查询UPD71065G供应商

捷多邦,专业PCB打样工厂,24小时 加急出货

μPD71065/66 Floppy-Disk Interface

Description

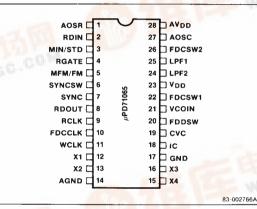
NEC

NEC Electronics Inc.

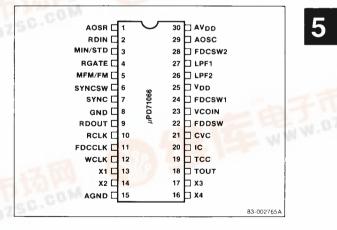
The μ PD71065 and μ PD71066 are CMOS devices that interface a floppy-disk drive (FDD) with a floppy-disk controller (FDC). The controller can be μ PD765A/B, μ PD7265, μ PD72065/B, μ PD72066, μ PD7260, or one of the FD179X series.

The floppy-disk interface can operate at various data rates, including the 300-kb/s rate that results from using high-density 5-inch drives with media formatted at the standard 250-kb/s rate. Also, the μ PD71065/66 generates the write clock needed by the selected controller and provides synchronous switching when changing data rates.

Features


- Compatible with all industry-standard controllers
- Multiple data rates: 500/300/250/150/125 kb/s
- Internal or external sync field detection logic
- Head-loading timer for FD179X-series controllers
- No analog adjustments required
- □ CMOS, low power consumption
- □ 5-volt power supply

Ordering Information

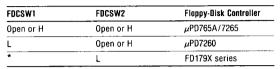

Part Number	Package	Internal Timer		
μPD71065G	28-pin plastic SO	Not included		
µPD71066CT	30-pin plastic shrink DIP	Implemented to FD179X-series controllers as head- loading timer.		

Pin Configurations

28-Pin Plastic SO

30-Pin Plastic Shrink DIP

Pin Identification


Symbol	Input/Output	Function
ACOS		Capacitor connection pin for analog one-shot
AGND		Ground for analog circuits
AOSR		Resistor connection pin for analog one-shot
AV _{DD}		Power supply for analog circuits
CVC		Capacitor connection pin for VCO
FDCCLK	Output	Clock to FDC
FDCSW1	Input*	FDC selection pin or timer trigger input
FDCSW2	Input*	FDC selection pin
FDDSW	Input*	Data transfer rate selection pin
GND		Ground
IC		Internally connected; should be left open
LPF1, LPF2	Output	Connection pins to external lowpass filter
MFM/FM	Input*	Recording density selection pin
MIN/STD	Input*	5- or 8-inch FDD selection pin
RCLK	Output	Read data sampling clock
RDOUT	Output	Read data to FDC
RGATE	Input*	Read enable/disable
RDIN	Input*	Read data from FDD
SYNC	Input*	External PLL gain selection
SYNCSW	Input*	Determines whether gain selection is internal or external
TCC		External RC time constant connection to internal timer (µPD71066)
TOUT	Output	Timer signal (µPD71066)
VCOIN	Input	External lowpass filter output to internal VCO
V _{DD}		+5-volt power supply
WCLK	Output	Write clock to FDC
X1, X2		Connection pins for 16-MHz crystal (X1, X2) or external clock input (X1)
X3, X4		Connection pins for 19.2-MHz crystal (X3, X4) or external clock input (X3)

*Input pin has an on-chip pull-up resistor

Pin Functions

The following paragraphs supplement the brief descriptions of certain pins in the preceding table. Pin symbols are in alphabetical order.

FDCSW1 and FDCSW2. The μ PD71065/66 is configured for the applicable FDC by applying logic levels L and H (or open) to these pins.

IFC

* FDCSW1 is the trigger input to the timer circuit when FDCSW2 is low.

FDDSW. The logic level applied to this pin selects the data transfer rate of the FDD.

FDDSW	Data Transfer Rate	
Open or H	500/250/125 kb/s	
L	500/250/300/150 kb/s	_

MFM/FM Pin. The logic level applied to this pin and the FDCSW2 pin selects the modulation type. Double-density and single-density recording use MFM (modified FM) and FM modulation, respectively.

