DESCRIPTION

The M5218 are semiconductor integrated circuits designed for a low noise preamplifier in audio equipment and a general-purpose operational amplifier in other electronic equipment. Two low noise operational amplifier circuits displaying internal phase-compensated high gain and low distortion are contained in an 8-pin SIP, DIP or FP for application over a wide rage as a general-purpose dual amplifier in general electronic equipment.

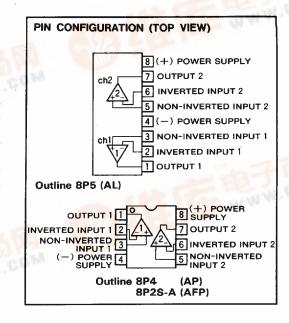
The devices have virtually the same characteristics as the 4557, 4558, 4559 and 741 operational amplifiers.

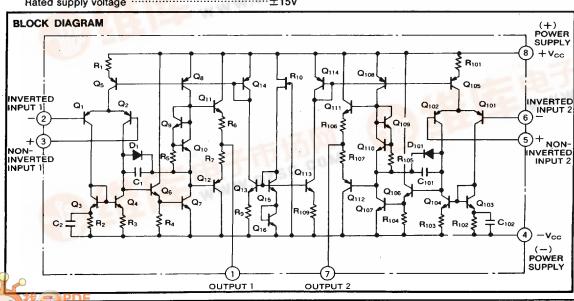
The units can also be used as a single power supply type and amplifier in portable equipment. It is also suitable as a headphone amplifier because of its high load current.

FEATURES

- Operation with low supply voltage
 V_{CC}≥4V(±2V)

High load current, high power dissipation
 I_{LP}=±50mA, P_d=800mW(SIP)

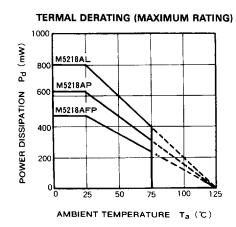

 $P_d = 625 \text{mW}(DIP), P_d = 440 \text{mW}(FP)$

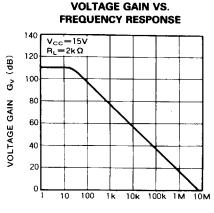

APPLICATION

General-purpose amplifier in stereo equipment, tape decks, and radio stereo cassette recorders; active filters, servo amplifiers, operational circuits in other general electronic equipment.

RECOMMENDED OPERATING CONDITINON

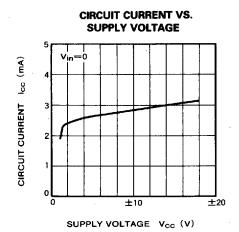
Supply voltage range $\pm 2 \sim \pm 16 \text{V}$ Rated supply voltage $\pm 15 \text{V}$

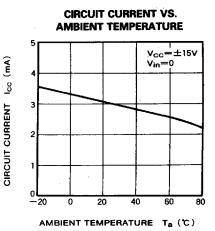

ABSOLUTE MAXIMUM RATINGS (τ_a =25°C, unless otherwise noted)

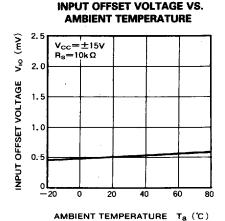

Symbol	Parameter	Conditions	Ratings	Unit	
Vcc	Supply voltage		±18	V	
I _{LP}	Load current		±50	mA	
Vid	Differential input voltage		±30	V	
Vic	Common input voltage		±15	v	
Pd	Power dissipation		800(SIP)/625(DIP)/440(FP)	mW	
Kθ	Thermal dirating	T _a ≥25℃	8(SIP)/6.25(DIP)/4.4(FP)	mW/℃	
Topr	Ambient temperature		-20~+75	င	
Tstg	Storage temperature		-55~+125	ि	

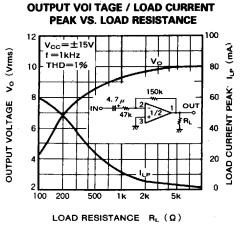
ELECTRICAL CHARACTERISTICS ($\tau_a=25$ °C, $\nu_{cc}=\pm15$ V)

