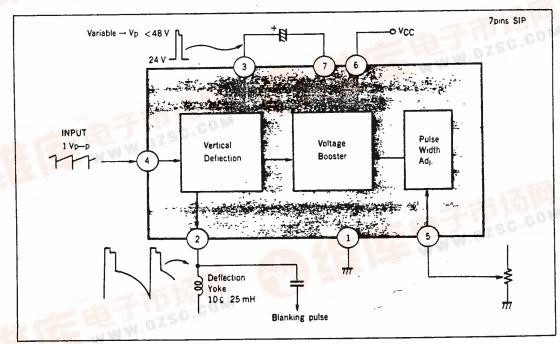
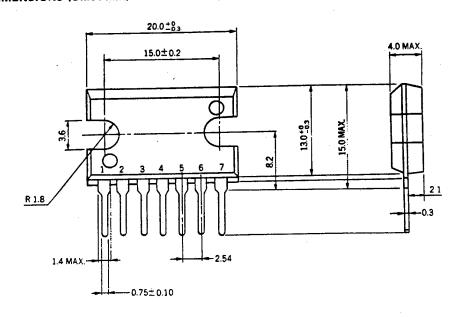


BIPOLAR ANALOG INTEGRATED CIRCUIT $\mu PC1378H$

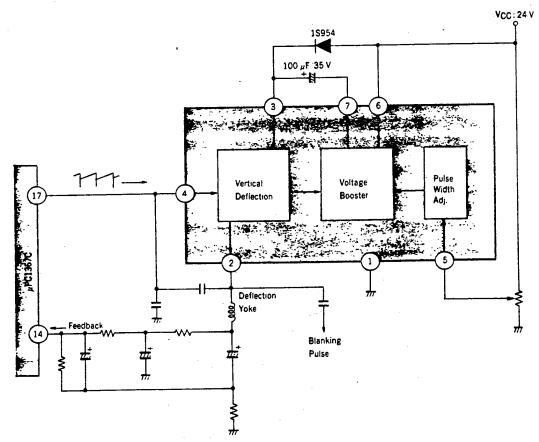
VERTICAL DEFLECTION CIRCUIT OF COLOR TV


The μ PC1378H is a vertical deflection circuit suitable for color CRTs from 9 inches 90° deflection angle to 20 inches 100° deflection angle.

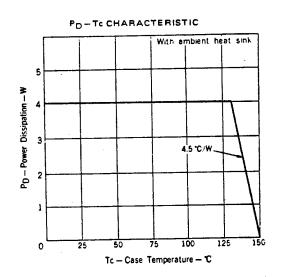
It is available for any color TV using IC or descrete components in the vertical ramp generator.


FEATURES

- The voltage booster circuit realizes particular high efficiency (24 V, 170 mA at 20 inches 100 degrees deflection angle
- Able to couple with any ramp generator, as it needs only ramp signal.
- Blanking pulse width is variable with a external bias circuit.


BLOCK DIAGRAM

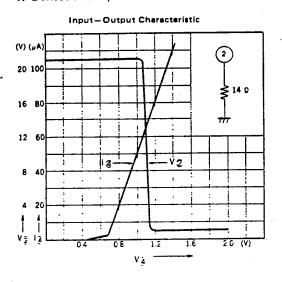
PACKAGE DIMENSIONS (Unit: mm)

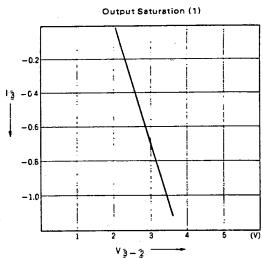


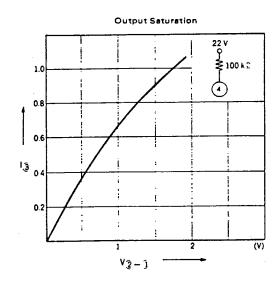
APPLICATION

ABSOLUTE MAXIMUM RATINGS (Ta=25 °C)