FDCSW2	MFM/FM	Modulation
H	н	MFM
Н	L	FM
L	Н	FM
Ĺ	L	MFM

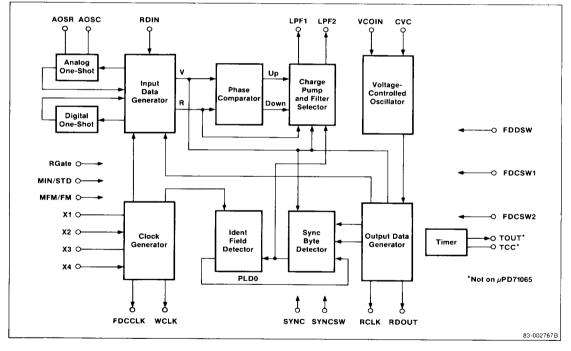
MIN/STD. Logic level L on this pin selects a 5-inch FDD. An open or H selects an 8-inch FDD.

RDIN. This is a composite read data and clock signal input from the FDD.

RDOUT. The read data output from this pin is synchronized with the read clock (RCLK) derived from the RDIN composite signal.

RGATE. In conjuction with FDCSW2, RGATE enables or disables the read operation that is sent from the FDC.

FDCSW2	RGATE	Read Operation
Н	н	Enable
Н	L	Disable
L	Н	Disable
L	L	Enable


SYNC and SYNCSW. The PLL gain is determined by the intput signal at the SYNC pin and the logic levels at the FDCSW1 and SYNCSW pins.

Note:

- (1) Input signal at SYNC is the PLL gain selection signal between the ID and DATA fields.
- (2) Input signal at SYNC Is the SYNC field detection signal from the FDC.

FDCSW1	SYNCSW	SYNC	PLL Gain
Open or H	Open or H	H (1)	Low
		L (1)	High
	L	H (2)	Low
		L (2)	High

Block Diagram

Functions of the block diagram components are explained below.

Clock Generator. Using both 16-MHz and 19.2-MHz oscillators, outputs clock signals corresponding to the mode used to the FDCCLK and WCLK pins.

Input Data Generator. According to the input data, generates the R and V signals to be input to the phase comparator. In addition to this, the input data generator determines whether the analog one-shot circuit or the digital one-shot circuit is used.

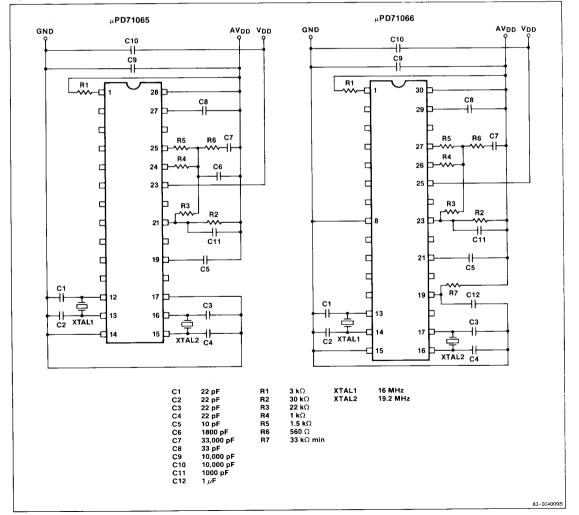
Charge Pump and Filter Selector. According to the PLL (phase-locked loop) gain selection signal, enables or disables the LPF2 side charge pump to control the PLL gain.

Output Data Generator. Generates the window signal (RCLK) and read data signal (RDOUT) depending on the mode and FDC to be used.

Sync Byte Detector. Detects the sync field within 16 to 20 pulses regardless of FM or MFM mode.

Ident Field Detector. Determines whether the sync field detected by the sync byte detector is ID or DATA field and sets the PLL gain.

Basic External Circuit

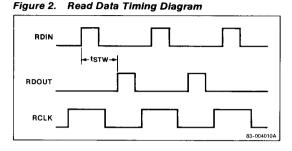

Figure 1 shows the basic external circuit including the lowpass filter and crystals. The data transfer rate is selected by strapping pins FDDSW, MIN/STD, and MFM/FM to L (low) or open (high). See table 1.