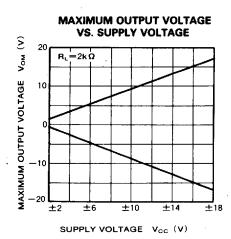
Symbol	Parameter	Test conditions		Limits		
			Min.	Тур.	Max.	Unit
Icc	Circuit current	V _{in} =0		3.0	6.0	mA
V _{IO}	Input offset voltage	R _S ≦10kΩ		0.5	6.0	mV
tio	Input offset current			5	200	nA
l _{iB}	Input bias current				500	nA
Rin	Input resistance		0.3	5		МΩ
Gvo	Open loop voltage gain	$R_L \ge 2k\Omega$, $V_O = \pm 10V$	86	110		dB
V _{OM}	Maximum output voltage	R _L ≥10kΩ	±12	±14		V
		R _L ≧2kΩ	±10	±13		
V _{CM}	Common input voltage range		±12	±14	İ	V
CMRR	Common mode rejection ratio	R _S ≦10kΩ	70	90		dB
SVRR	Sypply voltage	R _S ≤10kΩ		30	150	μ٧/٧
Pd	Power dissipation			90	180	mW
SR	Siew rate	$G_V=0$ dB, $R_L=2k\Omega$		2.2		V/μs
f _T	Gain bandwidth product			7		MHz
VNI	Input referred noise voltage	R _S =1kΩ, BW:10Hz~30kHz		2.0		μVrm:

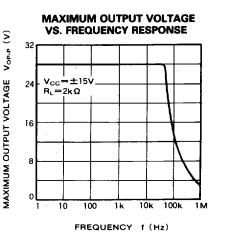

TYPICAL CHARACTERISTICS

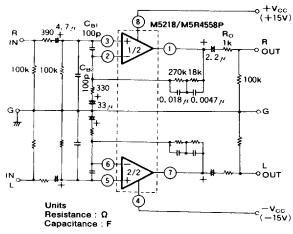




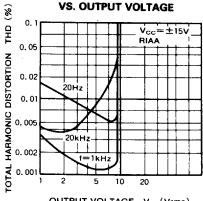

FREQUENCY 1 (Hz)





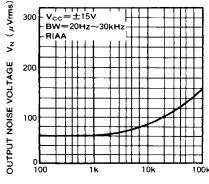


APPLICATION EXAMPLES

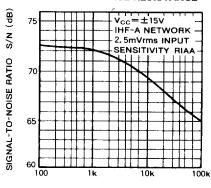

(1) Stereo Equalizer amplifier circuit

TYPICAL CHARACTERISTICS (Vcc=±15V, RIAA)

- $\cdot G_v = 35.6 dB(f=1kHz)$
- · $V_{NI}=1$ μ Vrms(R_S=1k Ω , BW=20Hz~30kHz)
- Signal-to-noise=72.5dB (IHF-A network, shorted input, 2.5mVrms input sensitivity)
- THD=0.0015%($f=1kHz, V_0=3Vrms$)

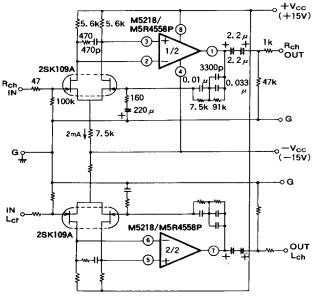

TOTAL HARMONIC DISTORTION

OUTPUT VOLTAGE Vo (Vrms)


Left channel circuit constants are identical to those of right channel. C_{B1}, C_{B2}: Capacitors for buzz prevention, use if required.
R_O: Resistor used to prevent parasitic oscillation for capacitive loads and current limiting with shorted and other abnormal load conditions.

OUTPUT NOISE VOLTAGE VS. SIGNAL SOURCE RESISTANCE

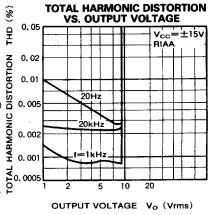
SIGNAL SOURCE RESISTANCE R_S (Ω)


SIGNAL-TO-NOISE RATIO VS. SIGNAL SOURCE RESISTANCE

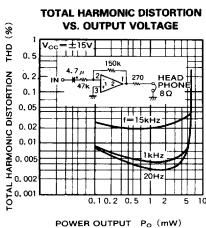
SIGNAL SOURCE RESISTANCE $R_S(\Omega)$

(2) High S / N stereo DC ICL equalizer

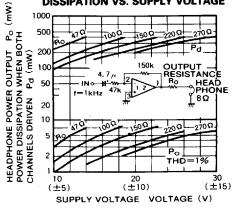
Units

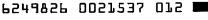

Resistance : Ω

Capacitance : F


Left channel circuit constants are identical to those of right channel.

TYPICAL CHARACTERISTICS (Vcc=±15V, RIAA)


- Signal-to-noise=72.5dB (IHF-A network, shorted input, 2.5mVrms input sensitivity)
- · V_{Ni} =0.77 μ Vrms(R_S=5.1k Ω , BW=5Hz~100kHz)
- · Gv=35.6dB(f=1kHz)



(3) Headphone amplifier

(Output resistance R_O is made the parameter) POWER OUTPUT / POWER DISSIPATION VS. SUPPLY VOLTAGE