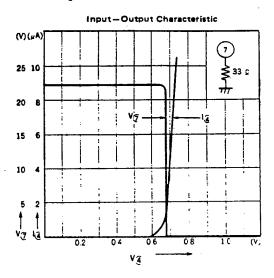
Power Supply Voltage	Vcc	27	V	
Power Supply Current Drain	lcc	350	mA	
Power Dissipation	P _D	4.0	W	
Junction Temperature	Τį	+150	°C	
Storage Temperature	T _{stg}	-40 to +150	°C	
Output Current	IDEF	-1.0 to +1.0	A	Pin 2
Terminal 3 Voltage	V ₃	60	V	Pin 3
Input Voltage	V ₄	2.0	V	Pin 4
Input Current	14	5	mΑ	Pin 4
Pulse Adjust Voltage	V ₅	0 to V ₆	V	Pin 5
Terminal 6 Voltage	V ₆	27	· V	Pin 6
Booster Output Current	l _B	-1.0 to +0.2	A	Pin 7

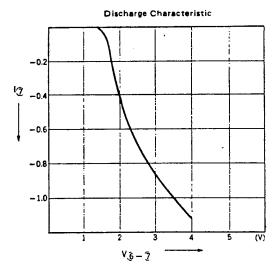

μPC1378H

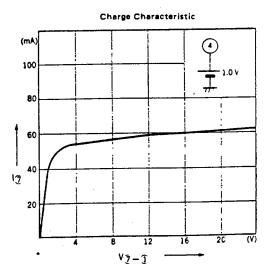

ELECTRICAL CHARACTERISTICS (Ta=25 °C, V_{CC}=24 V)

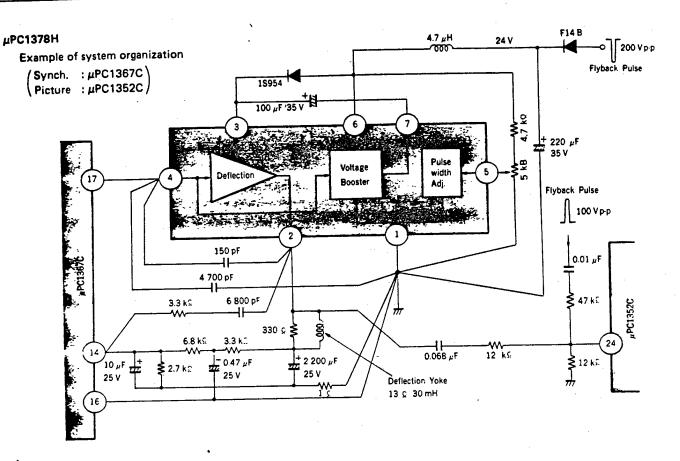

CHARACTERISTIC	SYMBOL	MIN.	· TYP.	MAX.	UNIT	PIN	CONDITION
Power Supply Current Drain	¹cc	130	150	170	mA	3+6	Standard Operation
Output Current	IDEF	850	1000	1150	mA	2	Standard Operation
Output DC Voltage	Vonc	12.1	12.6	13.1	٧	2	Standard Operation
Retrace Pulse Voltage — 1	V _{2p(1)}	47		5 5	٧	2	V5=0 V
Retrace Pulse Voltage – 2	V _{2p} (2)	38		45	٧	2	V5=8 V
Retrace Pulse Width - 1	T _{2p} (1)	800	950	1100	μs	2	V5=0 V .
Retrace Pulse Width — 2	T _{2p} (2)	1050	1200	1350	μς	2	V5=8 V
Idling Current	IQ	20	35	50	mA	3	I3, No Output
Booster Charging Saturation	V _{S7} -1		1.5	2.0	V	7	24 V – 2 MΩ – Pin 4 24 V – 1.2 kΩ – Pin 7
Booster Discharging Saturation	V _{S6-7}	1.5	2.5	4.0	v	7	Pin 4 = Open Pin 1 - 33 Ω - GND.
	¹ 7(1)	50	80	110	mA	i 7	24 V - 2 MΩ - Pin 4
Booster Charging Current – 1		. 50	80	110	i mA	7	V ₄ =1.0 V
Booster Charging Current – 2 i Output Saturation – 1	V _{S2-1(1)}		0,9	1.5	v	2	24 V - 220 kΩ - Pin 4 24 V - 33 Ω - Pin 2
Output Saturation 2	V _{S2} -1(2)	i	0.9	1.5	v	2	V ₄ =2.0 V 24 V - 33 Ω - Pin 2
Output Saturation - 3	V _{S3-2}	2.0	3.0	4,5	v	2	Pin 4=Open Pin 2 – 33 Ω – GND.
Input Saturation	V _{S4}	1.0	2.0	3.0	V	4	24 V - 220 kΩ - Pin 4
Voltage Gain	Avo	25	35	45	dB		f _{in} =1 kHz, R _L =1 Ω
	Rin	4.5	5.5	6.5	kΩ	4	V _{4DC} =1.1 V
Input Resistance J-C Thermal Resistance	θ _j _ c	+	-	4.5	°c/w	1	With ambient heat sink