The VCO frequency and the phase delay between RDIN and RDOUT can be optimized by adjusting resistors R2 and R1, respectively.

Figure 1. Basic External Circuit

VCO Frequency

For this procedure, the data transfer rate is undefined. Strap RGATE to H and RDIN to L. Adjust resistor R2 to set the VCO frequency at the RCLK pin to the same numerical value as the data transfer rate; for example, 500 kHz and 500 kb/s.



NEC

μ**PD71065/66**

Data Read Phase Delay

For this procedure, set the data transfer rate to 500 kb/s, set the RDIN signal to a $2-\mu$ s cycle time, and strap RGATE to H. Adjust resistor R1 to set the value of t_{STW} (figure 2) to 950 ns.

Table 1. Data Transfer Rate Selection

	Data Transfer Rate	Clock Output Fre	equencies from μ	PD71065/71066	S	election Pins (Note	1)
Floppy-Disk Controllers	(kb/s)	FDCCLK (MHz)	RCLK (kHz)	WCLK (kHz)	FDDSW	MIN/STD	MFM/FM
μPD765A, μPD7265,	250	4	250	500	Open	Open	Open
μPD72065, μPD72066 (Note 2)	125	4	125	250	Open	Open	L
(NOTE 2)	500	8	500	1 MHz	Open	L	Open
	250	8	250	500	Open	L	L
	300	4.8	300	600	L	Open	Open
	150	4.8	150	300	L	Open	L
	500	8	500	1 MHz	L	L	Open
	250	8	250	500	L	L	L
µPD7260 (Note 3)	250	4	500	500	Open	Open	Open
	125	4	250	250	Open	Open	L
	500	8	1 MHz	1 MHz	Open	L	Open
	250	8	500	500	Open	L	L
	300	4.8	600	600	L	Open	Open
	150	4.8	300	300	L	Open	L
	500	8	1 MHz	1 MHz	L	L	Open
	250	8	500	500	L	L	L
FD179X Series (Note 4)	250	1	250	500	Open	Open	L
	125	1	125	250	Open	Open	Open
	500	2	500	1 MHz	Open	L	L
	250	2	250	500	Open	L	Open
	300	1.2	300	600	L	Open	L
	150	1.2	150	300	L	Open	Open
	500	2	500	1 MHz	L	L	L
	250	2	250	500	L	L	Open

(1) Selection pin states: L = Iow; Open = open or H (high) (4) FD179X Series:

(2) µPD765A/7265/72065/72066:

FDCSW1 and FDCSW2 = Open

(3) μPD7260:

FDCSW1 = L and FDCSW2 = Open. FDCLK clock is not used FDCSW1 = Don't care and FDCSW2 = L. WCLK clock is not used.

Electrical Characteristics

Figures 3 through 8 are test circuits for verifying certain parameters in the dc and ac characteristics tables.

Absolute Maximum Ratings

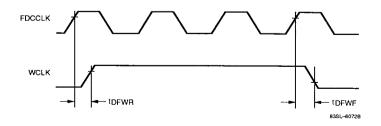
$I_A = +25 ^{\circ}C$	
Power supply voltage, V _{DD}	-0.3 to +6 V
Input voltage, V _I	-0.3 to V _{DD} + 0.3 V
Output voltage, V ₀	-0.3 to V _{DD} + 0.3 V
Operation temperature, T _{OPT}	-10 to +70°C
Storage temperature, T _{STG}	-40 to +125°C

