

MOTOROLA

Three-Terminal Positive Voltage Regulators

These voltage regulators are monolithic integrated circuits designed as fixed-voltage regulators for a wide variety of applications including local, on-card regulation. These regulators employ internal current limiting, thermal shutdown, and safe-area compensation. With adequate heatsinking they can deliver output currents in excess of 1.0 A. Although designed primarily as a fixed voltage regulator, these devices can be used with external components to obtain adjustable voltages and currents.

- Output Current in Excess of 1.0 A
- No External Components Required
- Internal Thermal Overload Protection
- Internal Short Circuit Current Limiting
- Output Transistor Safe-Area Compensation
- Output Voltage Offered in 2% and 4% Tolerance
- Available in Surface Mount D²PAK and Standard 3-Lead Transistor Packages
- Previous Commercial Temperature Range has been Extended to a Junction Temperature Range of -40°C to +125°C

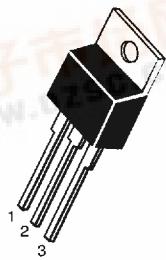
DEVICE TYPE/NOMINAL OUTPUT VOLTAGE

MC7805AC	5.0 V	MC7812C	12 V
LM340AT-5		LM340T-12	
MC7805C	6.0 V	MC7815AC	
LM340T-5		LM340AT-15	
MC7806AC	8.0 V	MC7815C	15 V
MC7806C		LM340T-15	
MC7808AC	9.0 V	MC7818AC	18 V
MC7808C		MC7818C	
MC7809C	12 V	MC7824AC	24 V
MC7812AC		MC7824C	
LM340AT-12			

ORDERING INFORMATION

Device	Output Voltage Tolerance	Operating Temperature Range	Package
MC78XXACT	2%	T _J = -40° to +125°C	Insertion Mount
LM340AT-XX			Surface Mount
MC78XXACD2T			Insertion Mount
MC78XXCT	4%		Surface Mount
LM340T-XX			
MC78XXCD2T			

 XX indicates nominal voltage.

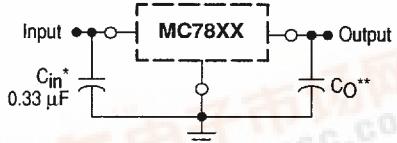

MC7800, MC7800A, LM340, LM340A Series

THREE-TERMINAL POSITIVE FIXED VOLTAGE REGULATORS

SEMICONDUCTOR TECHNICAL DATA

T SUFFIX
PLASTIC PACKAGE
CASE 221A

Heatsink surface
connected to Pin 2.


Pin 1. Input
2. Ground
3. Output

D2T SUFFIX
PLASTIC PACKAGE
CASE 936
(D²PAK)

Heatsink surface (shown as terminal 4 in
case outline drawing) is connected to Pin 2.

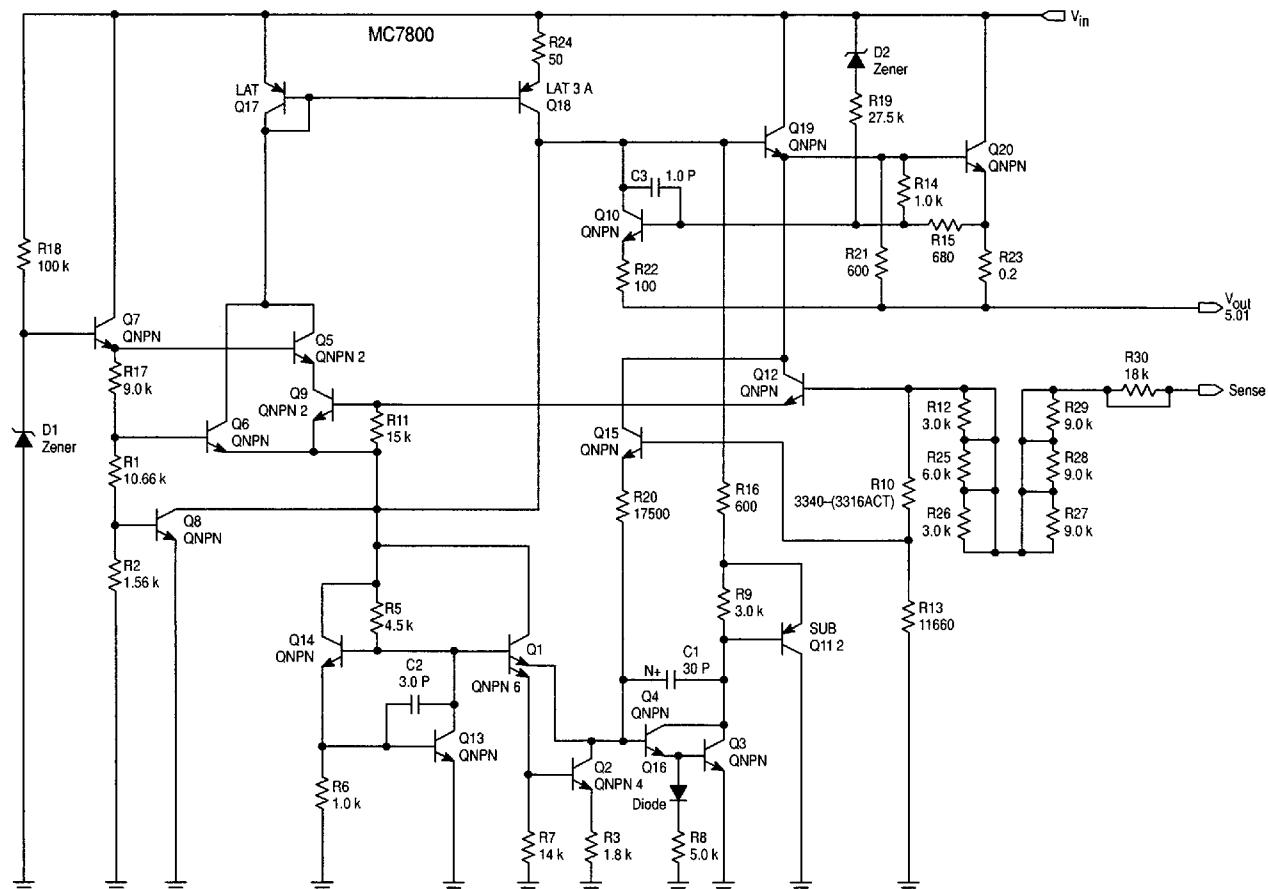
STANDARD APPLICATION

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.

XX, These two digits of the type number indicate nominal voltage.

* C_{in} is required if regulator is located an appreciable distance from power supply filter.

** C_o is not needed for stability; however, it does improve transient response. Values of less than 0.1 μF could cause instability.


MC7800, MC7800A, LM340, LM340A Series

MAXIMUM RATINGS ($T_A = 25^\circ\text{C}$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Input Voltage (5.0 – 18 V) (24 V)	V_I	35 40	Vdc
Power Dissipation Case 221A $T_A = 25^\circ\text{C}$ Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case	P_D $R_{\theta JA}$ $R_{\theta JC}$	Internally Limited 65 5.0	W $^\circ\text{C}/\text{W}$ $^\circ\text{C}/\text{W}$
Case 936 (D ² PAK) $T_A = 25^\circ\text{C}$ Thermal Resistance, Junction-to-Ambient Thermal Resistance, Junction-to-Case	P_D $R_{\theta JA}$ $R_{\theta JA}$	Internally Limited See Figure 13 5.0	W $^\circ\text{C}/\text{W}$ $^\circ\text{C}/\text{W}$
Storage Junction Temperature Range	T_{stg}	-65 to +150	$^\circ\text{C}$
Operating Junction Temperature	T_J	+150	$^\circ\text{C}$

NOTE: ESD data available upon request.

Representative Schematic Diagram

This device contains 22 active transistors.

MC7800, MC7800A, LM340, LM340A Series

ELECTRICAL CHARACTERISTICS ($V_{in} = 10$ V, $I_O = 500$ mA, $T_J = T_{low}$ to T_{high} [Note 1], unless otherwise noted.)

