2-INPUT SINGLE VIDEO SWITCH

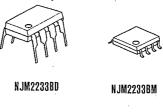
GENERAL DESCRIPTION .

The NJM2233B is 2-input signal video switch selecting one of two video or audio signals. Its operating voltage is 4.75 to 13V and bandwidth is 10MHz. Crosstalk is 70dB (at 4.43MHz). It is applied to both NTSC and PAL VTR.

(+4.75V~+13V)

DIP8, DMP8, SIP8, SSOP8

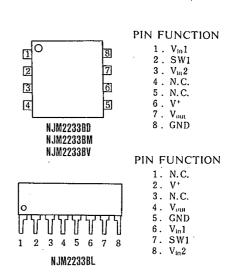
FEATURES

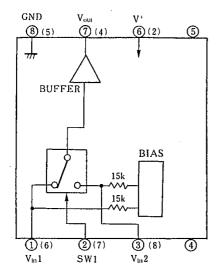

- Operating Voltage
- 2 Input-1 Output
- Crosstalk 70dB (at 4.43MHz)
- Package Outline
- **Bipolar Technology** •

APPLICATION

5-94

VCR Video Camera AV-TV Video Disc Player Audio




NJM2233BL

PIN CONFIGURATION

NJM2233BV

BLOCK DIAGRAM

○ DIP-8, DMP-8(4, 5pin NC) () SIP-8 (1, 3pin NC)

-New Japan Radio Co.,Ltd.

ABSOLUTE MAXIMUM RAT	(Ta=25℃)		
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	15	v
Power Dissipation	Pp	(DIP8) 500	mW
		(DMP8) 300	mW
		(SIP8) 800	mW
		(SSOP8) 250	mW
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	Tstg	-40~+125	Ĉ

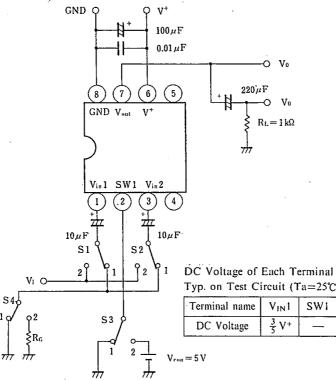
ELECTRICAL CHARACTERISTICS

(V⁺=5V, Ta=25℃)

5

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V+		4.75		13.0	v
Operating Current	I _{CC}	S1=S2=S3=1	-	8.5	11.0	mA
Frequency Characteristic (1)	G _{fl}	Vi=2.5Vpp Vo(20Hz)/Vo (100kHz)	_	U	±1.0	dB
Frequency Characteristic (2)	G ₁₂	Vi=2.0Vpp V ₀ (10MHz)/V ₀ (100kHz)		0	±1.0	dB
Voltage Gain	Gv	Vi=2.5Vpp, 100kHz, Vo/Vi	-0.5	0		dB
Total Harmonic Distortion	THD	Vi=2.5Vpp, IkHz	-	0.01	·	%
Differential Gain	DG	Vi=2Vpp standard staircase signal		0		%
Differential Phase	DP	Vi=2Vpp standard staircase signal	-	0		deg
Output Offset Voltage	V _{off}	$S1=S2=1$, $S3=1\rightarrow 2$, Vo voltage change	-	0	±15	mV
Crosstalk	Ст	(S1=S3=1, S2=2) and (S1=S3=2, S2=1) Vi=2.0Vpp, 4.43MHz, Vo/Vi	—	-70	-	dB
Switch Change Voltage	V _{CH}	Garanteed voltage of all switch on	2.4	_	·—	Ý
	V _{CL}	Garanteed voltage of all switch off	-		0.8	v
Input Impedance	RI			15		kΩ
Output impedance	Ro		-	10		Ω

CONTROL SIGNAL - OUTPUT SIGNAL

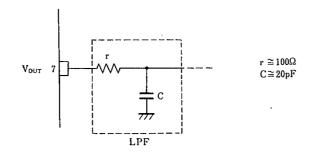

SW 1	OUTPUT SIGNAL
L	V _{IN} 1
Н	V1N 2

-New Japan Radio Co.,Ltd.-

5-95

s.....

TEST CIRCUIT


Typ. on Test Circuit (Ta=25°C).

Terminal name	V _{IN} 1	SW1	V _{IN} 2	V+	νουτ	GND
DC Voltage	$\frac{3}{5}V^{+}$	_	$\frac{3}{5}V^{+}$		$\frac{3}{5}$ V ⁺ -0.7	

