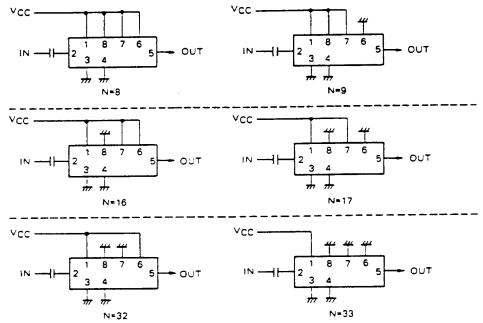

- 3003 1 12 1991 查询UPB555C供应商

捷多邦,专业PCB打样工厂,24小时加急出货

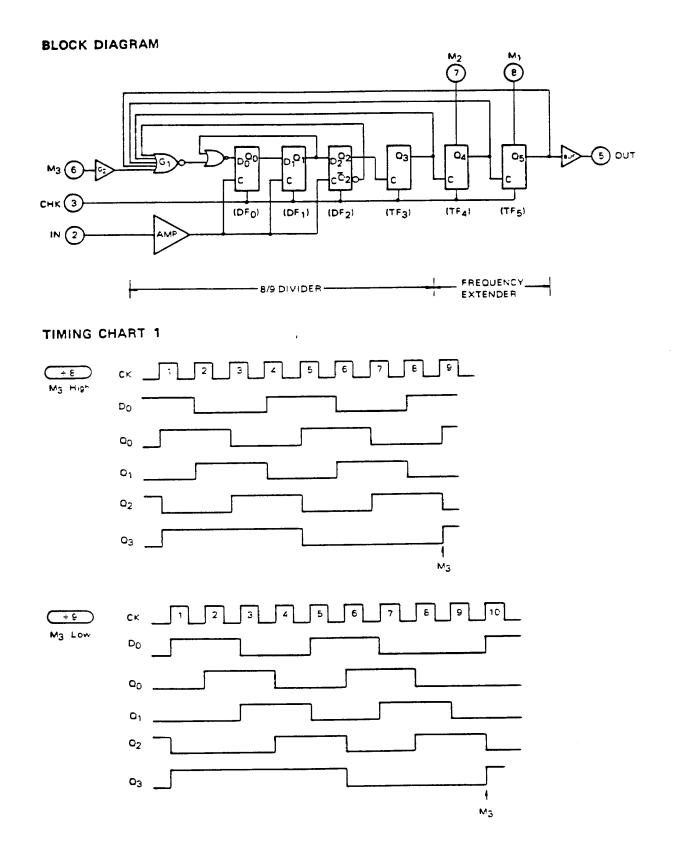
DUAL MODULUS PRESCALER

UPB555C

WWW.DZSC.C

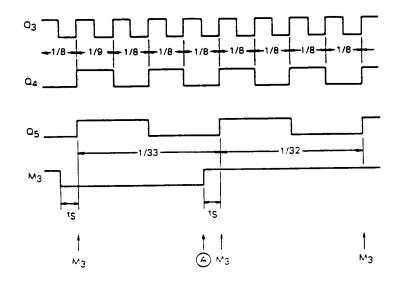

California Eastern Laboratories

DIVISION RATIO CONTROL


M1	M ₂	M ₃	DIVISION RATIO
Vcc	Vcc	High	÷ 8
Vcc	Vcc	Low	÷ 9
GND	Vcc	High	÷16
GND	Vcc	Low	÷17
GND	GND	High	÷32
GND	GND	Low	÷33

)

APPLICATION



M₃ { Low : Less than 0.2 V_{CC} High : More than 0.8 V_{CC}

TIMING CHART 2

Frequency Extender (M₁=M₂=GND)

When both O_4 and O_5 are low level, the M_3 pin is active. If the M_3 pin is low at \bigcirc point, the division ratio is 1/9, otherwise the division ratio is 1/8. So 1/33 division ratio means N = 9 x 1 + 8 x 3.