Characteristic	Symbol	MC7805C/LM340T-5			Unit
		Min	Typ	Max	
Output Voltage ($T_J = 25^\circ\text{C}$)	V_O	4.8	5.0	5.2	Vdc
Output Voltage (5.0 mA $\leq I_O \leq 1.0$ A, $P_D \leq 15$ W) 7.0 Vdc $\leq V_{in} \leq 20$ Vdc 8.0 Vdc $\leq V_{in} \leq 20$ Vdc	V_O	4.75 —	5.0 —	5.25 —	Vdc
Line Regulation (Note 2) 7.5 Vdc $\leq V_{in} \leq 20$ Vdc, 1.0 A 8.0 Vdc $\leq V_{in} \leq 12$ Vdc	Regline	— —	0.5 0.8	20 10	mV
Load Regulation (Note 2) 5.0 mA $\leq I_O \leq 1.0$ A 5.0 mA $\leq I_O \leq 1.5$ A ($T_A = 25^\circ\text{C}$)	Regload	— —	1.3 1.3	25 25	mV
Quiescent Current	I_B	—	3.2	6.5	mA
Quiescent Current Change 7.0 Vdc $\leq V_{in} \leq 25$ Vdc 5.0 mA $\leq I_O \leq 1.0$ A ($T_A = 25^\circ\text{C}$)	ΔI_B	— —	0.3 0.08	1.0 0.8	mA
Ripple Rejection 8.0 Vdc $\leq V_{in} \leq 18$ Vdc, $f = 120$ Hz	RR	62	83	—	dB
Dropout Voltage ($I_O = 1.0$ A, $T_J = 25^\circ\text{C}$)	$V_I - V_O$	—	2.0	—	Vdc
Output Noise Voltage ($T_A = 25^\circ\text{C}$) 10 Hz $\leq f \leq 100$ kHz	V_n	—	10	—	$\mu\text{V}/V_O$
Output Resistance $f = 1.0$ kHz	r_O	—	0.9	—	$\text{m}\Omega$
Short Circuit Current Limit ($T_A = 25^\circ\text{C}$) $V_{in} = 35$ Vdc	I_{SC}	—	0.6	—	A
Peak Output Current ($T_J = 25^\circ\text{C}$)	I_{max}	—	2.2	—	A
Average Temperature Coefficient of Output Voltage	TCV_O	—	-0.3	—	mV/°C

ELECTRICAL CHARACTERISTICS ($V_{in} = 10$ V, $I_O = 1.0$ A, $T_J = T_{low}$ to T_{high} [Note 1], unless otherwise noted.)

Characteristic	Symbol	MC7805AC/LM340AT-5			Unit
		Min	Typ	Max	
Output Voltage ($T_J = 25^\circ\text{C}$)	V_O	4.9	5.0	5.1	Vdc
Output Voltage (5.0 mA $\leq I_O \leq 1.0$ A, $P_D \leq 15$ W) 7.5 Vdc $\leq V_{in} \leq 20$ Vdc	V_O	4.8	5.0	5.2	Vdc
Line Regulation (Note 2) 7.5 Vdc $\leq V_{in} \leq 25$ Vdc, $I_O = 500$ mA 8.0 Vdc $\leq V_{in} \leq 12$ Vdc, $I_O = 1.0$ A 8.0 Vdc $\leq V_{in} \leq 12$ Vdc, $I_O = 1.0$ A, $T_J = 25^\circ\text{C}$ 7.3 Vdc $\leq V_{in} \leq 20$ Vdc, $I_O = 1.0$ A, $T_J = 25^\circ\text{C}$	Regline	— — — —	0.5 0.8 1.3 4.5	10 12 4.0 10	mV
Load Regulation (Note 2) 5.0 mA $\leq I_O \leq 1.5$ A, $T_J = 25^\circ\text{C}$ 5.0 mA $\leq I_O \leq 1.0$ A 250 mA $\leq I_O \leq 750$ mA	Regload	— — —	1.3 0.8 0.53	25 25 15	mV
Quiescent Current	I_B	—	3.2	6.0	mA
Quiescent Current Change 8.0 Vdc $\leq V_{in} \leq 25$ Vdc, $I_O = 500$ mA 7.5 Vdc $\leq V_{in} \leq 20$ Vdc, $T_J = 25^\circ\text{C}$ 5.0 mA $\leq I_O \leq 1.0$ A	ΔI_B	— — —	0.3 — 0.08	0.8 0.8 0.5	mA
Ripple Rejection 8.0 Vdc $\leq V_{in} \leq 18$ Vdc, $f = 120$ Hz, $I_O = 500$ mA	RR	68	83	—	dB
Dropout Voltage ($I_O = 1.0$ A, $T_J = 25^\circ\text{C}$)	$V_I - V_O$	—	2.0	—	Vdc

NOTES: 1. $T_{low} = -40^\circ\text{C}$ for MC78XXAC, C, LM340AT-XX, LM340T-XX $T_{high} = +125^\circ\text{C}$ for MC78XXAC, C, LM340AT-XX, LM340T-XX

2. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC7800, MC7800A, LM340, LM340A Series

ELECTRICAL CHARACTERISTICS (continued) ($V_{in} = 10$ V, $I_O = 1.0$ A, $T_J = T_{low}$ to T_{high} [Note 1], unless otherwise noted.)

Characteristic	Symbol	MC7805AC/LM340AT-5			Unit
		Min	Typ	Max	
Output Noise Voltage ($T_A = 25^\circ C$) 10 Hz $\leq f \leq 100$ kHz	V_n	—	10	—	$\mu V/V_O$
Output Resistance ($f = 1.0$ kHz)	r_O	—	0.9	—	$m\Omega$
Short Circuit Current Limit ($T_A = 25^\circ C$) $V_{in} = 35$ Vdc	I_{SC}	—	0.2	—	A
Peak Output Current ($T_J = 25^\circ C$)	I_{max}	—	2.2	—	A
Average Temperature Coefficient of Output Voltage	TCV_O	—	-0.3	—	$mV^\circ C$

NOTES: 1. $T_{low} = -40^\circ C$ for MC78XXAC, C, LM340AT-XX, LM340T-XX $T_{high} = +125^\circ C$ for MC78XXAC, C, LM340AT-XX, LM340T-XX

2. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

ELECTRICAL CHARACTERISTICS ($V_{in} = 11$ V, $I_O = 500$ mA, $T_J = T_{low}$ to T_{high} [Note 1], unless otherwise noted.)

Characteristic	Symbol	MC7806C			Unit
		Min	Typ	Max	
Output Voltage ($T_J = 25^\circ C$)	V_O	5.75	6.0	6.25	Vdc
Output Voltage (5.0 mA $\leq I_O \leq 1.0$ A, $P_D \leq 15$ W) 8.0 Vdc $\leq V_{in} \leq 21$ Vdc 9.0 Vdc $\leq V_{in} \leq 21$ Vdc	V_O	5.7 —	6.0 —	6.3 —	Vdc
Line Regulation, $T_J = 25^\circ C$ (Note 2) 8.0 Vdc $\leq V_{in} \leq 25$ Vdc 9.0 Vdc $\leq V_{in} \leq 13$ Vdc	Regline	— —	0.5 0.8	24 12	mV
Load Regulation, $T_J = 25^\circ C$ (Note 2) 5.0 mA $\leq I_O \leq 1.5$ A	Regload	—	1.3	30	mV
Quiescent Current ($T_J = 25^\circ C$)	I_B	—	3.3	8.0	mA
Quiescent Current Change 8.0 Vdc $\leq V_{in} \leq 25$ Vdc 5.0 mA $\leq I_O \leq 1.0$ A	ΔI_B	— —	0.3 0.08	1.3 0.5	mA
Ripple Rejection 9.0 Vdc $\leq V_{in} \leq 19$ Vdc, $f = 120$ Hz	RR	58	65	—	dB
Dropout Voltage ($I_O = 1.0$ A, $T_J = 25^\circ C$)	$V_I - V_O$	—	2.0	—	Vdc
Output Noise Voltage ($T_A = 25^\circ C$) 10 Hz $\leq f \leq 100$ kHz	V_n	—	10	—	$\mu V/V_O$
Output Resistance $f = 1.0$ kHz	r_O	—	0.9	—	$m\Omega$
Short Circuit Current Limit ($T_A = 25^\circ C$) $V_{in} = 35$ Vdc	I_{SC}	—	0.2	—	A
Peak Output Current ($T_J = 25^\circ C$)	I_{max}	—	2.2	—	A
Average Temperature Coefficient of Output Voltage	TCV_O	—	-0.3	—	$mV^\circ C$

NOTES: 1. $T_{low} = -40^\circ C$ for MC78XXAC, C $T_{high} = +125^\circ C$ for MC78XXAC, C

2. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC7800, MC7800A, LM340, LM340A Series

ELECTRICAL CHARACTERISTICS ($V_{in} = 11\text{ V}$, $I_O = 1.0\text{ A}$, $T_J = T_{low}$ to T_{high} [Note 1], unless otherwise noted.)

