

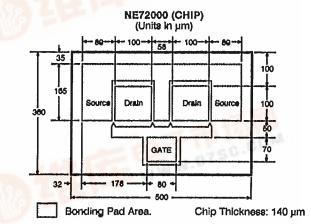
FEATURES

LOW COST

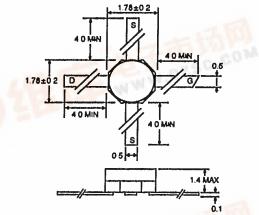
c.com

- LOW NOISE FIGURE 0.8 dB at 4 GHz 1.7 dB at 8 GHz
- HIGH ASSOCIATED GAIN
 12.0 dB at 4 GHz
 9.0 dB at 8 GHz
- HIGH MAXIMUM AVAILABLE GAIN 16.0 dB at 4 GHz 12.0 dB at 8 GHz

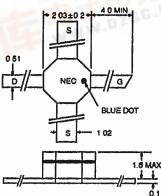
DESCRIPTION AND APPLICATIONS


The NE720 is NEC's low cost 1.0μ recessed gate GaAs FET, offering a low noise figure and high gain through 8 GHz. It is designed for consumer applications.

The device is available as a chip (NE72000) and in two hermetically sealed stripline packages (NE72084 and NE72089A). The chip's gate and channel are glassivated with a thin layer of SiO₂ for mechanical protection. All bonding packs use a Ti-Pt-Au metallization system.


SYMBOLS	PARAMETERS	UNITS	RATINGS
Vos	Drain to Source Voltage	V	5.0
Vgdo	Gate to Drain Voltage	V	-6.0
Vaso	Gate to Source Voltage	V	-6.0
laf	Gate Current	mA	4.0
los	Drain Current	mW	150
Тсн	Channel Temperature	°C	175
Тята	Storage Temperature NE72084 NE72089A	°°°	-65 to + 125 -65 to + 175

ABSOLUTE MAXIMUM RATINGS (TA = 25°C)


OUTLINE DIMENSIONS (Units in mm)

NE720 SERIES

PART NUMBER EIAJ ¹ REGISTERED NUMBER PACKAGE OUTLINE				NE72000 00 (CHIP)			NE72084 2SK571 84			NE72089A 2SK354A 89A		
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	TYP	MAX	MIN	ТҮР	мах	MIN	ТҮР	МАХ	
loss	Drain Current at VDs = 3 V, VGs = 0 V	mA	30	60	150	30	60	150	30	60	150	
VP	Pinch-off Voltage at VDs = 3 V, IDs = 0.1 mA	V	-0.8	-2.0	-4.0	-0.8	-2.0	-4.0	-0.8	-2.0	-4.0	
gм	Transconductance at Vos = 3 V, Ios = 10 mA	mS	20	40	60	20	40	60	20	40	60	
laso	Gate to Source Leakage Current at Vos = -5 V	μA		1.0	10			10		1.0	10	
Rтн	Thermal Resistance (Channel-to-Ambient)	°C/W			170 ²			400			400	
Рт	Total Power Dissipation	mW			500			300			300	

Notes:

1. Electronic Industrial Association of Japan.

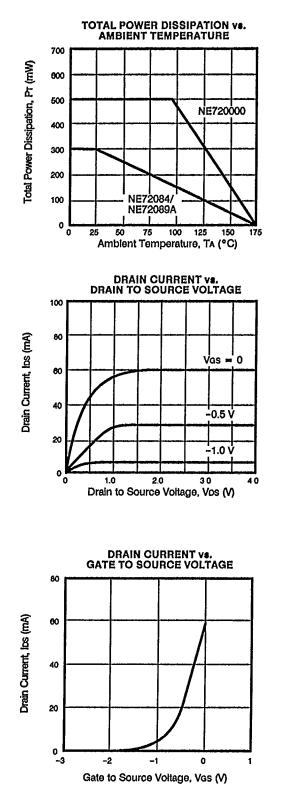
2. RTH (Channel-to-Case) for chips mounted on a copper heatsink.