DC Characteristics

 $T_A = -10$ to +70 °C; $V_{DD} = +5 V \pm 10\%$

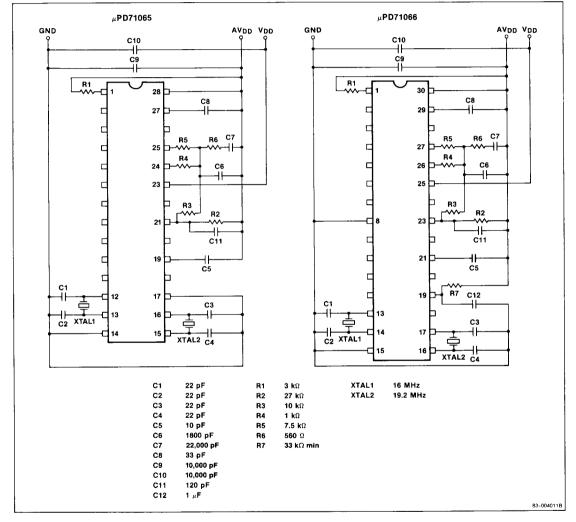
Parameter		Limit					
	Symbol	Min	Тур	Max	Unit	Test Conditions	Test Circuit
Input voltage, low	VIL	0.3		0.8	v		
Input voltage, high	VIH	2.2		V _{DD} + 0.3	v		
Output voltage, low	V _{OL}			0.45	V	$i_{OL} = 2 \text{ mA}$	
Output voltage, high	V _{OH}	0.7 V _{DD}		V _{DD}	V	$I_{OH} = -200 \mu A$	
Clock input level	V _{Kp-p}	1		V _{DD}	V		Figure 5
Input leakage current, low	LIL	-150		50	μA	$V_{\parallel} = 0 V$	
Input leakage current, high	ILIH	-10		+10	μA	$V_{I} = V_{DD}$	
Output leakage current, low	ILOL	-10			μA	$V_0 = 0.45 V$	
Output leakage current, high	1LOH			+10	μA	$V_0 = V_{DD}$	
Power supply current	DD	<u>.</u>		25	mA	XTAL: 16 MHz, 19.2 MHz	Figure 3
				20	mA	XTAL: 16 MHz	Figure 4

NEC

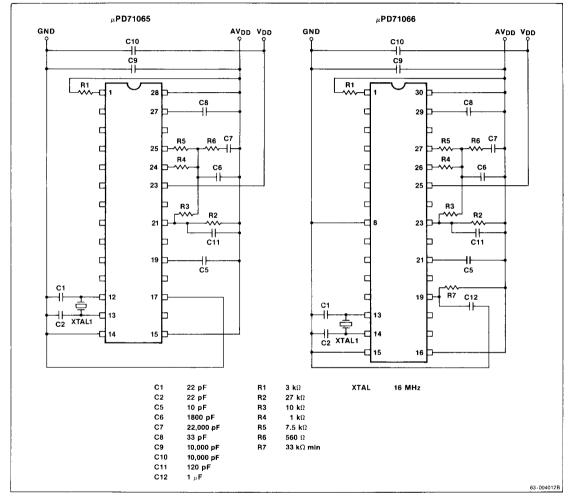

μ**PD71065/66**

AC Characteristics $T_A = -10 \text{ to } +70 \text{ }^\circ\text{C}; V_{DD} = +5 \text{ V} \pm 10\%$

		Limits					
Parameter	Symbol	Min	Тур	Max	- Unit	Test Conditions	Test Circuit
Rise time	t _R	0		20	ns		
Fall time	t _F	0		20	ns		
RDOUT setup time to RCLK 1	tSRR	40			ns	For µPD7260	Figure 6
CLK high/low level width	tĸĸ	20			ns		
VCO oscillation frequency	fo			8	MHz	$V_F = V_{DD}$	Figure 7
VCO free-run frequency	fi	3.6	4	4.4	MHz	FDDSW = H, V_F = open	
	-	2.1	2.4	2.7	MHz	$FODSW = L, V_F = open$	
VCO control voltage sensitivity	Kv	2.5	3.5	4.6	MHz/V	$ (V_{DD}/2) - V_F \le 0.5 V$	
K _V voltage coefficient	$\Delta K_V / V_{DD}$	-1	-19	22	%/V		
f _i power supply voltage coefficient	∆f _i /V _{DD}	0		5	%/V		
f _i temperature coefficient	Δf _i /T _A	0	-500	-1000	ppm/ °C	· · · · · · · · · · · · · · · · · · ·	
Phase detect sensitivity	Кр	0.7	0.8	0.9	V/rad		
RCLK jitter	tj	0	30	50	ns	500-kb/s mode	Figure 8
RDIN [†] to RDOUT [†] delay time	torr	900	950	1000	ns	·····	
Capture range (Note 1)	fCAP	537		427	kHz	500-kb/s mode	
	-	286		213	kHz	250-kb/s mode	
		143		107	kHz	125-kb/s mode	
	_	343		256	kHz	300-kb/s mode	
	-	172		128	kHz	150-kb/s mode	
FDCCLK 1 to WCLK 1 delay time (Note 2)	^t DFWR			30	ns	C _L = 15 pF	Figure 1
FDCCLK [†] to WCLK ↓ delay time (Note 2)	tDFWF			30	ns	C _L = 15 pF	