Characteristic	Symbol	MC7806AC			Unit
		Min	Typ	Max	
Output Voltage ($T_J = 25^\circ\text{C}$)	V_O	5.88	6.0	6.12	Vdc
Output Voltage ($5.0\text{ mA} \leq I_O \leq 1.0\text{ A}$, $P_D \leq 15\text{ W}$) $8.6\text{ Vdc} \leq V_{in} \leq 21\text{ Vdc}$	V_O	5.76	6.0	6.24	Vdc
Line Regulation (Note 2) $8.6\text{ Vdc} \leq V_{in} \leq 25\text{ Vdc}$, $I_O = 500\text{ mA}$ $9.0\text{ Vdc} \leq V_{in} \leq 13\text{ Vdc}$, $I_O = 1.0\text{ A}$	Regline	—	5.0 1.4	12 15	mV
Load Regulation (Note 2) $5.0\text{ mA} \leq I_O \leq 1.5\text{ A}$, $T_J = 25^\circ\text{C}$ $5.0\text{ mA} \leq I_O \leq 1.0\text{ A}$ $250\text{ mA} \leq I_O \leq 750\text{ mA}$	Regload	— — —	1.3 0.9 0.2	25 25 15	mV
Quiescent Current	I_B	—	3.3	6.0	mA
Quiescent Current Change $9.0\text{ Vdc} \leq V_{in} \leq 25\text{ Vdc}$, $I_O = 500\text{ mA}$ $9.0\text{ Vdc} \leq V_{in} \leq 21\text{ Vdc}$, $I_O = 1.0\text{ A}$, $T_J = 25^\circ\text{C}$ $5.0\text{ mA} \leq I_O \leq 1.0\text{ A}$	ΔI_B	— — —	— — —	0.8 0.8 0.5	mA
Ripple Rejection $9.0\text{ Vdc} \leq V_{in} \leq 19\text{ Vdc}$, $f = 120\text{ Hz}$, $I_O = 500\text{ mA}$	RR	58	65	—	dB
Dropout Voltage ($I_O = 1.0\text{ A}$, $T_J = 25^\circ\text{C}$)	$V_I - V_O$	—	2.0	—	Vdc
Output Noise Voltage ($T_A = 25^\circ\text{C}$) $10\text{ Hz} \leq f \leq 100\text{ kHz}$	V_n	—	10	—	$\mu\text{V}/V_O$
Output Resistance ($f = 1.0\text{ kHz}$)	r_O	—	0.9	—	$\text{m}\Omega$
Short Circuit Current Limit ($T_A = 25^\circ\text{C}$) $V_{in} = 35\text{ Vdc}$	I_{SC}	—	0.2	—	A
Peak Output Current ($T_J = 25^\circ\text{C}$)	I_{max}	—	2.2	—	A
Average Temperature Coefficient of Output Voltage	TCV_O	—	-0.3	—	$\text{mV}/^\circ\text{C}$

ELECTRICAL CHARACTERISTICS ($V_{in} = 14\text{ V}$, $I_O = 500\text{ mA}$, $T_J = T_{low}$ to T_{high} [Note 1], unless otherwise noted.)

Characteristic	Symbol	MC7808C			Unit
		Min	Typ	Max	
Output Voltage ($T_J = 25^\circ\text{C}$)	V_O	7.7	8.0	8.3	Vdc
Output Voltage ($5.0\text{ mA} \leq I_O \leq 1.0\text{ A}$, $P_D \leq 15\text{ W}$) $10.5\text{ Vdc} \leq V_{in} \leq 23\text{ Vdc}$	V_O	7.6	8.0	8.4	Vdc
Line Regulation, $T_J = 25^\circ\text{C}$, (Note 2) $10.5\text{ Vdc} \leq V_{in} \leq 25\text{ Vdc}$ $11\text{ Vdc} \leq V_{in} \leq 17\text{ Vdc}$	Regline	— —	6.0 1.7	32 16	mV
Load Regulation, $T_J = 25^\circ\text{C}$ (Note 2) $5.0\text{ mA} \leq I_O \leq 1.5\text{ A}$	Regload	—	1.4	35	mV
Quiescent Current	I_B	—	3.3	8.0	mA
Quiescent Current Change $10.5\text{ Vdc} \leq V_{in} \leq 25\text{ Vdc}$ $5.0\text{ mA} \leq I_O \leq 1.0\text{ A}$	ΔI_B	— —	— —	1.0 0.5	mA
Ripple Rejection $11.5\text{ Vdc} \leq V_{in} \leq 18\text{ Vdc}$, $f = 120\text{ Hz}$	RR	56	62	—	dB
Dropout Voltage ($I_O = 1.0\text{ A}$, $T_J = 25^\circ\text{C}$)	$V_I - V_O$	—	2.0	—	Vdc
Output Noise Voltage ($T_A = 25^\circ\text{C}$) $10\text{ Hz} \leq f \leq 100\text{ kHz}$	V_n	—	10	—	$\mu\text{V}/V_O$

NOTES: 1. $T_{low} = -40^\circ\text{C}$ for MC78XXAC, C $T_{high} = +125^\circ\text{C}$ for MC78XXAC, C

2. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC7800, MC7800A, LM340, LM340A Series

ELECTRICAL CHARACTERISTICS (continued) ($V_{in} = 14$ V, $I_O = 500$ mA, $T_J = T_{low}$ to T_{high} [Note 1], unless otherwise noted.)

Characteristic	Symbol	MC7808C			Unit
		Min	Typ	Max	
Output Resistance $f = 1.0$ kHz	r_O	—	0.9	—	$\text{m}\Omega$
Short Circuit Current Limit ($T_A = 25^\circ\text{C}$) $V_{in} = 35$ Vdc	I_{SC}	—	0.2	—	A
Peak Output Current ($T_J = 25^\circ\text{C}$)	I_{max}	—	2.2	—	A
Average Temperature Coefficient of Output Voltage	TCV_O	—	-0.4	—	$\text{mV}/^\circ\text{C}$

ELECTRICAL CHARACTERISTICS ($V_{in} = 14$ V, $I_O = 1.0$ A, $T_J = T_{low}$ to T_{high} [Note 1], unless otherwise noted.)

Characteristic	Symbol	MC7808AC			Unit
		Min	Typ	Max	
Output Voltage ($T_J = 25^\circ\text{C}$)	V_O	7.84	8.0	8.16	Vdc
Output Voltage (5.0 mA $\leq I_O \leq 1.0$ A, $P_D \leq 15$ W) 10.6 Vdc $\leq V_{in} \leq 23$ Vdc	V_O	7.7	8.0	8.3	Vdc
Line Regulation (Note 2) 10.6 Vdc $\leq V_{in} \leq 25$ Vdc, $I_O = 500$ mA 11 Vdc $\leq V_{in} \leq 17$ Vdc, $I_O = 1.0$ A 10.4 Vdc $\leq V_{in} \leq 23$ Vdc, $T_J = 25^\circ\text{C}$	r_{line}	— — —	6.0 1.7 5.0	15 18 15	mV
Load Regulation (Note 2) 5.0 mA $\leq I_O \leq 1.5$ A, $T_J = 25^\circ\text{C}$ 5.0 mA $\leq I_O \leq 1.0$ A 250 mA $\leq I_O \leq 750$ mA	r_{load}	— — —	1.4 1.0 0.22	25 25 15	mV
Quiescent Current	I_B	—	3.3	6.0	mA
Quiescent Current Change 11 Vdc $\leq V_{in} \leq 25$ Vdc, $I_O = 500$ mA 10.6 Vdc $\leq V_{in} \leq 23$ Vdc, $I_O = 1.0$ A, $T_J = 25^\circ\text{C}$ 5.0 mA $\leq I_O \leq 1.0$ A	ΔI_B	— — —	— — —	0.8 0.8 0.5	mA
Ripple Rejection 11.5 Vdc $\leq V_{in} \leq 21.5$ Vdc, $f = 120$ Hz, $I_O = 500$ mA	RR	56	62	—	dB
Dropout Voltage ($I_O = 1.0$ A, $T_J = 25^\circ\text{C}$)	$V_I - V_O$	—	2.0	—	Vdc
Output Noise Voltage ($T_A = 25^\circ\text{C}$) 10 Hz $\leq f \leq 100$ kHz	V_n	—	10	—	$\mu\text{V}/V_O$
Output Resistance $f = 1.0$ kHz	r_O	—	0.9	—	$\text{m}\Omega$
Short Circuit Current Limit ($T_A = 25^\circ\text{C}$) $V_{in} = 35$ Vdc	I_{SC}	—	0.2	—	A
Peak Output Current ($T_J = 25^\circ\text{C}$)	I_{max}	—	2.2	—	A
Average Temperature Coefficient of Output Voltage	TCV_O	—	-0.4	—	$\text{mV}/^\circ\text{C}$

NOTES: 1. $T_{low} = -40^\circ\text{C}$ for MC78XXAC, C $T_{high} = +125^\circ\text{C}$ for MC78XXAC, C

2. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC7800, MC7800A, LM340, LM340A Series

ELECTRICAL CHARACTERISTICS ($V_{in} = 15$ V, $I_O = 500$ mA, $T_J = T_{low}$ to T_{high} [Note 1], unless otherwise noted.)

