MITSUBISHI RF POWER TRANSISTOR **2SC2904**

NPN EPITAXIAL PLANAR TYPE

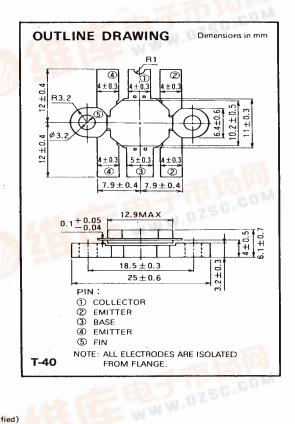
DISCRIPTION

2SC2904 is a silicon NPN epitaxial planar type transistor specifically designed for high power amplifiers in HF band.

FEATURES

High gain: Gpe ≥ 11.5dB

 $@V_{CC} = 12.5V, P_0 = 100W, f = 30MHz$


High ruggedness: Ability to withstand 20:1 load VSWR when operated at f = 30MHz

 $P_0 = 100W, V_{CC} = 15.2V$ Emitter ballansted construction

Low thermal resistance ceramic package with flange.

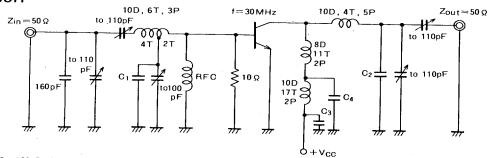
APPLICATION

Output stage of transmitter in HF band SSB mobile radio sets.

ABSOLUTE MAXIMUM RATINGS (T_C=25°C unless otherwise specified)

Symbol	Parameter	Conditions	Ratings	Unit
Vcво	Collector to base voltage		50	V
VEBO	Emitter to base voltage	Part of the second	5	V
VCEO	Collector to emitter voltage	R _{BE} = ∞	20	V
I _C	Collector current		22	А
Pc	Collector dissipation	Ta = 25°C	7.8	w
		T _C =25°C	200	W
Ti	Junction temperature		175	°C
Tstg	Storage temperature		-55 to 175	°C
Rth-c	Thermal resistance		0.75	°C/W

Note. Above parameters are guaranteed independently.

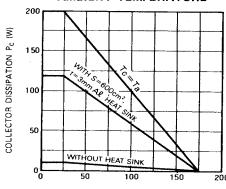

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise specified)

Symbol	Parameter		Limits			
		Test conditions	Min	Тур	Max	Unit
V(BR)EBO	Emitter to base breakdown voltage	I _E =20mA, I _C =0	5			٧
V(BR)CBO	Collector to base breakdown voltage	$I_C = 20 \text{mA}, I_E = 0$	50			V
V(BR)CEO	Collector to emitter breakdown voltage	I _C =100 mA, R _{BE} =∞	20			V
СВО	Collector cutoff current	V _{GB} =15V, I _E =0			5	mΑ
I _{EBO}	Emitter cutoff current	V _{EB} =3V, I _C =0			5	mA
hFE	DC forward current gain*	V _{CE} =10V, I _C =1A	10	50	180	
Po	Output power	f=30MHz, V _{CC} =12.5V, P _{in} =7W	100	110		w
$\eta_{\rm C}$	Collector efficiency		55	60		%

*Pulse test, $P_W = 150 \mu s$, duty=5%. Above parameters, ratings, limits and conditions are subject to change.

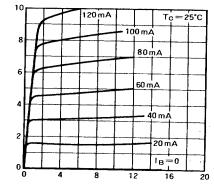
TEST CIRCUIT

- C1: 160pF, 160pF, 82pF in parallel
- C₂: 82pF, 82pF, 82pF in parallel

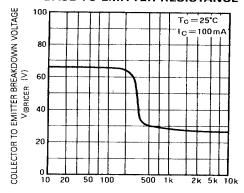

- C₂: 82pF, 82pF, 82pF in parallel C₃: 100pF, 4700pF, 4700pF, 0.22 μ F, 0.22 μ F, 0.22 μ F, 330 μ F in parallel C₄: 100pF, 220pF, 4700pF, 0.1 μ F, 330 μ F in parallel NOTES: All coils but L₁ are made from 1.5 ϕ mm silver plated copper wire, L₁ is made from 2.3 ϕ mm copper wire. P: Pitch of coil

COLLECTOR CURRENT Ic (A)

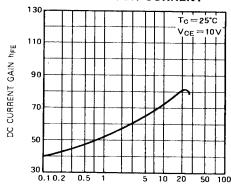
- D: Inner diameter of coil
- T: Turn number of coil
- Dimension is milli-meter


TYPICAL PERFORMANCE DATE

COLLECTOR DISSIPATION VS. **AMBIENT TEMPERATURE**


AMBIENT TEMPERATURE Ta (°C)

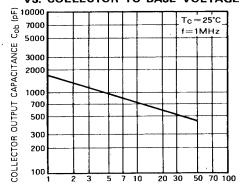
COLLECTOR CURRENT VS. COLLECTOR TO EMITTER VOLTAGE


COLLECTOR TO EMITTER VOLTAGE VCE (V)

COLLECTOR TO EMITTER BREAKDOWN VOLTAGE VS. BASE TO EMITTER RESISTANCE

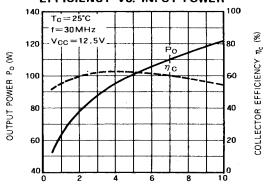
BASE TO EMITTER RESISTANCE RBE (Q)

DC CURRENT GAIN VS. **COLLECTOR CURRENT**

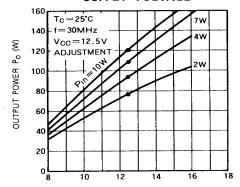


COLLECTOR CURRENT Ic (A)

MITSUBISHI RF POWER TRANSISTOR 2SC2904


NPN EPITAXIAL PLANAR TYPE

COLLECTOR OUTPUT CAPACITANCE VS. COLLECTOR TO BASE VOLTAGE


COLLECTOR TO BASE VOLTAGE VCB (V)

OUTPUT POWER, COLLECTOR EFFICIENCY VS. INPUT POWER

INPUT POWER Pin (W)

OUTPUT POWER VS. COLLECTOR SUPPLY VOLTAGE

COLLECTOR SUPPLY VOLTAGE Vcc (V)