Note:

- (1) The frequencies in the Max and Min columns are the lower and upper limits, respectively, of the capture range. For example, in the 500-kb/s mode, the capture range is from 427 kHz (or lower) to 537 kHz (or higher).
- (2) Clock outputs to FDC.



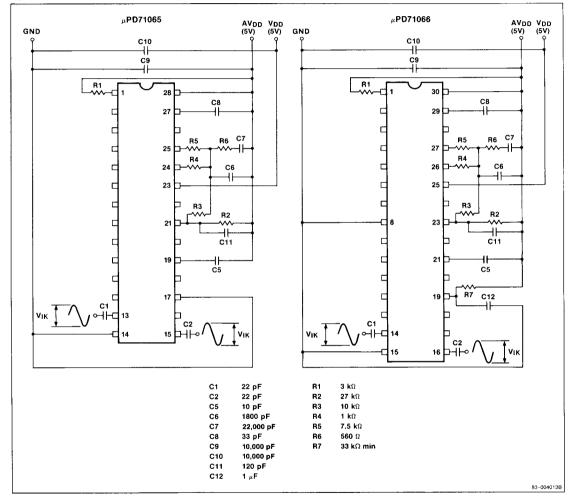


Figure 4. Test Circuit 2

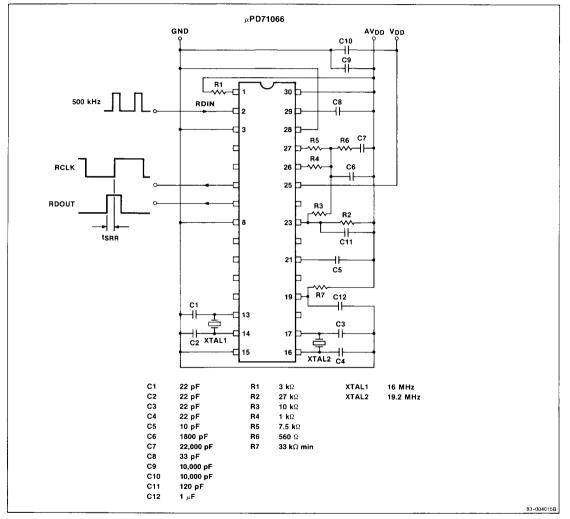


Figure 5. Test Circuit 3

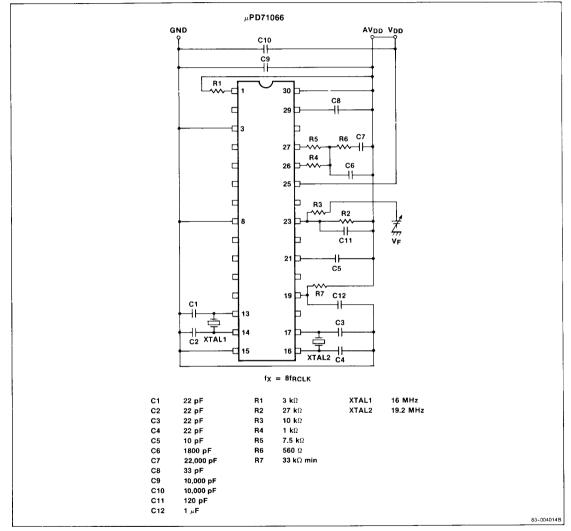


Figure 6. Test Circuit 4

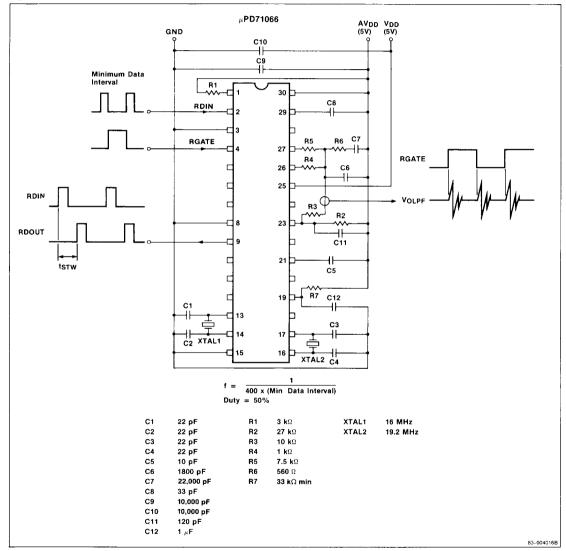
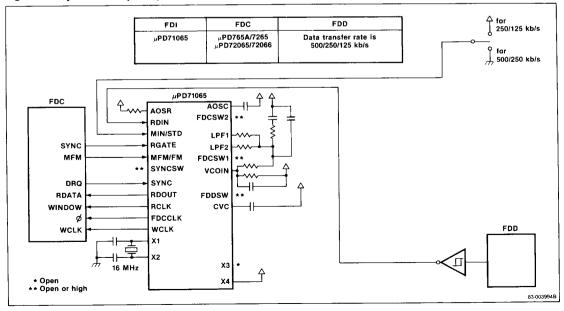


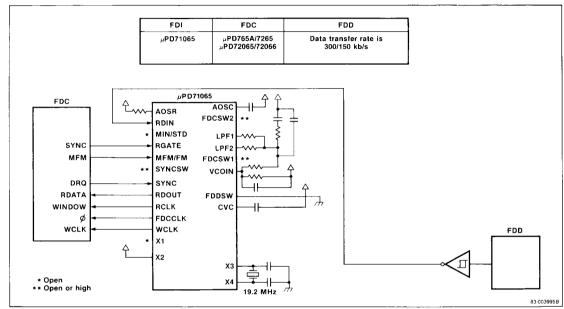
Figure 7. Test Circuit 5

Figure 8. Test Circuit 6

System Configurations

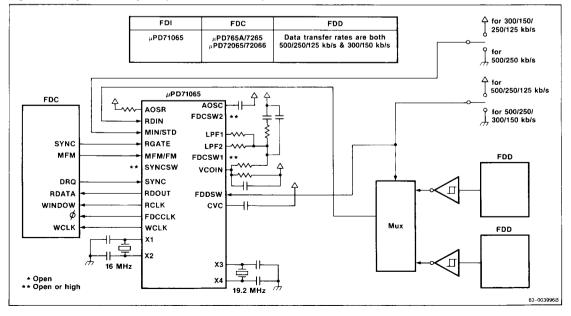

Figures 9 through 23 are system configuration examples of the μ PD71065 and μ PD71066 with various floppy-disk controllers and data transfer rates. See table 2.

For additional details and the values of resistors and capacitors, see figure 1.


Table 2. System Configuration Examples

Floppy-Disk Interface	Floppy-Disk Controllers	Data Transfer Rates (kb/s)	Figure
μPD71065	μPD765A, μPD7265,	500/250/125	9
	μPD72065, μPD72066	300/150	10
		500/250/125 and 300/150	11
	μPD7260	500/250/125	12
		300/150	13
		500/250/125 and 300/150	14
μPD71066	μPD765A, μPD7265,	500/250/125	15
	μPD72065, μPD72066	300/150	16
		500/250/125 and 300/150	17
	μPD7260	500/250/125	18
		300/150	19
		500/250/125 and 300/150	20
_	FD179X	500/250/125	21
		300/150	22
		500/250/125 and 300/150	23

