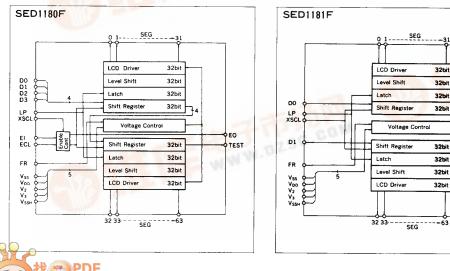


CMOS DOT MATRIX HIGH DUTY LCD DRIVER

DESCRIPTION

The SED1180F and SED1181F are LCD Segment drivers which are used in conjunction with the SED1190F and SED1191F (LCD common drivers).


They can drive a large dot-matrix LCD display with a duty ratio of 1/64 or higher.

FEATURES

- 64-bit high voltage resistant output, LCD driver (Segment driver)
- Rightward shift suitable for a 1/64-duty panel
- Allows cascade-connection. Dasy-chain connection of enable pins can be used to minimize power consumption. (SED1180F only)

- SED1180F4-bit bus data transfer
- SED1181FIndependent serial data input for each 32 segment
- Package
 Operation Package
 Operation
 Soperation
 Soperation

BLOCK DIAGRAM

D00

0001

PIN DESCRIPTION

SED1180F

Pin Name	Functions
SEG0 to 63	Outputs to Segment pins of LCD Output level changes at each latch pulse LP falling-edge.
XSCL	Shift clock for displayed data Falling-edge trigger
LP	Latch pulse for displayed data Falling-edge trigger
FR	LCD display frame signal
EI	Enable input ; enabled on "H", disabled on "L"
ECL	A clock pulse for propagation of enable signals Falling-edge trigger
EO	Enable output In cascade connection, EO of nth driver is connected to EI of (n + 1)-th driver.
D0 to D3	4-bit display data input
TEST	Outputs shifted data input from D3
Vdd, Vss	Power supply for the logic, V _{DD} : 0V (GND), V _{SS} : -5.0V
V2, V3, VSSH	Power supply for driving LCD, V _{DD} >V ₂ >V ₃ >V _{SSH}

SED1181F

Pin Name	Functions						
SEG0 to 63	Outputs to Segment pins of LCD Output level changes at each latch pulse LP falling-edge						
XSCL	Shift clock for displayed data Falling-edge trigger						
LP	Latch pulse for displayed data Falling-edge trigger						
FR	LCD display frame signal						
DO0	Outputs serial display data input from D0.						
D01	Outputs serial display data input from D1.						
D0, D1	Input 2-bit serial display data (Data read at a XSCL falling-edge)						
V _{DD} , V _{SS}	Power supply for the logic, V _{DD} : 0V (GND), V _{SS} : -5.0V						
V2, V3, VSSH	Power supply for driving LCD, V _{DD} >V ₂ >V ₃ >V _{SSH}						

Note :

D : serial display data corresponds to SEG0 to SEG31. D1 : serial display data corresponds to SEG32 to SEG63.

PIN CONFIGURATION

00000		99990
€ 1 0	SED1180F	35
	SED1181F	
	Index 10 15 2 赤永永永永永大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大	
aaaaa	ann an	n i i i

1.... SED1180F

No.	NAME	No.	NAME	No.	NAME	No.	NAME
1	SEG27	21	SEG 7	41	SEG36	61	SEG56
2	SEG26	22	SEG 6	42	SEG37	62	SEG57
3	SEG25	23	SEG 5	43	SEG38	63	SEG58
4	SEG24	24	SEG 4	44	SEG39	64	SEG59
5	SEG23	25	SEG 3	45	SEG40	65	SEG60
6	SEG22	26	SEG 2	46	SEG41	66	SEG61
7	SEG21	27	SEG 1	47	SEG42	67	SEG62
8	SEG20	28	SEG 0	48	SEG43	68	SEG63
9	SEG19	29	EO	49	SEG44	69	VSSH
10	SEG18	30	D3	50	SEG45	70	V ₂
11	SEG17	31	D2	51	SEG46	71	V3
12	SEG16	32	D1	52	SEG47	72	Vss
13	SEG15	33	D0	53	SEG48	73	VDD
14	SEG14	34	XSCL	54	SEG49	74	TEST
15	SEG13	35	LP	55	SEG50	75	El
16	SEG12	36	FR	56	SEG51	76	ECL
17	SEG11	37	SEG32	57	SEG52	77	SEG31
18	SEG10	38	SEG33	58	SEG53	78	SEG30
19	SEG 9	39	SEG34	59	SEG54	79	SEG29
20	SEG 8	40	SEG35	60	SEG55	80	SEG28