Characteristic	Symbol	MC7809CT			Unit
		Min	Typ	Max	
Output Voltage ($T_J = 25^\circ\text{C}$)	V_O	8.65	9.0	9.35	Vdc
Output Voltage ($5.0 \text{ mA} \leq I_O \leq 1.0 \text{ A}$, $P_D \leq 15 \text{ W}$) $11.5 \text{ Vdc} \leq V_{in} \leq 24 \text{ Vdc}$	V_O	8.55	9.0	9.45	Vdc
Line Regulation, $T_J = 25^\circ\text{C}$ (Note 2) $11 \text{ Vdc} \leq V_{in} \leq 26 \text{ Vdc}$ $11.5 \text{ Vdc} \leq V_{in} \leq 17 \text{ Vdc}$	Regline	— —	6.2 1.8	32 16	mV
Load Regulation, $T_J = 25^\circ\text{C}$ (Note 2) $5.0 \text{ mA} \leq I_O \leq 1.5 \text{ A}$	Regload	—	1.5	35	mV
Quiescent Current	I_B	—	3.4	8.0	mA
Quiescent Current Change $11.5 \text{ Vdc} \leq V_{in} \leq 26 \text{ Vdc}$ $5.0 \text{ mA} \leq I_O \leq 1.0 \text{ A}$	ΔI_B	— —	— —	1.0 0.5	mA
Ripple Rejection $11.5 \text{ Vdc} \leq V_{in} \leq 21.5 \text{ Vdc}$, $f = 120 \text{ Hz}$	RR	56	61	—	dB
Dropout Voltage ($I_O = 1.0 \text{ A}$, $T_J = 25^\circ\text{C}$)	$V_I - V_O$	—	2.0	—	Vdc
Output Noise Voltage ($T_A = 25^\circ\text{C}$) $10 \text{ Hz} \leq f \leq 100 \text{ kHz}$	V_n	—	10	—	$\mu\text{V}/V_O$
Output Resistance $f = 1.0 \text{ kHz}$	r_O	—	1.0	—	$\text{m}\Omega$
Short Circuit Current Limit ($T_A = 25^\circ\text{C}$) $V_{in} = 35 \text{ Vdc}$	I_{SC}	—	0.2	—	A
Peak Output Current ($T_J = 25^\circ\text{C}$)	I_{max}	—	2.2	—	A
Average Temperature Coefficient of Output Voltage	TCV_O	—	-0.5	—	$\text{mV}/^\circ\text{C}$

ELECTRICAL CHARACTERISTICS ($V_{in} = 19$ V, $I_O = 500$ mA, $T_J = T_{low}$ to T_{high} [Note 1], unless otherwise noted.)

Characteristic	Symbol	MC7812C/LM340T-12			Unit
		Min	Typ	Max	
Output Voltage ($T_J = 25^\circ\text{C}$)	V_O	11.5	12	12.5	Vdc
Output Voltage ($5.0 \text{ mA} \leq I_O \leq 1.0 \text{ A}$, $P_D \leq 15 \text{ W}$) $14.5 \text{ Vdc} \leq V_{in} \leq 27 \text{ Vdc}$	V_O	11.4	12	12.6	Vdc
Line Regulation, $T_J = 25^\circ\text{C}$ (Note 2) $14.5 \text{ Vdc} \leq V_{in} \leq 30 \text{ Vdc}$ $16 \text{ Vdc} \leq V_{in} \leq 22 \text{ Vdc}$ $14.8 \text{ Vdc} \leq V_{in} \leq 27 \text{ Vdc}$, $I_O = 1.0 \text{ A}$	Regline	— — —	3.8 0.3 —	24 24 48	mV
Load Regulation, $T_J = 25^\circ\text{C}$ (Note 2) $5.0 \text{ mA} \leq I_O \leq 1.5 \text{ A}$	Regload	—	8.1	60	mV
Quiescent Current	I_B	—	3.4	6.5	mA
Quiescent Current Change $14.5 \text{ Vdc} \leq V_{in} \leq 30 \text{ Vdc}$, $I_O = 1.0 \text{ A}$, $T_J = 25^\circ\text{C}$ $15 \text{ Vdc} \leq V_{in} \leq 30 \text{ Vdc}$ $5.0 \text{ mA} \leq I_O \leq 1.0 \text{ A}$	ΔI_B	— — —	— — —	0.7 0.8 0.5	mA
Ripple Rejection $15 \text{ Vdc} \leq V_{in} \leq 25 \text{ Vdc}$, $f = 120 \text{ Hz}$	RR	55	60	—	dB
Dropout Voltage ($I_O = 1.0 \text{ A}$, $T_J = 25^\circ\text{C}$)	$V_I - V_O$	—	2.0	—	Vdc

NOTES: 1. $T_{low} = -40^\circ\text{C}$ for MC78XXAC, C, LM340AT-XX, LM340T-XX $T_{high} = +125^\circ\text{C}$ for MC78XXAC, C, LM340AT-XX, LM340T-XX

2. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC7800, MC7800A, LM340, LM340A Series

ELECTRICAL CHARACTERISTICS (continued) ($V_{in} = 19$ V, $I_O = 500$ mA, $T_J = T_{low}$ to T_{high} [Note 1], unless otherwise noted.)

Characteristic	Symbol	MC7812C/LM340T-12			Unit
		Min	Typ	Max	
Output Noise Voltage ($T_A = 25^\circ C$) 10 Hz $\leq f \leq 100$ kHz	V_n	—	10	—	$\mu V/V_O$
Output Resistance $f = 1.0$ kHz	r_O	—	1.1	—	$m\Omega$
Short Circuit Current Limit ($T_A = 25^\circ C$) $V_{in} = 35$ Vdc	I_{SC}	—	0.2	—	A
Peak Output Current ($T_J = 25^\circ C$)	I_{max}	—	2.2	—	A
Average Temperature Coefficient of Output Voltage	TCV_O	—	-0.8	—	$mV/^\circ C$

ELECTRICAL CHARACTERISTICS ($V_{in} = 19$ V, $I_O = 1.0$ A, $T_J = T_{low}$ to T_{high} [Note 1], unless otherwise noted.)

Characteristic	Symbol	MC7812AC/LM340AT-12			Unit
		Min	Typ	Max	
Output Voltage ($T_J = 25^\circ C$)	V_O	11.75	12	12.25	Vdc
Output Voltage (5.0 mA $\leq I_O \leq 1.0$ A, $P_D \leq 15$ W) 14.8 Vdc $\leq V_{in} \leq 27$ Vdc	V_O	11.5	12	12.5	Vdc
Line Regulation (Note 2) 14.8 Vdc $\leq V_{in} \leq 30$ Vdc, $I_O = 500$ mA 16 Vdc $\leq V_{in} \leq 22$ Vdc, $I_O = 1.0$ A 14.5 Vdc $\leq V_{in} \leq 27$ Vdc, $T_J = 25^\circ C$	Reg_{line}	—	3.8	18	mV
Load Regulation (Note 2) 5.0 mA $\leq I_O \leq 1.5$ A, $T_J = 25^\circ C$ 5.0 mA $\leq I_O \leq 1.0$ A	Reg_{load}	—	—	25	mV
Quiescent Current	I_B	—	3.4	6.0	mA
Quiescent Current Change 15 Vdc $\leq V_{in} \leq 30$ Vdc, $I_O = 500$ mA 14.8 Vdc $\leq V_{in} \leq 27$ Vdc, $T_J = 25^\circ C$ 5.0 mA $\leq I_O \leq 1.0$ A, $T_J = 25^\circ C$	ΔI_B	—	—	0.8	mA
Ripple Rejection 15 Vdc $\leq V_{in} \leq 25$ Vdc, $f = 120$ Hz, $I_O = 500$ mA	RR	55	60	—	dB
Dropout Voltage ($I_O = 1.0$ A, $T_J = 25^\circ C$)	$V_I - V_O$	—	2.0	—	Vdc
Output Noise Voltage ($T_A = 25^\circ C$) 10 Hz $\leq f \leq 100$ kHz	V_n	—	10	—	$\mu V/V_O$
Output Resistance ($f = 1.0$ kHz)	r_O	—	1.1	—	$m\Omega$
Short Circuit Current Limit ($T_A = 25^\circ C$) $V_{in} = 35$ Vdc	I_{SC}	—	0.2	—	A
Peak Output Current ($T_J = 25^\circ C$)	I_{max}	—	2.2	—	A
Average Temperature Coefficient of Output Voltage	TCV_O	—	-0.8	—	$mV/^\circ C$

NOTES: 1. $T_{low} = -40^\circ C$ for MC78XXAC, C, LM340AT-XX, LM340T-XX $T_{high} = +125^\circ C$ for MC78XXAC, C, LM340AT-XX, LM340T-XX

2. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC7800, MC7800A, LM340, LM340A Series

ELECTRICAL CHARACTERISTICS ($V_{in} = 23$ V, $I_O = 500$ mA, $T_J = T_{low}$ to T_{high} [Note 1], unless otherwise noted.)