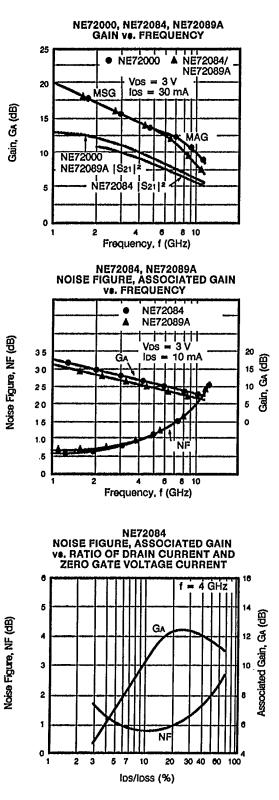
PERFORMANCE SPECIFICATIONS (TA = 25°C)

PART NUMBER EIAJ ¹ REGISTERED NUMBER PACKAGE OUTLINE				NE72000 00 (CHIP)			NE72084 2SK571 84			NE72089A 2SK354A 89A		
SYMBOLS	PARAMETERS AND CONDITIONS	UNITS	MIN	ТҮР	МАХ	MIN	ТҮР	мах	MIN	ТҮР	MAX	
fмах	Maximum Frequency of Oscillation at $V_{DS} = 3 V$, $I_{DS} = 30 mA$	GHz		60			60			60		
MAG	Maximum Available Gain ² at Vos = 3 V, los = 30 mA (Typ. los = 50% loss) f = 2 GHz f = 4 GHz f = 8 GHz f = 12 GHz	dB dB dB dB		16.5 11.5			17.5 15.0 12.0 8.0			16.0 11.0		
NFOPT	Optimum Noise Figure ³ at V _{DS} = 3 V, los = 10 mA (Typ. $los = 15% loss$) f = 2 GHz f = 4 GHz f = 8 GHz	dB dB dB		1.0 1.7	1.44		0.6 0.8 2.0	1.4		1.0 1.7	1.4	
GA	Associated Gain at NF at VDs = 3 V, Ds = 10 mA (Typ. $Ds = 15% JDss$) f = 2 GHz f = 4 GHz f = 8 GHz	dB dB dB		11.0 9.0			15.0 12.0 8.5			11.0 8.5		
Ріав	Output Power at 1 dB Compression Point at Vos = 4 V, los = 30 mA (Typ. los = 50% loss) $f = 4$ GHz	dBm		15.0			15.0			15.0		

Notes:

1. Electronic Industrial Association of Japan.

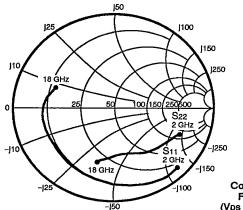

2. Gain Calculations: MAG =
$$\frac{|S_{21}|}{|S_{12}|}$$
 (K± $\sqrt{K^2 - 1}$), K = $\frac{1 + |\Delta|^2 - |S_{11}|^2 - |S_{22}|^2}{2|S_{12}||S_{21}|}$, Δ = S11 S22 - S21 S12

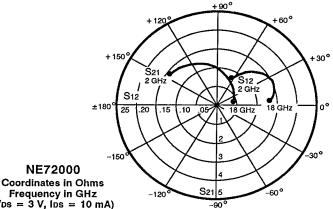

3. Typical values of noise figures are those obtained when 50% of the devices from a large number of lots were individually measured in a circuit with the input individually tuned to obtain the minimum value. Maximum values are criteria established on the production line as a "go-no-go" screening tuned for the "generic" type but not for each specimen.

4. RF performance is determined by packaging and testing 10 samples per wafer; wafer rejection criteria for standard devices is 2 rejects for 10 samples.

NE720 SERIES

TYPICAL PERFORMANCE CHARACTERISTICS (TA = 25°C)

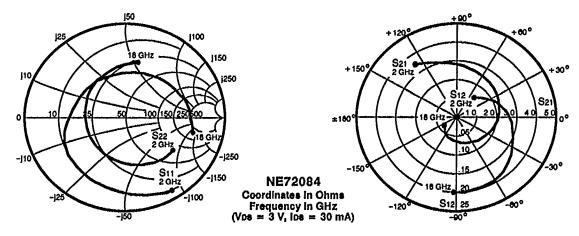



NE720 SERIES

- N E C/ CALIFORNIA

56E D 🔳 6427414 0002293 OT6 페 NECC

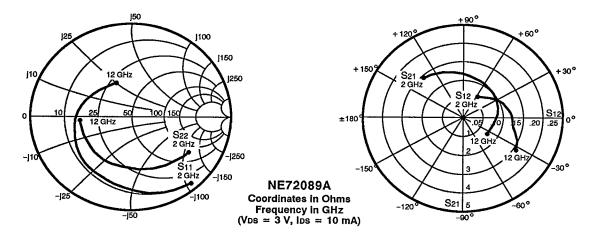
TYPICAL COMMON SOURCE SCATTERING PARAMETERS



Frequency in GHz (VDs = 3 V, IDs = 10 mA)