SED1181F

No.	NAME	No.	NAME	No.	NAME	No.	NAME
1	SEG27	21	SEG 7	41	SEG36	61	SEG56
2	SEG26	22	SEG 6	42	SEG37	62	SEG57
3	SEG25	23	SEG 5	43	SEG38	63	SEG58
4	SEG24	24	SEG 4	44	SEG39	64	SEG59
5	SEG23	25	SEG 3	45	SEG40	65	SEG60
6	SEG22	26	SEG 2	46	SEG41	66	SEG61
7	SEG21	27	SEG 1	47	SEG42	67	SEG62
8	SEG20	28	SEG 0	48	SEG43	68	SEG63
9	SEG19	29	D00	49	SEG44	69	VSSH
10	SEG18	30	NC	50	SEG45	70	V ₂
11	SEG17	31	NC	51	SEG46	71	V ₃
12	SEG16	32	D1	52	SEG47	72	Vss
13	SEG15	33	D0	53	SEG48	73	VDD
14	SEG14	34	XSCL	54	SEG49	74	D01
15	SEG13	35	LP	55	SEG50	75	NC
16	SEG12	36	FR	56	SEG51	76	NC
17	SEG11	37	SEG32	57	SEG52	77	SEG31
18	SEG10	38	SEG33	58	SEG53	78	SEG30
19	SEG 9	39	SEG34	59	SEG54	79	SEG29
20	SEG 8	40	SEG35	60	SEG55	80	SEG28

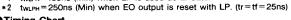
MABSOLUTE MAXIMUM RATINGS

```
(V_{DD} = \mathbf{0}V)
```

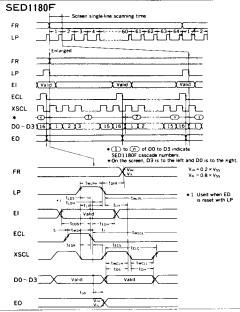
			(*00-)	
Parameter	Symbol	Ratings	Unit	
Supply voltage (1)	V _{SS}	-7.0 to 0.3	v	
Supply voltage (2)	V _{SSH}		v	
Supply Voltage (2)	V ₂ , V ₃	-28.0 to 0.3		
Input voltage	VI	V _{SS} -0.3 to 0.3	V	
Operating temperature	T _{opr}	-20 to 75	Ĵ,	
Storage temperature	T _{stg}	-65 to 150	Ĵ	
Soldering temperature and time	T _{sol}	260°C • 10s (at lead)		

BELECTRICAL CHARACTERISTICS

•DC Electrical Characteristics

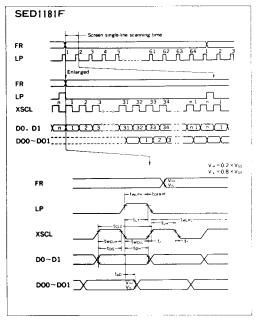

Parameter	Symbol	Con	ditions	Min	Тур	Max	Unit
Supply voltage (1)	Vss			-5.5	-5.0	-4.5	v
	V ₂			V _{SSH}		V _{DD}	v
Supply voltage (2)	V ₃	-		V _{SSH}		V _{DD}	V
	V.	Recomm	ended V _{SSH}	-25.0		-14.0	v
	V _{SSH}	Operab	Operable V _{SSH} *			-5.0	v
High level input voltage	VIH			0.2V _{SS}		V _{DD} +0.3	v
Low level input voltage	VIL			V _{SS} -0.3		0.8V _{SS}	v
High level output voltage	V _{OH}	I _{ОН} =	-0.6mA	-0.4			V
Low level output voltage	VOL	I _{OL} =	0.6mA	—		V _{SS} +0.4	v
Input leak current	I _{LI}	0v≤	V₁≦V _{SS}	_	0.05	2.0	μA
Output leak current	ILO	0v≤v	V₀≦V _{SS}	_	0.05	5.0	μA
Shift clock	XSCL			_		6.0	MHz
Frame signal	FR			_	1/60	_	s
Input capacitance	Cı	Ta = 25°C		_	5.0	8.0	pF
	R _{SEG}	V V 0.6V	$V_{\rm SSH} = -20.0V$ $V_{\rm SSH} = -14.0V$	_	1.9	2.9	kΩ
Segment output		$V_{\alpha} = V_{\alpha\alpha} + 0.5V$	$V_{SSH} = -14.0V$	_	2.4	3.9	
on resistance			$V_{\rm SSH} = - 9.0V$	_	3.6	7.0	
		SEG / DIL	$V_{SSH} = -5.0V$		11.5	500.0	
Quiescent current	l _Q	$V_{SSH} = -25V$ $V_1 = V_{DD}$	$V_{\rm ss} = -5.5V$	_	0.05	30	μA
Operating current		SED 16.7ms 1180 ECL cycle =	LP cycle = 130µs XSCL = 1.5MHz	_	90	200	
for the logic	1550		(duty50%) All data input reversed bit by bit. All output pins are opened.	-	850	1200	μA
Operating current for LCD	ing current Issно SE	FR cycle =	$V_{SS} = -4.5V, V_2 = -4.0V$ $V_1 = -16.0V, V_{SSH} = -20.0V$ $V_{1H} = V_{DD}, V_{1L} = V_{SS}$ LP cycle = $130 \mu s$	_	40	80	
		SED FR cycle = 1181 (duty50%)	XSCL = 1.5MHz (duty50%) All data input reversed bit by bit. All output pins are opened.		70	100	μA

