加急出货

PC923

High Speed Photocoupler for MOS-FET / IGBT Drive

* Lead forming type (I type) and taping reel type (P type) are also available. (PC923I/PC923P) (Page 656)

■ Features

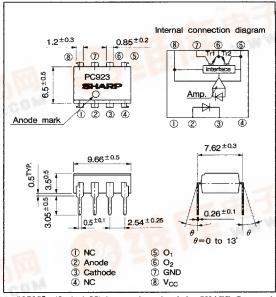
 Built-in direct drive circuit for MOS-FET/ IGBT drive (I_{OLP}, I_{O2P}: 0.4A)

2. High speed response

 $(t_{PLH}, t_{PHL} : MAX. 0.5 \mu s)$

3. Wide operating supply voltage range (Vcc: 15 to 30V, Ta = -10 to 60° C)

4. High noise reduction type $(CM_H=MIN. -1 500V/\mu s)$ $(CM_L=MIN. 1 500V/\mu s)$


- 5. Recognized by UL, file No. E64380
- 6. High isolation voltage between input and output (V_{ISO} =5 000 V_{rms})

Applications

1. Inverter controlled air conditioners

Outline Dimensions

(Unit: mm)

* "OPIC" (Optical IC) is a trademark of the SHARP Corporation. An OPIC consists of a light-detecting element and signal-processing circuit integrated onto a single chip.

■ Absolute Maximum Ratings (Ta=T_{opr} unless otherwise specified)

	Parameter	Symbol	Rating	Unit
T4	Forward current	IF	20	mA
Input	*1Reverse voltage	VR	6	V
	Supply voltage	Vcc	35	V
	O1 output current	I_1	0.1	A
	*2O1 peak output current	Ioip	0.4	A
Output	O ₂ output current	I _{O2}	0.1	A
	*2O2 peak output current	I _{O2P}	0.4	A
	O ₁ output voltage	Voi	35	V
	Power dissipation	Po	500	mW
	Total power dissipation		550	mW
	*3Isolation voltage		5 000	V _{rms}
	Operating temperature		-25 to +80	$^{\circ}$
	Storage temperature		-55 to +125	°C
## m	Soldering temperature		260	°

- *1 Ta=25℃

*2 Puise width $\leq 0.15 \,\mu$ s, Duty ratio = 0.01

4 For 10 seconds

= *3 40 to 60%RH, AC for 1 minute, = Ta = 25%

<u>8180</u>798 0011838 491 📟 -

in the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device."