Characteristic	Symbol	MC7815C/LM340T-15			Unit
		Min	Typ	Max	
Output Voltage ($T_J = 25^\circ\text{C}$)	V_O	14.4	15	15.6	Vdc
Output Voltage ($5.0 \text{ mA} \leq I_O \leq 1.0 \text{ A}$, $P_D \leq 15 \text{ W}$) $17.5 \text{ Vdc} \leq V_{in} \leq 30 \text{ Vdc}$	V_O	14.25	15	15.75	Vdc
Line Regulation, $T_J = 25^\circ\text{C}$ (Note 2) $17.9 \text{ Vdc} \leq V_{in} \leq 30 \text{ Vdc}$ $20 \text{ Vdc} \leq V_{in} \leq 26 \text{ Vdc}$	Regline	— —	8.5 3.0	30 28	mV
Load Regulation, $T_J = 25^\circ\text{C}$ (Note 2) $5.0 \text{ mA} \leq I_O \leq 1.5 \text{ A}$	Regload	—	1.8	55	mV
Quiescent Current	I_B	—	3.5	6.5	mA
Quiescent Current Change $17.5 \text{ Vdc} \leq V_{in} \leq 30 \text{ Vdc}$ $17.5 \text{ Vdc} \leq V_{in} \leq 30 \text{ Vdc}$, $I_O = 1.0 \text{ A}$, $T_J = 25^\circ\text{C}$ $5.0 \text{ mA} \leq I_O \leq 1.0 \text{ A}$	ΔI_B	— — —	— — —	0.8 0.7 0.5	mA
Ripple Rejection	RR	54	58	—	dB
Dropout Voltage ($I_O = 1.0 \text{ A}$, $T_J = 25^\circ\text{C}$)	$V_I - V_O$	—	2.0	—	Vdc
Output Noise Voltage ($T_A = 25^\circ\text{C}$) $10 \text{ Hz} \leq f \leq 100 \text{ kHz}$	V_n	—	10	—	$\mu\text{V}/\text{V}_O$
Output Resistance $f = 1.0 \text{ kHz}$	r_O	—	1.2	—	$\text{m}\Omega$
Short Circuit Current Limit ($T_A = 25^\circ\text{C}$) $V_{in} = 35 \text{ Vdc}$	I_{SC}	—	0.2	—	A
Peak Output Current ($T_J = 25^\circ\text{C}$)	I_{max}	—	2.2	—	A
Average Temperature Coefficient of Output Voltage	TCV_O	—	-1.0	—	$\text{mV}/^\circ\text{C}$

ELECTRICAL CHARACTERISTICS ($V_{in} = 23$ V, $I_O = 1.0$ A, $T_J = T_{low}$ to T_{high} [Note 1], unless otherwise noted.)

Characteristic	Symbol	MC7815AC/LM340AT-15			Unit
		Min	Typ	Max	
Output Voltage ($T_J = 25^\circ\text{C}$)	V_O	14.7	15	15.3	Vdc
Output Voltage ($5.0 \text{ mA} \leq I_O \leq 1.0 \text{ A}$, $P_D \leq 15 \text{ W}$) $17.9 \text{ Vdc} \leq V_{in} \leq 30 \text{ Vdc}$	V_O	14.4	15	15.6	Vdc
Line Regulation (Note 2) $17.9 \text{ Vdc} \leq V_{in} \leq 30 \text{ Vdc}$, $I_O = 500 \text{ mA}$ $20 \text{ Vdc} \leq V_{in} \leq 26 \text{ Vdc}$ $17.5 \text{ Vdc} \leq V_{in} \leq 30 \text{ Vdc}$, $I_O = 1.0 \text{ A}$, $T_J = 25^\circ\text{C}$	Regline	— — —	8.5 3.0 7.0	20 22 20	mV
Load Regulation (Note 2) $5.0 \text{ mA} \leq I_O \leq 1.5 \text{ A}$, $T_J = 25^\circ\text{C}$ $5.0 \text{ mA} \leq I_O \leq 1.0 \text{ A}$ $250 \text{ mA} \leq I_O \leq 750 \text{ mA}$	Regload	— — —	1.8 1.5 1.2	25 25 15	mV
Quiescent Current	I_B	—	3.5	6.0	mA
Quiescent Current Change $17.5 \text{ Vdc} \leq V_{in} \leq 30 \text{ Vdc}$, $I_O = 500 \text{ mA}$ $17.5 \text{ Vdc} \leq V_{in} \leq 30 \text{ Vdc}$, $I_O = 1.0 \text{ A}$, $T_J = 25^\circ\text{C}$ $5.0 \text{ mA} \leq I_O \leq 1.0 \text{ A}$	ΔI_B	— — —	— — —	0.8 0.8 0.5	mA

NOTES: 1. $T_{low} = -40^\circ\text{C}$ for MC78XXAC, C, LM340AT-XX, LM340T-XX $T_{high} = +125^\circ\text{C}$ for MC78XXAC, C, LM340AT-XX, LM340T-XX

2. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC7800, MC7800A, LM340, LM340A Series

ELECTRICAL CHARACTERISTICS (continued) ($V_{in} = 23$ V, $I_O = 1.0$ A, $T_J = T_{low}$ to T_{high} [Note 1], unless otherwise noted.)

Characteristic	Symbol	MC7815AC/LM340AT-15			Unit
		Min	Typ	Max	
Ripple Rejection 18.5 Vdc $\leq V_{in} \leq 28.5$ Vdc, $f = 120$ Hz, $I_O = 500$ mA	RR	60	80	—	dB
Dropout Voltage ($I_O = 1.0$ A, $T_J = 25^\circ$ C)	$V_I - V_O$	—	2.0	—	Vdc
Output Noise Voltage ($T_A = 25^\circ$ C) 10 Hz $\leq f \leq 100$ kHz	V_n	—	10	—	μ V/ V_O
Output Resistance $f = 1.0$ kHz	r_O	—	1.2	—	$m\Omega$
Short Circuit Current Limit ($T_A = 25^\circ$ C) $V_{in} = 35$ Vdc	I_{SC}	—	0.2	—	A
Peak Output Current ($T_J = 25^\circ$ C)	I_{max}	—	2.2	—	A
Average Temperature Coefficient of Output Voltage	TCV_O	—	-1.0	—	$mV/^\circ$ C

ELECTRICAL CHARACTERISTICS ($V_{in} = 27$ V, $I_O = 500$ mA, $T_J = T_{low}$ to T_{high} [Note 1], unless otherwise noted.)