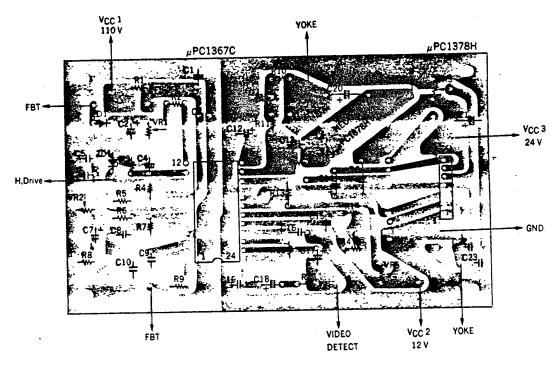
TYPICAL CHARACTERISTICS


1. Deflection Amplifier






2. Voltage Booster



μPC1378H

PRINT PATTERN AND LAYOUT

JUMP : μPC1367C Pin $(4 - 3.3 \text{ k}\Omega - 6\,800 \text{ pF} - \mu\text{PC1378H Pin} \ \text{\textcircled{2}})$

COMPONENTS

5 I V I S					
R1	8.2 kΩ	3 W	C1	10 µF	150 V
R2	1 kΩ	1/4 W	C2	10 μF	50 V
R3	12 kΩ	1/4 W	C3 .	0.01 µF	
R4	2.2 kΩ	1/4 W	C4	3.3 µF	16 V
R5	4.7 kΩ	1/4 W	C5	10 000 pF	
R6	1.8 kΩ	1/4 W	C6	5 600 pF	
R7	33 kΩ	1/4 W	C7	1 μF	16 V
R8	3.9 kΩ	1/4 W	C8	0.01 µF	
R9	100 kΩ	1/4 W	C9	0.1 μF	
R10	3.3 kΩ	1/4 W	C10	0.01 µF	
R11	6.8 kΩ	1/4 W	C11	0.47 µF	16 V
R12	2.7 kΩ	1/4 W	C12	0.47 µF	16 V (Tantalum)
R13	91 kΩ	1/4 W	C13	10 µF	25 V (Tantalum)
R14	6.8 kΩ		C14	100 µF	35 V
R15	2 ΜΩ	1/4 W	C15	3.3 µF	16 V (Tantalum)
R16	470 Ω	1/4 W	C16.	0.027 µF	
R17	1 Ω	1/4 W	C17	10 µF`	16 V
••••			C18	2.2 µF	16 V
VR1	10 kB		C19	1 500 pF	
VR2	2 kB		C2 0	2 200 µF	25 V
VR3	10 kB		C21	100 µF	35 V
VR4	10 kB		C22	220 pF	
VR5	300 kB		C23	Pμ 0.022	
VIII	000 KD		D1 .	1\$953	
			D2	18954	
			ZD1	RD6.2E	