Figure 9. System Example 1: µPD71065 FDI and µPD765A FDC



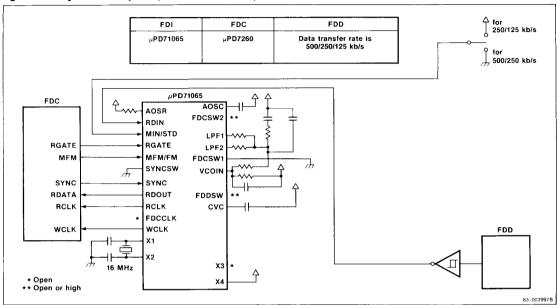
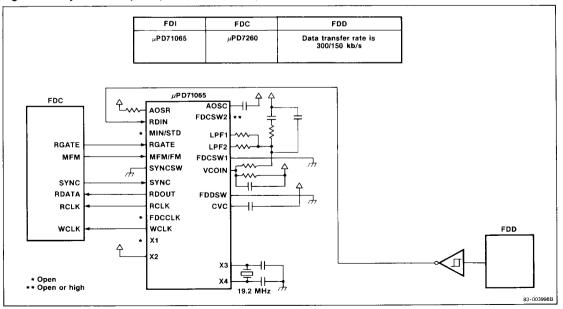


Figure 10. System Example 2: µPD71065 FDI and µPD765A FDC

Figure 11. System Example 3: µPD71065 FDI and µPD765A FDC



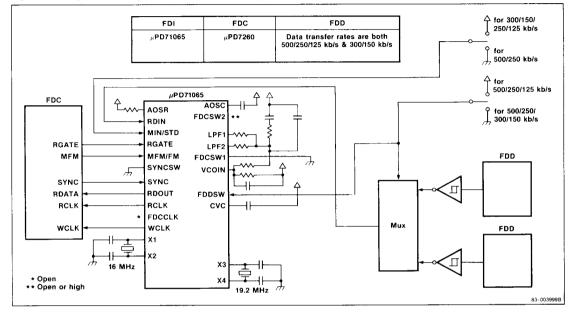
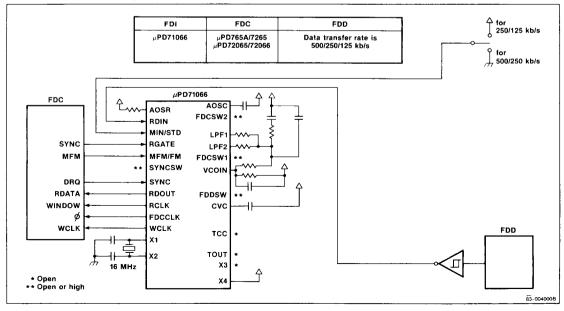

NEC

Figure 12. System Example 4: µPD71065 FDI and µPD7260 FDC

Figure 13. System Example 5: µPD71065 FDI and µPD7260 FDC



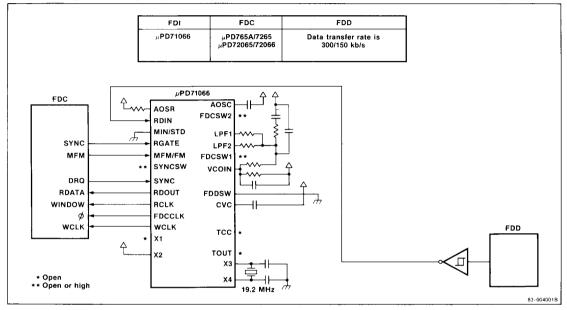


Figure 14. System Example 6: µPD71065 FDI and µPD7260 FDC

Figure 15. System Example 7: µPD71066 FDI and µPD765A FDC

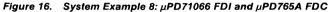
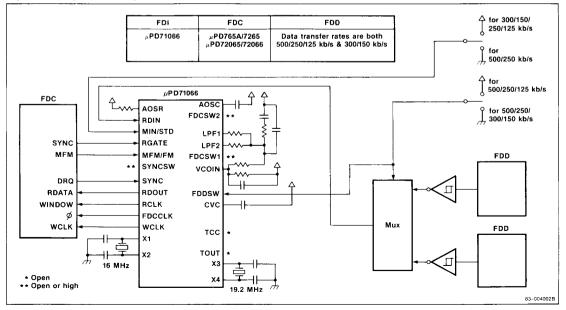



