

TRIPLER CIRCUIT DIAGRAM (150MHz → 450MHz) **APPLICATION CIRCUIT**

All coils are made from 1.5mm ϕ silver plated copper wire Notes:

D: Inner diameter of coil T: Turn number of coil P: Pitch of coil

Dimension in milli-meter