■ Electro-optical Characteristics

 $(Ta = T_{opr} \text{ unless otherwise specified})$

Parameter		Symbol	*5Conditions	MIN.	TYP.	MAX.	Unit	Fig.
-	Forward voltage	V_{F1}	Ta=25℃, I _F =10mA	_	1.6	1.75	V	-
Input	Forward voltage	V_{F2}	Ta=25℃, I _F =0.2mA	1.2	1.5		v	_
прис	Reverse current	I_R	Ta=25℃, V _R =5V	_	_	10	μΑ	_
	Terminal capacitance	Ct	Ta=25°C, $V=0$, $f=1$ MHz	_	30	250	pF	_
	Operating supply voltage	V _{cc}	Ta=-10 to 60℃	15	_	30	V	
	Operating supply voltage		7,9	15	_	24	V	1 -
	O ₁ low level output voltage	Voil	$V_{CC1}=12V, V_{CC2}=-12V$ $I_{01}=0.1A, I_F=5mA$	_	0.2	0.4	v	1
	O ₂ high level output voltage	V _{O2H}	$V_{CC} = V_{01} = 24V, I_{02} = -0.1A, I_F = 5mA$	18	21	_	v	2
Output	O2 low level output voltage	V _{O2L}	$V_{CC}=24V$, $I_{02}=0.1A$, $I_{F}=0$	_	1.2	2.0	V	3
-	O ₁ leak current	IOIL	$Ta = 25$ °C, $V_{CC} = V_{01} = 35$ V, $I_F = 0$	_	_	500	μΑ	4
	O2 leak current	I_{O2L}	$Ta = 25$ °C, $V_{CC} = V_{02} = 35$ V, $I_F = 5$ mA		_	500	μΑ	5
	High level supply current	Іссн	$Ta=25$ °C, $V_{CC}=24$ V, $I_F=5$ mA	_	6	10	mA	6
	Ingh level supply current		$V_{CC}=24V$, $I_F=5mA$	_	_	14	mA	
	Low level supply current	I _{CCL}	$Ta = 25$ °C, $V_{CC} = 24$ V, $I_F = 0$		8	13	mA	
	Low level supply current		V_{CC} =24V, I_F =0	_		17	mA	
	*6 "Low→High" threshold	I _{FLH}	$Ta=25$ °C, $V_{CC}=24$ V	0.3	1.5	3.0	mA	77
	input current		$V_{CC} = 24V$	0.2	_	5.0	mA	7
	Isolation resistance	Riso	Ta = 25°C, DC = 500V, 40 to 60%RH	5×10 ¹⁰	1011		Ω	_
	"Low→High" propagation delay time	t _{PLH}	$Ta=25$ °C, $V_{CC}=24$ V.		0.3	0.5	μs	
		t _{PHL}	$I_F=5\text{mA}$	_	0.3	0.5	μs	8
	High→Low propagation delay time Rise time Fall time	tr	$R_C = 47\Omega$, $C_G = 3~000 pF$	_	0.2	0.5	μs	
	ਡੂੰ Fall time	t _f	KC-4742, CG-3 000pl	_	0.2	0.5	μs	
	Instantaneous common mode rejection voltage "Output : High level"	СНм	Ta=25°C, V_{CM} =600V(peak) I _F =5mA, V_{CC} =24V, ΔV_{O2H} =2.0V	-1500	_	_	V/µs	
	Instantaneous common mode rejection voltage "Output : Low level"	CML	$Ta = 25$ °C, $V_{CM} = 600 V(peak)$ $I_F = 0$, $V_{CC} = 24$ V, $\Delta V_{O2L} = 2.0$ V	1500	_	_	V/µs	9

^{*5} When measuring output and transfer characteristics, connect a by-pass capacitor (0.01 μ F or more) between V_{CC} and GND near the **PC923**.

■ Truth Table

Input	O ₂ Output	Tr. 1	Tr. 2
ON	High level	ON	OFF
OFF	Low level	OFF	ON

^{*6} I_{FLH} represents forward current when output goes from low to high.