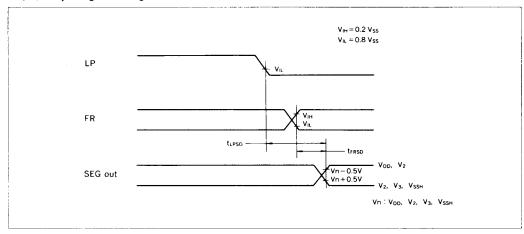
* Operable VssH indicates its functionally operable range although the driver output ON resistance becomes higher than with recommended V_{SSH}.


To determine the voltage, we recommend to test the driver with a liquid crystal panel.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
hift clock cycle	t _{CLC}		166			ns
Shift clock "H" width	twclh		63	_		ns
Shift clock "L" width	twcll		63			ns
Data setup time	t _{DS}		50	—	—	ns
Data hold time	t _{DH}		30			ns
Enable clock "H" width	twech	* 3	100			ns
Enable clock "L" width	twecl	* 3	100			ns
Enable data setup time	t _{EDS}	* 3	50		-	ns
Enable data hold time	tedh	* 3	20			ns
Enable clock delay time	t _{EDR}	* 3	- 10			ns
Enable clock setup time	t _{ECS}	*3	70			ns
Latch pulse "H" width	twlph	*1	110	-		ns
Latch pulse "L" width	twlpl		220			ns
Latch timing	t _{LT}		100	_		ns
Latch hold time	t _{LH}		0			ns
Latch pulse data setup time	t _{LDS}	*2, *3	140	-		ns
Latch pulse data hold time	t _{LDH}	*2, *3	50	—	-	ns
Permissible frame signal delay	t _{DFR}		- 500	_	500	ns
Input signal rise time	tr				*4	
Input signal fall time	ti			_	*4	
Enable output delay	t _{PD}	* 3	20	_	150	ns
Serial data output delay	t _{PO}		20	_	150	ns

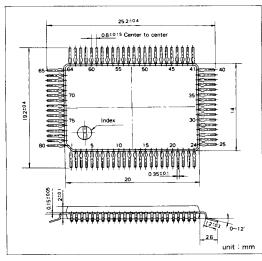
*1 twLPH=160ns (Min) when LP is used as EI data.





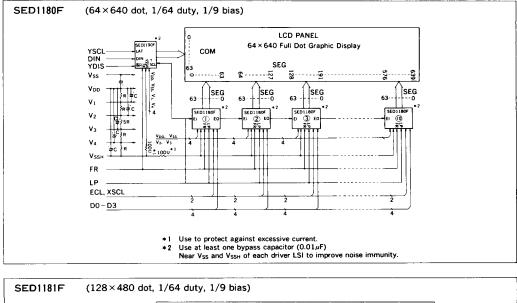
*3 Applicable to SED1180F only.

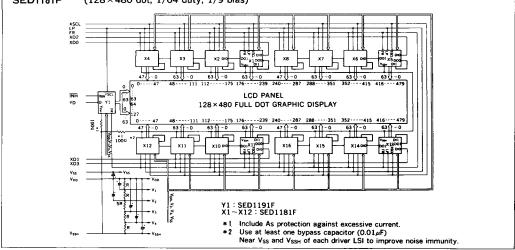
*4 tr, tf <(tc_c - twc_l - twc_l)/2, where tr, tf \leq 50ns.



•SEG Output Signal Timing Characteristics

$(V_{DD} = 0V, V_{SS} = -5V \pm 10\%, Ta = -20 \text{ to } 75^{\circ}\text{C})$


Parameter	Symbol	Conditions	Min	Тур	Max	Unit
LP-SEG output delay time	t _{LPSD}	$V_{SSH} = -14.0$ to $-25.0V$			4.5	μs
FR-SEG output delay time	t _{FRSD}	$C_L = 100 pF$			4.5	μs



PACKAGE DIMENSIONS

*Drawing is applicable to SED1180F_{0A}/SED1181F_{0B}. *SED1180F_{5A}/SED1181F_{5A} are 2.7mm thick.

EXAMPLE OF APPLICATION