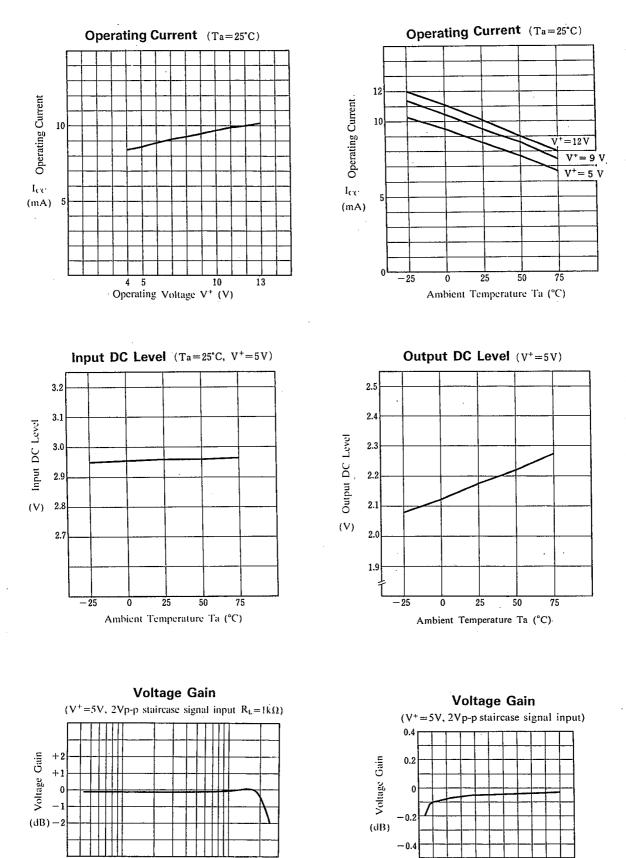
APPLICATION

5

Oscillation Pervention on light loading conditions Recommended under circuit

TYPICAL CHARACTERISTICS

0.5


1

2 3

Frequency (MHz)

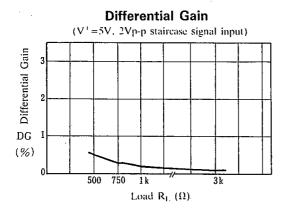
5 7 10

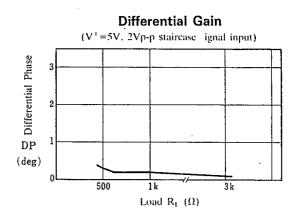
20

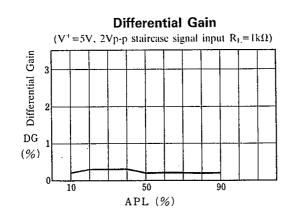
-New Japan Radio Co., Ltd.•

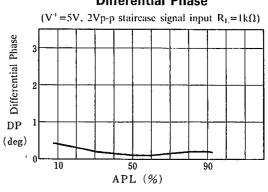
1.0

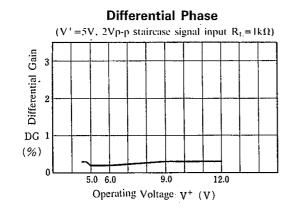
5.0

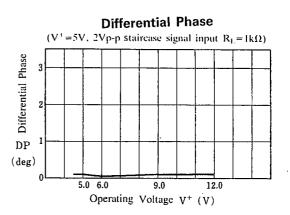

Load R_{L} (k Ω)


10.0

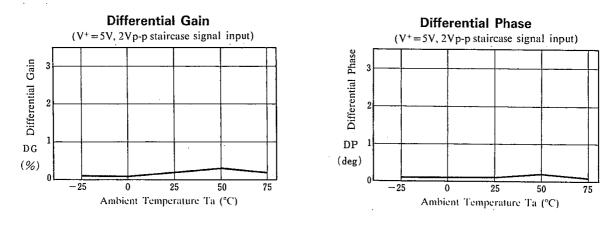

5-97


NJM2233B

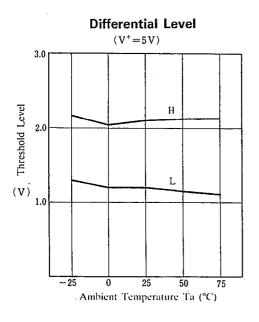

TYPICAL CHARACTERISTICS

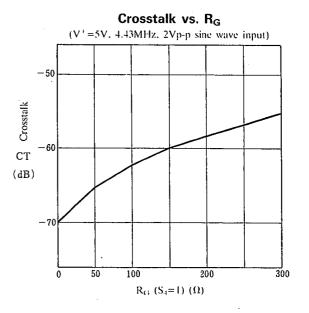


5-98



-New Japan Radio Co.,Ltd.

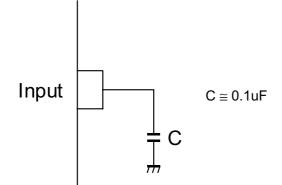

Differential Phase


5-99

TYPICAL CHARACTERISTICS

-New Japan Radio Co., Ltd.

Total Harmonic Distortion (1kHz sine wave input) Total Harmonic Distortion 0.1 0.03 'r-r input $V^+ = 5V$ 2VP-P input ш 0.01 2.5 VP-P input $V^+ = 9V$ THD 2 VP-P input (%) 2.2 3.9 k 10 k 500 1 k Load $R_{L}(\Omega)$


EQUIVALENT CIRCUIT

PIN NO.	SYMBOL	INSIDE EQUIVALENT CIRCUIT	PIN NO.	SYMBOL	INSIDE EQUIVALENT CIRCUIT
1	V I 1	V^+ $V_{IN}^1 \lessapprox 200\Omega$ V_{IN}^0 $V_{IN}^$	5	NC	
2	SW 1	2kΩ 2kΩ 2kΩ 2kΩ 200Ω 1.1mA 9kΩ	6	V+	
3	Vin 2	V^+ $V_{1N}^2 \gtrsim 200 \Omega$ 200Ω $15k$ 777	7	Vour	200Ω SmA
4	NC		8	GND	

5

■APPLICATION

This IC requires 0.1uF capacitor between INPUT and GND for bias type input at mute mode.

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.