■ Test Circuit

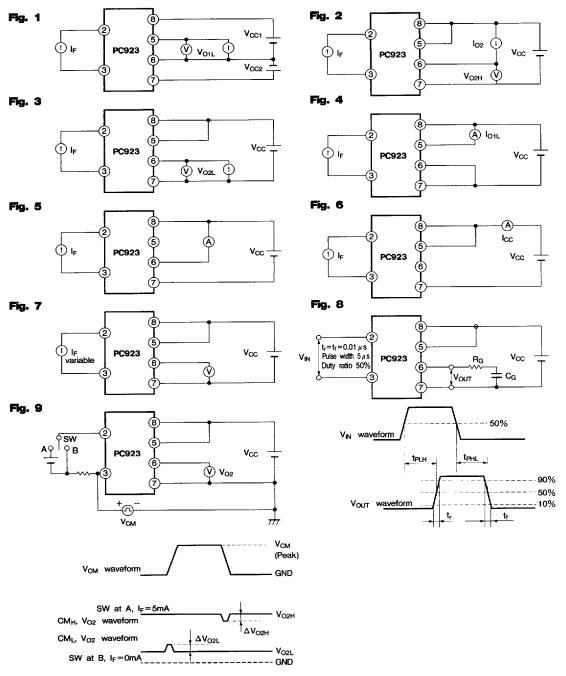


Fig.10 Forward Current vs. Ambient Temperature

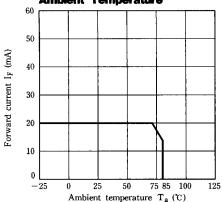


Fig.12 Forward Current vs. Forward Voltage

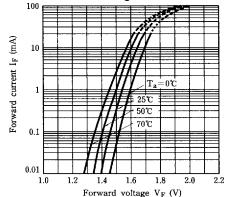


Fig.14 "Low→High" Relative Threshold Input Current vs. Ambient Temperature

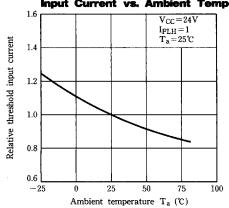


Fig.11 Power Dissipation vs. **Ambient Temperature**

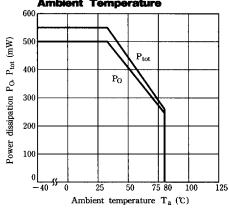


Fig.13 "Low→High" Relative Threshold Input Current vs. Supply Voltage

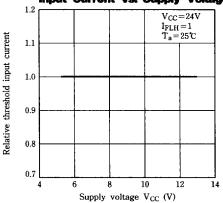


Fig.15 O1 Low Level Output Voltage vs.

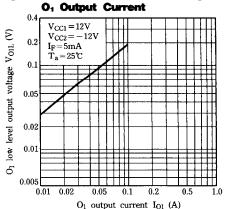


Fig.16 O₁ Low Level Output Voltage vs. Ambient Temperature

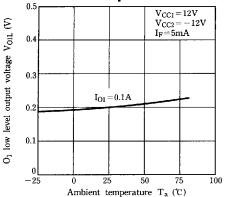


Fig.18 O₂ High Level Output Voltage vs. Ambient Temperature

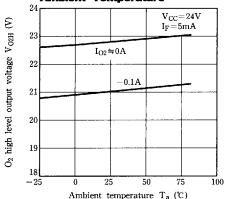


Fig.20 O₂ Low Level Output Voltage vs.
Ambient Temperature

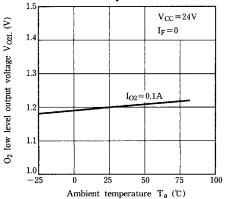


Fig.17 O₂ High Level Output Voltage vs. Supply Voltage

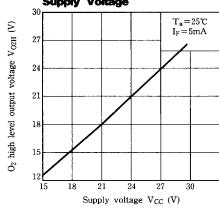


Fig.19 O₂ Low Level Output Voltage vs. O₂ Output Current

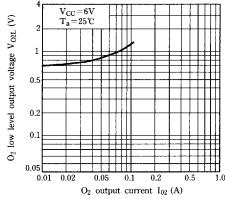


Fig.21 High Level Supply Current vs. Supply Voltage

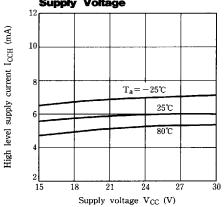


Fig.22 Low Level Supply Current vs. Supply Voltage

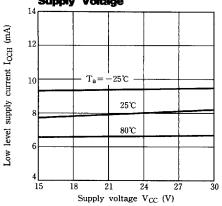


Fig.23 Propagation Delay Time vs. Forwrad current

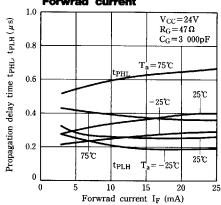
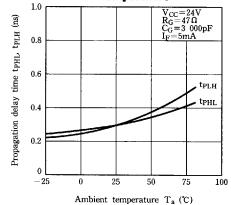
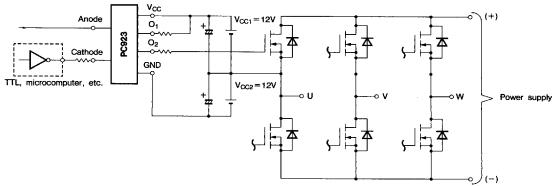




Fig.24 Propagation Delay Time vs.
Ambient Temperature

Application Circuit (For Power MOS-FET Driving Inverter)

• Please refer to the chapter "Precautions for Use." (Page 78 to 93)