S-MAGN AND ANGLES: VDS = 3 V, IDS = 10 mA

FREQUENCY (MHz)		S11	5	S21	S	12	(S22
2000	.91	-44	2.95	144	.08	64	.71	-22
3000	.90	-63	2.81	132	.11	53	.68	-27
4000	.83	-81	2.47	113	.12	44	.62	-35
5000	.78	-96	2.27	105	.14	36	.58	-43
6000	.75	-108	2.08	97	.15	32	.56	-52
7000	.70	-119	1.83	87	.15	26	.55	-58
8000	.67	-130	1.65	79	.15	19	.55	-63
9000	.66	-140	1.49	72	.15	18	.56	-65
10000	.64	-152	1.37	64	.15	15	.56	-67
11000	.64	-158	1.24	59	.14	14	.54	-66
12000	.67	~165	1.18	54	.14	13	.54	-67
13000	.69	-168	1.11	49	.14	11	.51	-74
14000	.69	-175	1.11	44	.14	12	.54	-80
15000	.65	-178	.98	38	.13	9	.55	-86
16000	.66	174	1.02	33	.14	9	.53	-90
17000	.63	164	.96	26	.13	8	.56	-95
18000	.64	160	.86	21	.13	9	.50	-97
VDS = 3 V, IDS = 30 mA					· · · · · · · · · · · · · · · · · · ·			·····
2000	.90	-49	3.61	143	.07	62	.65	-24
3000	.89	-70	3,39	130	.10	52	.61	-28
4000	.83	-88	2.91	117	.11	44	.55	-36
5000	.78	-103	2.63	104	.12	36	.51	-44
6000	.75	-116	2.37	97	.13	33	.49	-53
7000	.70	-126	2.08	87	.13	27	.49	-59
8000	.68	-137	1.87	79	.13	22	.49	-64
9000	.67	-148	1.67	73	.13	21	.51	-67
10000	.65	-158	1.53	65	.12	19	.51	-68
11000	.65	-164	1.37	60	.12	18	.49	-67
12000	.70	-171	1.32	55	.12	18	.47	-68
13000	.72	-174	1.23	51	.12	17	.47	-75
14000	.74	-180	1.22	46	.13	20	.49	-81
15000	.67	177	1.09	40	.12	17	.50	-87
16000	.69	169	1.12	36	.12	18	.50	-90
17000	.66	158	1.05	28	.13	18	.52	-96
18000	.67	156	.94	24	.12	20	.56	-98


TYPICAL COMMON SOURCE SCATTERING PARAMETERS

S-MAGN AND ANGLES: VDS = 3 V, IDS = 10 mA FREQUENCY (MHz)		S11		 S21				 S22	<u>,</u>
2000 4000 6000 10000 12000 14000 16000 18000	.92 .79 .68 .53 .47 .48 .52 .61 .66	-54 -102 -141 -177 136 89 49 14 -5	2.91 2.47 2.19 1.82 1.68 1.45 1.22 1.03 .81	130 85 49 -17 -51 -82 -115 -138	.08 .13 .15 .15 .16 .16 .17 .18 .18	53 23 - 16 - 30 - 45 - 62 - 82 - 98	.69 .54 .47 .43 .45 .49 .58 .64	-37 -70 -100 -126 -159 164 131 98 77	
VDS = 3 V, IDS = 30 mA 2000 4000 6000 8000 10000 12000 14000 16000 18000	.91 .76 .65 .52 .49 .52 .57 .65 .70	-59 -110 -151 171 124 79 41 9 -10	3.53 2.87 2.45 2.02 1.82 1.55 1.30 1.08 .86	127 83 46 14 -18 -50 -82 -114 -136	.07 .10 .12 .13 .15 .17 .19 .20 .20	54 26 8 4 16 51 51 74 91	.60 .52 .46 .42 .38 .41 .46 .56 .62	-37 -69 -97 -122 -155 166 132 98 77	

