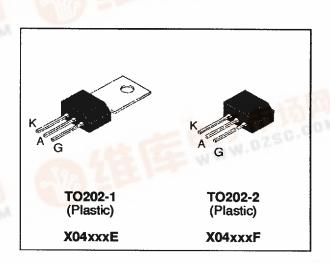


X04xxxE/F


SENSITIVE GATE SCR

FEATURES

- IT(RMS) = 4A
- V_{DRM} = 200V to 800V
- Low IGT < 200µA

DESCRIPTION

The X04xxxE/F series of SCRs uses a high performance TOP GLASS PNPN technology. These parts are intended for general purpose applications where low gate sensitivity is required.

ABSOLUTE RATINGS (limiting values)

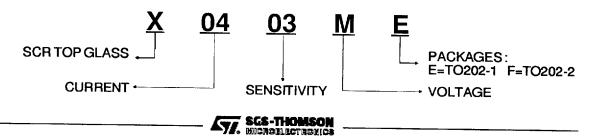
Symbol	Parameter			Value	Unit	
IT(RMS)	RMS on-state current	X04xxxE/F	Tc= 90°C	4	Α	
	(180° conduction angle) X04xx	X04xxxF	Ta= 25°C	1.35		
ÍT(AV)	Mean on-state current	X04xxxE/F	Tc= 90°C	2.5	Α	
	(180° conduction angle) X04xxxF		Ta= 25°C	0.9	7	
I _{TSM}	Non repetitive surge peak on-state current		tp = 8.3 ms	33	Α	
19, 1	(T _j initial = 25°C)	tp = 10 ms	30	7		
l ² t	l ² t Value for fusing	tp = 10 ms	4.5	A ² s		
dI/dt	Critical rate of rise of on-state current Ig = 10 mA dig/dt = 0.1 A/µs.			50	A/μs	
T _{stg} Tj	Storage and operating junction temperature range			- 40, +150 - 40, +125	°C	
TI	Maximum lead temperature for soldering during 10s at 4.5mm from case			260	°C	

Symbol	Parameter		Voltage			
		В	D	М	N	Unit
V _{DRM} V _{RRM}	Repetitive peak off-state voltage $T_j = 125^{\circ}C$ $R_{GK} = 1K\Omega$	200	400	600	800	V

X04xxxE/F

THERMAL RESISTANCES

Symbol	Parameter	Value	Unit	
Rth(j-a)	Junction to ambient	X04xxxE	80	•c/w
		X04xxxF	100	
Rth(j-c)	Junction to case for DC		7.5	°C/W


GATE CHARACTERISTICS (maximum values)

 $P_{G (AV)} = 0.2 \text{ W}$ $P_{GM} = 3 \text{ W (tp = 20 } \mu\text{s)}$ $I_{GM} = 1.2 \text{ A (tp = 20 } \mu\text{s)}$

ELECTRICAL CHARACTERISTICS

Symbol	Test Condition	Sensitivity			T		
					03	05	Unit
lat	V _D =12V (DC) R _L =140Ω	Tj= 25°C	MIN		20	20	μА
			MAX	200	200	50	1
V _{GT}	$V_D=12V$ (DC) $R_L=140\Omega$	Tj= 25°C	MAX	0.8			V
V _{GD}	$V_{D}=V_{DRM}$ $R_{L}=3.3k\Omega$ $R_{GK}=1$ $K\Omega$	Tj= 125°C	MIN	0.1			٧
VRGM	Ing =10µA	Tj= 25°C	MIN	8			V
tgd	V _D =V _{DRM} I _{TM} = 3 x I _{T(AV)} dI _G /dt = 0.1 A/μs I _G = 10mA	Tj= 25°C	MAX	2			μs
l _H	I_T = 50mA P_{GK} = 1 $KΩ$	Tj= 25°C	MAX	5		mA	
l _L	$I_{G}=1$ mA $P_{GK}=1$ K Ω	Tj= 25°C	MAX	6			mA
V _{TM}	Iтм= 8A tp= 380µs	Tj= 25°C	MAX	1.8			V
IDRM	VD = VDRM RGK = 1 KΩ	Tj= 25°C	MAX	5		μА	
İRRM	$V_R = V_{RRM}$	Tj= 110°C	MAX	200		, 	
dV/dt	$V_D=67\%V_{DRM}$ R _{GK} = 1 K Ω	Tj= 110°C	°C MIN 10		10	V/µs	
			TYP	15	20	15	
tq	I _{TM} = 3 x I _{T(AV)} V _R =35V dI/dt=10Aμs tp=100μs dV/dt=2V/μs V _D = 67%V _{DRM} R _{GK} = 1 KΩ	Tj= 110°C	MAX	50			μs

ORDERING INFORMATION

2/6

■ 7929237 0077132 796 ■

Fig.1: Maximum average power dissipation versus average on-state current (TO202-1).

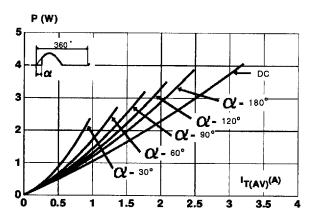
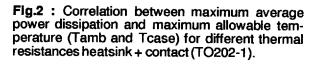
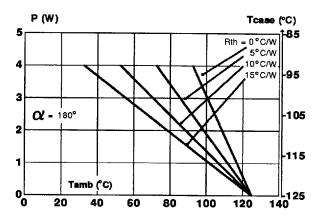
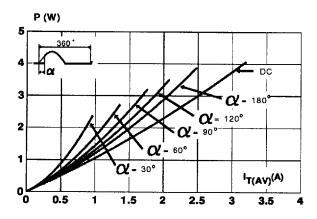
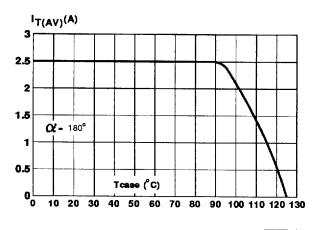





Fig.3: Maximum average power dissipation versus average on-state current (TO202-2).