Characteristic	Symbol	MC7818C			Unit
		Min	Typ	Max	
Output Voltage ($T_J = 25^\circ$ C)	V_O	17.3	18	18.7	Vdc
Output Voltage (5.0 mA $\leq I_O \leq 1.0$ A, $P_D \leq 15$ W) 21 Vdc $\leq V_{in} \leq 33$ Vdc	V_O	17.1	18	18.9	Vdc
Line Regulation, (Note 2) 21 Vdc $\leq V_{in} \leq 33$ Vdc 24 Vdc $\leq V_{in} \leq 30$ Vdc	$Regline$	—	9.5	50	mV
Load Regulation, (Note 2) 5.0 mA $\leq I_O \leq 1.5$ A	$Regload$	—	2.0	55	mV
Quiescent Current	I_B	—	3.5	6.5	mA
Quiescent Current Change 21 Vdc $\leq V_{in} \leq 33$ Vdc 5.0 mA $\leq I_O \leq 1.0$ A	ΔI_B	—	—	1.0	mA
—		—	—	0.5	
Ripple Rejection 22 Vdc $\leq V_{in} \leq 33$ Vdc, $f = 120$ Hz	RR	53	57	—	dB
Dropout Voltage ($I_O = 1.0$ A, $T_J = 25^\circ$ C)	$V_I - V_O$	—	2.0	—	Vdc
Output Noise Voltage ($T_A = 25^\circ$ C) 10 Hz $\leq f \leq 100$ kHz	V_n	—	10	—	μ V/ V_O
Output Resistance $f = 1.0$ kHz	r_O	—	1.3	—	$m\Omega$
Short Circuit Current Limit ($T_A = 25^\circ$ C) $V_{in} = 35$ Vdc	I_{SC}	—	0.2	—	A
Peak Output Current ($T_J = 25^\circ$ C)	I_{max}	—	2.2	—	A
Average Temperature Coefficient of Output Voltage	TCV_O	—	-1.5	—	$mV/^\circ$ C

NOTES: 1. $T_{low} = -40^\circ$ C for MC78XXAC, C $T_{high} = +125^\circ$ C for MC78XXAC, C

2. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC7800, MC7800A, LM340, LM340A Series

ELECTRICAL CHARACTERISTICS ($V_{in} = 27$ V, $I_O = 1.0$ A, $T_J = T_{low}$ to T_{high} [Note 1], unless otherwise noted.)

Characteristic	Symbol	MC7818AC			Unit
		Min	Typ	Max	
Output Voltage ($T_J = 25^\circ\text{C}$)	V_O	17.64	18	18.36	Vdc
Output Voltage ($5.0 \text{ mA} \leq I_O \leq 1.0 \text{ A}, P_D \leq 15 \text{ W}$) $21 \text{ Vdc} \leq V_{in} \leq 33 \text{ Vdc}$	V_O	17.3	18	18.7	Vdc
Line Regulation (Note 2) $21 \text{ Vdc} \leq V_{in} \leq 33 \text{ Vdc}, I_O = 500 \text{ mA}$ $24 \text{ Vdc} \leq V_{in} \leq 30 \text{ Vdc}, I_O = 1.0 \text{ A}$ $24 \text{ Vdc} \leq V_{in} \leq 30 \text{ Vdc}, I_O = 1.0 \text{ A}, T_J = 25^\circ\text{C}$ $20.6 \text{ Vdc} \leq V_{in} \leq 33 \text{ Vdc}, I_O = 1.0 \text{ A}, T_J = 25^\circ\text{C}$	Regline	—	9.5 3.2 3.2 8.0	22 25 10.5 22	mV
Load Regulation (Note 2) $5.0 \text{ mA} \leq I_O \leq 1.5 \text{ A}, T_J = 25^\circ\text{C}$ $5.0 \text{ mA} \leq I_O \leq 1.0 \text{ A}$ $250 \text{ mA} \leq I_O \leq 750 \text{ mA}$	Regload	—	2.0 1.8 1.5	25 25 15	mV
Quiescent Current	I_B	—	3.5	6.0	mA
Quiescent Current Change $21 \text{ Vdc} \leq V_{in} \leq 33 \text{ Vdc}, I_O = 500 \text{ mA}$ $21.5 \text{ Vdc} \leq V_{in} \leq 30 \text{ Vdc}, T_J = 25^\circ\text{C}$ $5.0 \text{ mA} \leq I_O \leq 1.0 \text{ A}$	ΔI_B	— — —	—	0.8 0.8 0.5	mA
Ripple Rejection $22 \text{ Vdc} \leq V_{in} \leq 32 \text{ Vdc}, f = 120 \text{ Hz}, I_O = 500 \text{ mA}$	RR	53	57	—	dB
Dropout Voltage ($I_O = 1.0 \text{ A}, T_J = 25^\circ\text{C}$)	$V_I - V_O$	—	2.0	—	Vdc
Output Noise Voltage ($T_A = 25^\circ\text{C}$) $10 \text{ Hz} \leq f \leq 100 \text{ kHz}$	V_n	—	10	—	$\mu\text{V}/V_O$
Output Resistance $f = 1.0 \text{ kHz}$	r_O	—	1.3	—	$\text{m}\Omega$
Short Circuit Current Limit ($T_A = 25^\circ\text{C}$) $V_{in} = 35 \text{ Vdc}$	I_{SC}	—	0.2	—	A
Peak Output Current ($T_J = 25^\circ\text{C}$)	I_{max}	—	2.2	—	A
Average Temperature Coefficient of Output Voltage	TCV_O	—	-1.5	—	$\text{mV}/^\circ\text{C}$

ELECTRICAL CHARACTERISTICS ($V_{in} = 33$ V, $I_O = 500$ mA, $T_J = T_{low}$ to T_{high} [Note 1], unless otherwise noted.)

Characteristic	Symbol	MC7824C			Unit
		Min	Typ	Max	
Output Voltage ($T_J = 25^\circ\text{C}$)	V_O	23	24	25	Vdc
Output Voltage ($5.0 \text{ mA} \leq I_O \leq 1.0 \text{ A}, P_D \leq 15 \text{ W}$) $27 \text{ Vdc} \leq V_{in} \leq 38 \text{ Vdc}$	V_O	22.8	24	25.2	Vdc
Line Regulation, (Note 2) $27 \text{ Vdc} \leq V_{in} \leq 38 \text{ Vdc}$ $30 \text{ Vdc} \leq V_{in} \leq 36 \text{ Vdc}$	Regline	— —	2.7 2.7	60 48	mV
Load Regulation, (Note 2) $5.0 \text{ mA} \leq I_O \leq 1.5 \text{ A}$	Regload	—	4.4	65	mV
Quiescent Current	I_B	—	3.6	6.5	mA
Quiescent Current Change $27 \text{ Vdc} \leq V_{in} \leq 38 \text{ Vdc}$ $5.0 \text{ mA} \leq I_O \leq 1.0 \text{ A}$	ΔI_B	— —	—	1.0 0.5	mA

NOTES: 1. $T_{low} = -40^\circ\text{C}$ for MC78XXAC, C $T_{high} = +125^\circ\text{C}$ for MC78XXAC, C

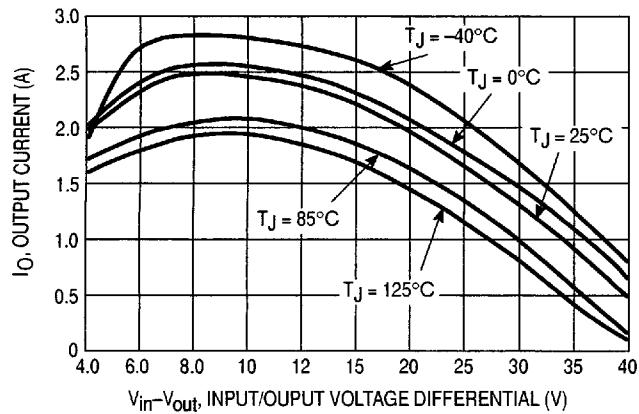
2. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC7800, MC7800A, LM340, LM340A Series

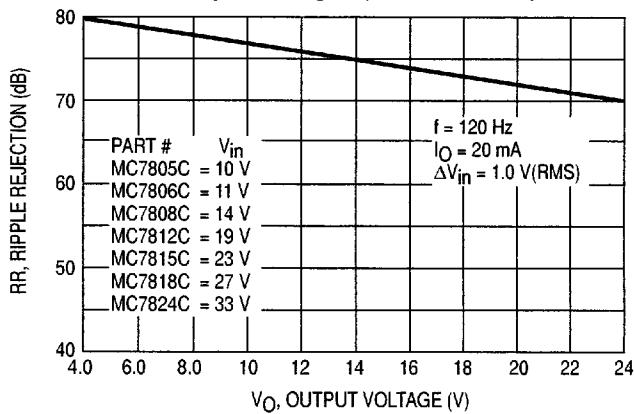
ELECTRICAL CHARACTERISTICS (continued) ($V_{in} = 33$ V, $I_O = 500$ mA, $T_J = T_{low}$ to T_{high} [Note 1], unless otherwise noted.)