ĩ

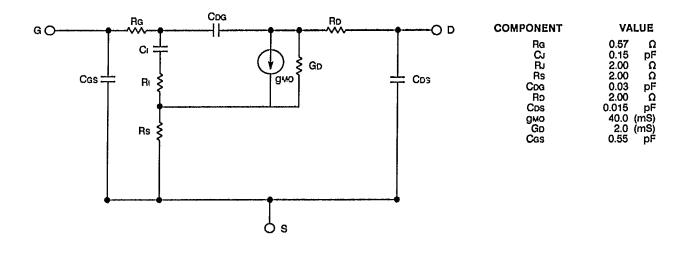
TYPICAL COMMON SOURCE SCATTERING PARAMETERS

FREQUENCY (MHz)		S11	5	S21	5	S12		S22
2000	.92	-52	2.94	130	.07	54	.68	-35
3000	.84	-75	2.62	108	.09	38	.63	-51
4000	.76	-95	2.34	90	.11	26 16	.59	-66
5000	.71	-113	2.18	72	.12	16	.58	-79
6000	.65	-131	2.02	56	.13	7	.56	-93
7000	.59	-146	1.86	41	.13	-1	.54	-105
8000	.55	-160	1.76	26	.13	-7	.54	-116
9000	.49	-177	1.68	13	.13	-12	.53	-129
10000	.44	165	1.66	-1	.14	-17	.53	-139
11000	.39	140	1.63	-19	.15	-26	.52	-154
12000	.37	112	1.55	-34	.16	-33	.51	-170
DS = 3 V, IDS = 30 mA								
2000	.89	-58	3.76	127	.06	55	.60	~35
3000	.79	-82	3.27	105	.08	40	.56	-50
4000	.72	-103	2,88	86	.09	31	.53	-64
5000	.66	-121	2.61	69	.10	22	.51	-75
6000	.60	-139	2.38	54	.11	16	.50	-86
7000	.65	-155	2.18	38	.11	10	.50	-97
8000	.50	-170	2.04	24	.12	6	.50	-108
9000	.44	172	1.93	11	.12	2	.49	-118
10000	.40	152	1.89	-3	.14	2 -2	.50	-126
11000	.36	126	1.83	-20	.15	-11	.49	-138
12000	.35	99	1.72	-36	.16	-18	.48	-151

N E C/ CALIFORNIA NE720 SERIES

NE72084 TYPICAL NOISE PARAMETERS

FREQ.	NFOPT	GA	Г	OPT	Dm/50
(GHz)	(dB)	(dB)	(MAG)	(ANG)	Rn/50
1.0	0.55	17.5	0.90	15	0.52
2.0	0.60	14.5	0.81	38	0.49
4.0	1.00	11.5	0.74	59	0.39
6.0	1.30	9.5	0.66	102	0.30
8.0	1.70	8.5	0.49	130	0.24
10.0	2.15	7.5	0.32	172	0.18
12.0	2.50	6.5	0.26	-115	0.16
14.0	2.95	5.5	0.30	-54	0.13
16.0	3.30	4.7	0.26	-4	0.11
18.0	3.70	4.0	0.26	13	0.09


NE72089A TYPICAL NOISE PARAMETERS

FREQ.	NFOPT	G۸	Γ	ОРТ	Rn/50
(GHz)	(dB)	(dB)	(MAG)	(ANG)	ni/30
1.0	0.60	17.5	0.76	13	0.68
2.0	0.75	14.5	0.73	36	0.58
4.0	1.00	11.5	0.65	68	0.42
6.0	1.30	9.0	0.53	100	0.28
8.0	1.70	8.5	0.42	138	0.19
10.0	2.05	7.0	0.31	175	0.15
12.0	2.50	6.5	0.25	-117	0.25

 $(V_{DS} = 3 V, I_{DS} = 10 mA)$

(VDS = 3 V, IDS = 10 mA)

NE72000 EQUIVALENT CIRCUIT