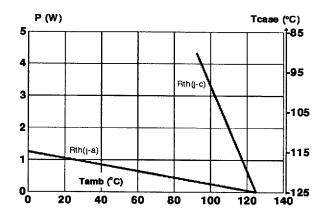


Fig.4: Correlation between maximum average power dissipation and maximum allowable temperature (Tamb and Tcase) (TO202-2).

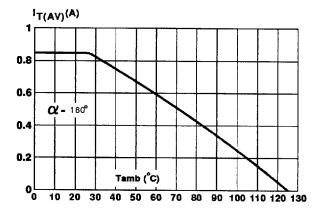


Fig.5: Average on-state current versus case temperature (TO202-1).

Fig.6: Average on-state current versus case temperature (TO202-2).

Fig.7: Relative variation of thermal impedance versus pulse duration (TO202-1).

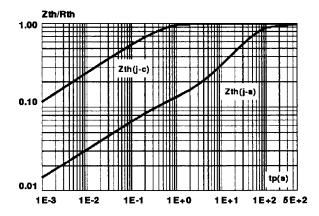


Fig.9: Relative variation of gate trigger current and holding current versus junction temperature.

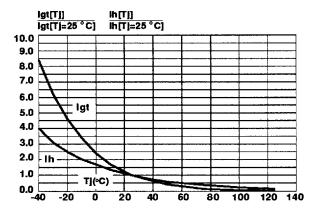
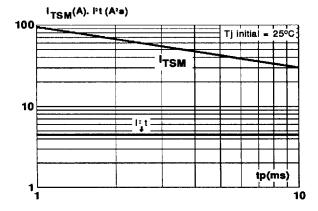
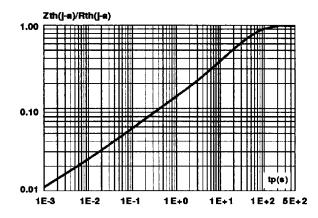




Fig.11: Non repetitive surge peak on-state current for a sinusoidal pulse with width: $tp \le 10ms$, and corresponding value of l^2t .

Fig.8: Relative variation of thermal impedance junction to ambient versus pulse duration (TO202-2).

Fig.10: Non repetitive surge peak on-state current versus number of cycles.

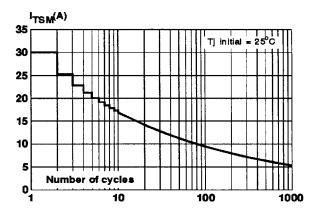
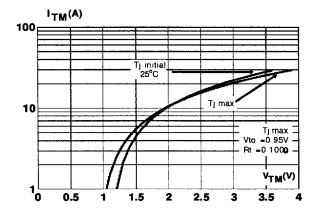
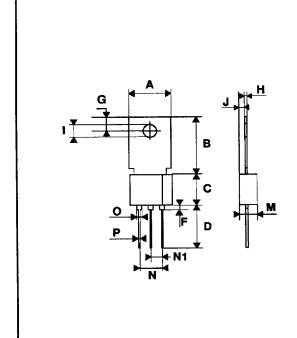
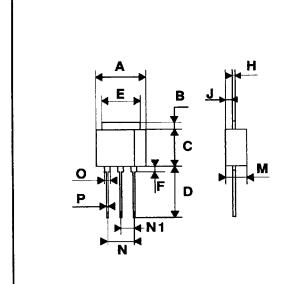




Fig.12: On-state characteristics (maximum values).


PACKAGE MECHANICAL DATA TO202-1 (Plastic)

	DIMENSIONS							
REF.	Millimeters			Inches				
	Тур.	Min.	Max.	Тур.	Min.	Max.		
Α			10.1			0.398		
В	13.7			0.540				
С	7.3			0.287				
D	10.5			0.413				
F			1.5			0.059		
G	3.2			0.126				
Н	0.51			0.020				
ı		3.16	3.20		0.124	0.126		
J	1.5			0.059				
М	4.5			0.177				
N			5.3			0.209		
N1	2.54			0.100				
0			1.4			0.055		
Р			0.7			0.028		

Marking: type number Weight: 1.4 g

PACKAGE MECHANICAL DATA TO202-2 (Plastic)

	DIMENSIONS						
REF.	Millimeters			Inches			
	Тур.	Min.	Max.	Тур.	Min.	Max.	
Α			10.1			0.398	
В	1.2			0.047			
С	7.3			0.287			
D	10.5			0.413			
Е	7.4			0.290			
F			1.5			0.059	
Н	0.51			0.020			
J	1.5			0.059			
М	4.5			0.177			
N			5.3			0.209	
N1	2.54			0.100			
0			1.4			0.055	
P			0.7			0.028	

Marking: type number Weight: 1.0 g

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to charge without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1995 SGS-THOMSON Microelectronics - All rights reserved.

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

6/6

SGS-THOMSON MICHAELLETRONICS