Characteristic	Symbol	MC7824C			Unit
		Min	Typ	Max	
Ripple Rejection 28 Vdc $\leq V_{in} \leq 38$ Vdc, $f = 120$ Hz	RR	50	54	—	dB
Dropout Voltage ($I_O = 1.0$ A, $T_J = 25^\circ$ C)	$V_I - V_O$	—	2.0	—	Vdc
Output Noise Voltage ($T_A = 25^\circ$ C) 10 Hz $\leq f \leq 100$ kHz	V_n	—	10	—	μ V/V O
Output Resistance $f = 1.0$ kHz	r_O	—	1.4	—	$m\Omega$
Short Circuit Current Limit ($T_A = 25^\circ$ C) $V_{in} = 35$ Vdc	I_{SC}	—	0.2	—	A
Peak Output Current ($T_J = 25^\circ$ C)	I_{max}	—	2.2	—	A
Average Temperature Coefficient of Output Voltage	TCV_O	—	-2.0	—	$mV/^\circ$ C

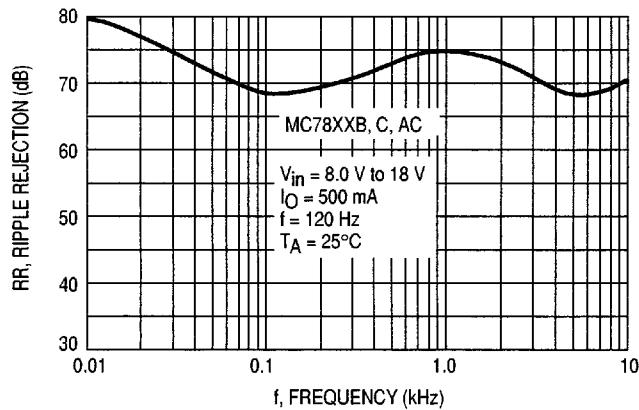
ELECTRICAL CHARACTERISTICS ($V_{in} = 33$ V, $I_O = 1.0$ A, $T_J = T_{low}$ to T_{high} [Note 1], unless otherwise noted.)

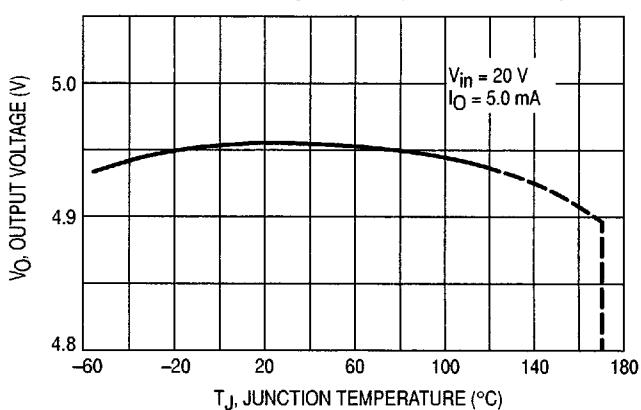

Characteristic	Symbol	MC7824AC			Unit
		Min	Typ	Max	
Output Voltage ($T_J = 25^\circ$ C)	V_O	23.5	24	24.5	Vdc
Output Voltage (5.0 mA $\leq I_O \leq 1.0$ A, $P_D \leq 15$ W) 27.3 Vdc $\leq V_{in} \leq 38$ Vdc	V_O	23.2	24	25.8	Vdc
Line Regulation (Note 2) 27 Vdc $\leq V_{in} \leq 38$ Vdc, $I_O = 500$ mA 30 Vdc $\leq V_{in} \leq 36$ Vdc, $I_O = 1.0$ A 30 Vdc $\leq V_{in} \leq 36$ Vdc, $T_J = 25^\circ$ C 26.7 Vdc $\leq V_{in} \leq 38$ Vdc, $I_O = 1.0$ A, $T_J = 25^\circ$ C	Regline	— — — —	11.5 3.8 3.8 10	25 28 12 25	mV
Load Regulation (Note 2) 5.0 mA $\leq I_O \leq 1.5$ A, $T_J = 25^\circ$ C 5.0 mA $\leq I_O \leq 1.0$ A 250 mA $\leq I_O \leq 750$ mA	Regload	— — —	2.1 2.0 1.8	15 25 15	mV
Quiescent Current	I_B	—	3.6	6.0	mA
Quiescent Current Change 27.3 Vdc $\leq V_{in} \leq 38$ Vdc, $I_O = 500$ mA 27 Vdc $\leq V_{in} \leq 38$ Vdc, $T_J = 25^\circ$ C 5.0 mA $\leq I_O \leq 1.0$ A	ΔI_B	— — —	— — —	0.8 0.8 0.5	mA
Ripple Rejection 28 Vdc $\leq V_{in} \leq 38$ Vdc, $f = 120$ Hz, $I_O = 500$ mA	RR	45	54	—	dB
Dropout Voltage ($I_O = 1.0$ A, $T_J = 25^\circ$ C)	$V_I - V_O$	—	2.0	—	Vdc
Output Noise Voltage ($T_A = 25^\circ$ C) 10 Hz $\leq f \leq 100$ kHz	V_n	—	10	—	μ V/V O
Output Resistance ($f = 1.0$ kHz)	r_O	—	1.4	—	$m\Omega$
Short Circuit Current Limit ($T_A = 25^\circ$ C) $V_{in} = 35$ Vdc	I_{SC}	—	0.2	—	A
Peak Output Current ($T_J = 25^\circ$ C)	I_{max}	—	2.2	—	A
Average Temperature Coefficient of Output Voltage	TCV_O	—	-2.0	—	$mV/^\circ$ C

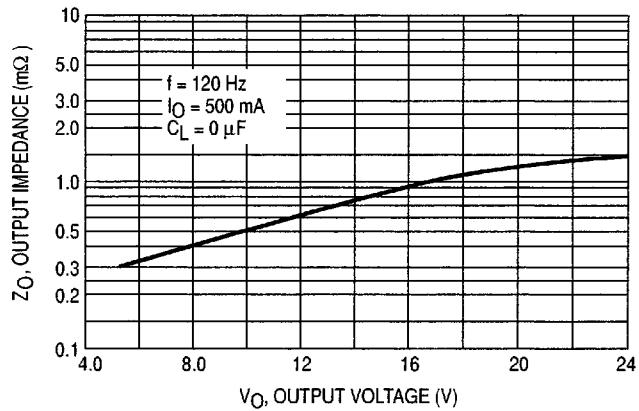
NOTES: 1. $T_{low} = -40^\circ$ C for MC78XXAC, $C = T_{high} = +125^\circ$ C for MC78XXAC, C


2. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty cycle is used.

MC7800, MC7800A, LM340, LM340A Series


Figure 1. Peak Output Current as a Function of Input/Output Differential Voltage (MC78XXC, AC)


Figure 2. Ripple Rejection as a Function of Output Voltages (MC78XXC, AC)


Figure 3. Ripple Rejection as a Function of Frequency (MC78XXC, AC)

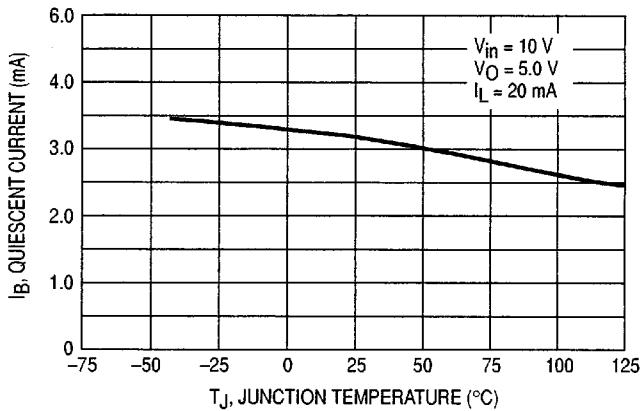
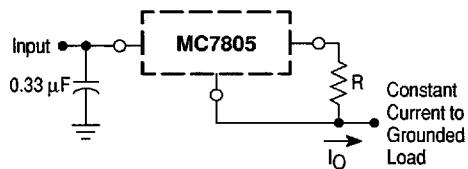

Figure 4. Output Voltage as a Function of Junction Temperature (MC7805C, AC)

Figure 5. Output Impedance as a Function of Output Voltage (MC78XXC, AC)

Figure 6. Quiescent Current as a Function of Temperature (MC78XXC, AC)

MC7800, MC7800A, LM340, LM340A Series APPLICATIONS INFORMATION

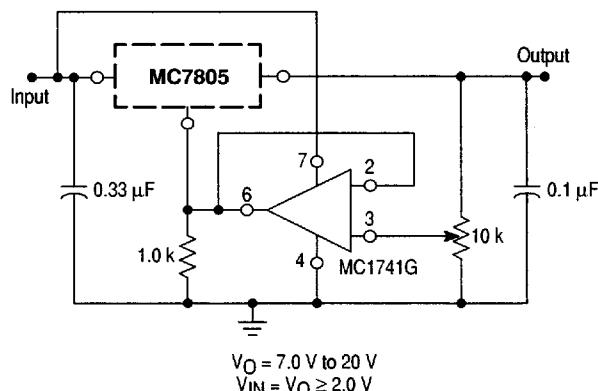

Design Considerations

The MC7800 Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition, Internal Short Circuit Protection that limits the maximum current the circuit will pass, and Output Transistor Safe-Area Compensation that reduces the output short circuit current as the voltage across the pass transistor is increased.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long

wire lengths, or if the output load capacitance is large. An input bypass capacitor should be selected to provide good high-frequency characteristics to insure stable operation under all load conditions. A 0.33 μ F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Normally good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead.