Figure 17. System Example 9: µPD71066 FDI and µPD765A FDC

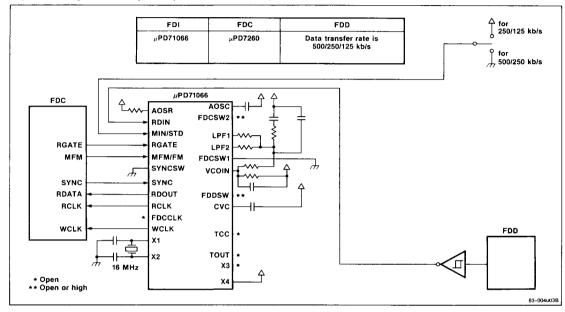
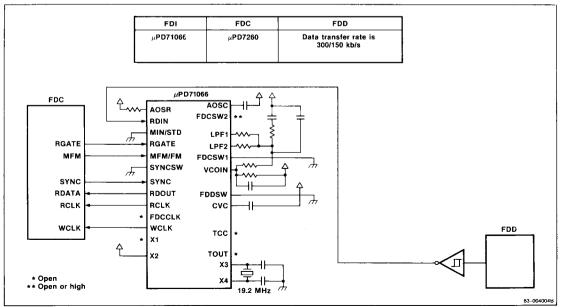
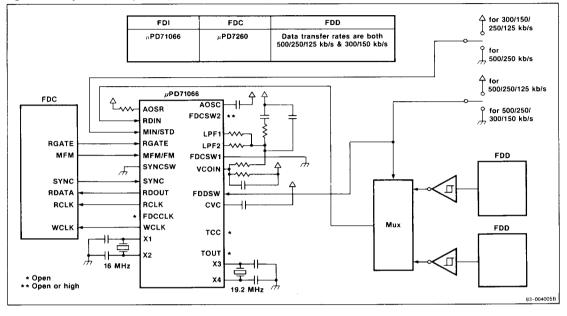




Figure 18. System Example 10: µPD71066 FDI and µPD7260 FDC

Figure 19. System Example 11: µPD71066 FDI and µPD7260 FDC

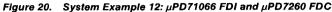
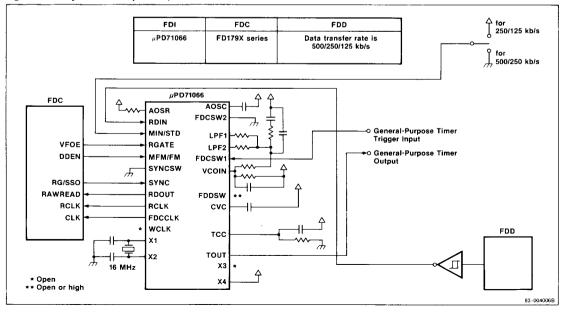
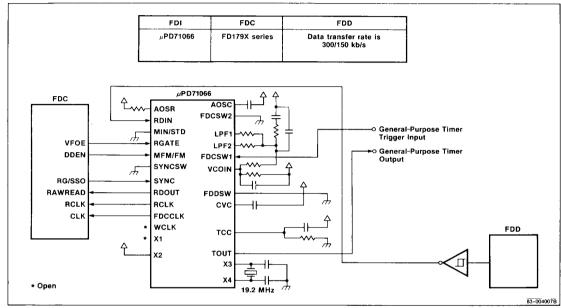




Figure 21. System Example 13: µPD71066 FDI and FD179X FDC

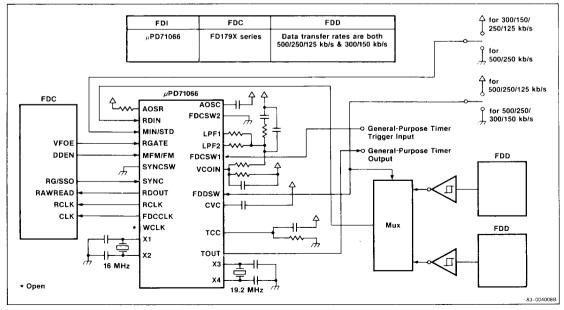


Figure 22. System Example 14: µPD71066 FDI and FD179X FDC

Figure 23. System Example 15: µPD71066 FDI and FD179X FDC