When the M_1 pin is V_{CC} level, the TF₅ is through mode ($O_{.4} = O_5$). The two-modulus division ratio are 1/16 and 1/17. When both the M_1 , M_2 pins are V_{CC} level, both TF₄, TF₅ are through mode. The two-modulus division ratio are 1/8 and 1/9.

COUNT	Do	00	01	02	Q3]
1	1 1	0	0	0	1] 1
2	1	1	0	0	1	
3	0	1	1	0	1	
4	0	0	1	1	1	M3="1" (
5	1	0	0	1	1].
6	1	1	0	0	0	
7	0	1	1	0	0	
8	0	0	1	1	0	
9	0 (1)*	0	0	1	0	┠┥

* division ratio is 1/8

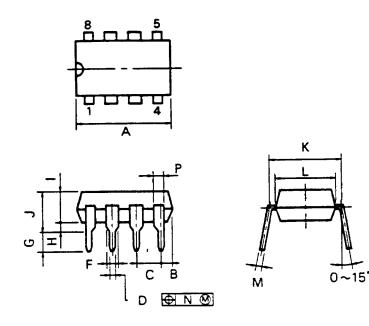
M1=M2=VCC (both TF4, TF5 are through mode)

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	Vcc	-0.5 to +6.0	v
input Voltage	Vi	-0.5 to Vcc	v
Output Current	ło	-10	mA
Storage Temperature	Tstg	-55 to +125	°C

RECOMMENDED OPERATING CONDITIONS

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONTION
Supply Voltage	Vcc	4.5	5.0	5.5	v	
Output Load Capacitance	CL			10	₽F	OUT Pin
Ambient Temperature	Т.	-35		+75	°C	
Input Rise Time	tr			100	ns	M3 Pin (20 to 8
Input Fall Time	Lf			100	ns	Mg Pin (20 to E


ELECTRIC CHARACTERISTICS (V_{CC} = 5 V ± 10 %, T_a = -35 to +75 °C)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	TEST CONDITION
Operating Frequency	fin	1		150	MHz	IN Pin, $V_{in} \ge 150 \text{ mVp,p}$ sine wave
Input Voltage	Vin	150		2000	mVp.p	IN Pin
High Level Input Voltage	VIH	0.8 VCC			V	M3 Pin
Low Level Input Voltage	VIL			0.2 VCC	v	M3 Pin
Output Voltage	V _o	0.9	1.2		VP.P	OUT Pin
Supply Current	4cc		7.0	11	mA	Vcc Pin
Set Up Time	L,	1		30	ns	
Output Rise Time	ı,	5		20	ns	OUT Pin, CL=10 pF (20 to 80 %)

Note: $-M_1,\,M_2$ and CHK input terminals should be connected to either GND or $V_{CC}.$

PACKAGE DIMENSION

8 PIN PLASTIC DIP (300 mil)

NOTES

- Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition.
- item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
A	10.16 MAX.	0.400 MAX.
B	1.27 MAX.	0.050 MAX.
с	2.54 (T.P.)	0.100 (T.P.)
D	0.50 ** 10	0.020 -8 88
F	1.4 MIN.	0.055 MIN.
G	2.9****	0.114
н	0.51 MIN.	0.020 MIN.
1	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
ĸ	7.62 (T.P.)	0.300 (T.P.)
L	64	0.252
м	0.25 -8 %	0.010 -8 885
N	0.25	0.01
Р	0 9 MIN	0.035 MIN

PEC-100-300A

EXCLUSIVE AGENT FOR NEC Corporation RF & MICROWAVE SEMICONDUCTOR PRODUCTS - U.S. & CANADA CALIFORNIA EASTERN LABORATORIES, INC. . Headquarters . 3260 Jay Street . Santa Clara, CA 96054 . (408) 968-3600 . Telex 34-8393/FAX 408-988-0279