Figure 7. Current Regulator

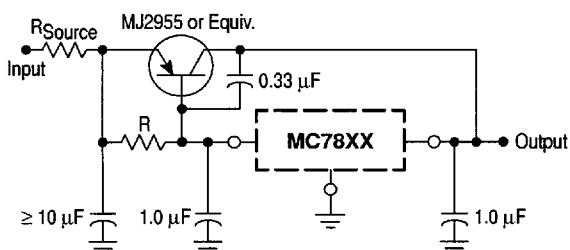

The MC7800 regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC7805C is chosen in this application. Resistor R determines the current as follows:

$$I_O = \frac{5.0 \text{ V}}{R} + I_B$$

$I_B \approx 3.2 \text{ mA}$ over line and load changes.

For example, a 1.0 A current source would require R to be a 5.0 Ω , 10 W resistor and the output voltage compliance would be the input voltage less 7.0 V.

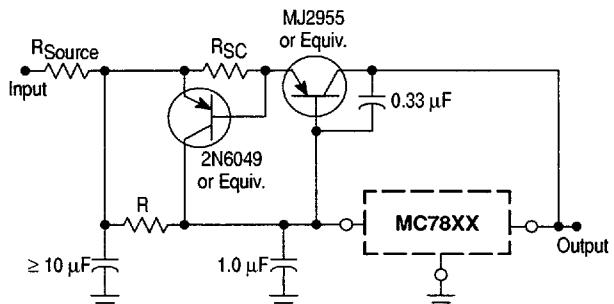
Figure 8. Adjustable Output Regulator



$$V_O = 7.0 \text{ V to } 20 \text{ V}$$

$$V_{IN} = V_O \geq 2.0 \text{ V}$$

The addition of an operational amplifier allows adjustment to higher or intermediate values while retaining regulation characteristics. The minimum voltage obtainable with this arrangement is 2.0 V greater than the regulator voltage.


Figure 9. Current Boost Regulator

$XX = 2$ digits of type number indicating voltage.

The MC7800 series can be current boosted with a PNP transistor. The MJ2955 provides current to 5.0 A. Resistor R in conjunction with the V_{BE} of the PNP determines when the pass transistor begins conducting; this circuit is not short circuit proof. Input/output differential voltage minimum is increased by V_{BE} of the pass transistor.

Figure 10. Short Circuit Protection

$XX = 2$ digits of type number indicating voltage.

The circuit of Figure 9 can be modified to provide supply protection against short circuits by adding a short circuit sense resistor, R_{SC} , and an additional PNP transistor. The current sensing PNP must be able to handle the short circuit current of the three-terminal regulator. Therefore, a four-ampere plastic power transistor is specified.

MC7800, MC7800A, LM340, LM340A Series

Figure 11. Worst Case Power Dissipation versus Ambient Temperature (Case 221A)

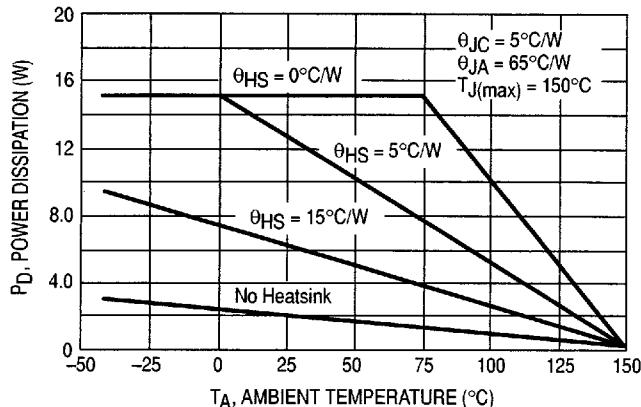


Figure 12. Input Output Differential as a Function of Junction Temperature (MC78XXC, AC)

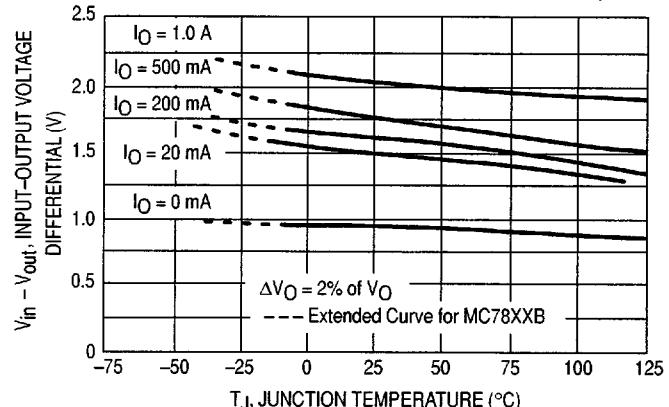
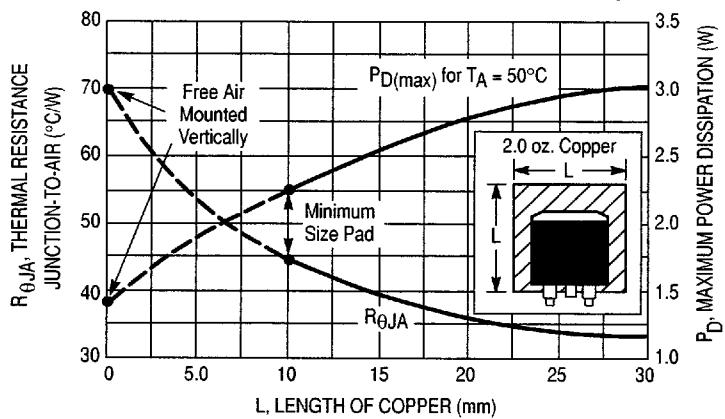



Figure 13. D²PAK Thermal Resistance and Maximum Power Dissipation versus P.C.B. Copper Length

DEFINITIONS

Line Regulation – The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected.

Load Regulation – The change in output voltage for a change in load current at constant chip temperature.

Maximum Power Dissipation – The maximum total device dissipation for which the regulator will operate within specifications.

Quiescent Current – That part of the input current that is not delivered to the load.

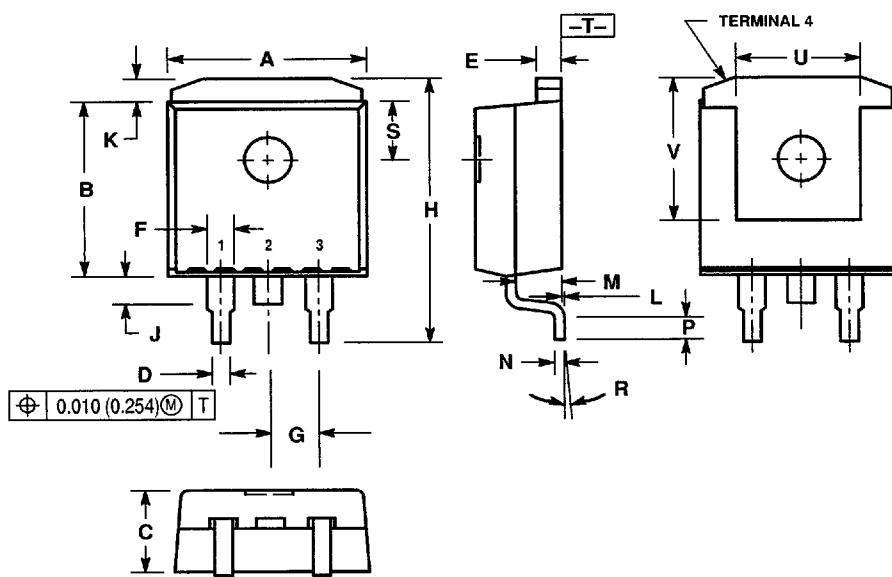
Output Noise Voltage – The rms ac voltage at the output, with constant load and no input ripple, measured over a specified frequency range.

Long Term Stability – Output voltage stability under accelerated life test conditions with the maximum rated voltage listed in the devices' electrical characteristics and maximum power dissipation.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

MC7800, MC7800A, LM340, LM340A Series

OUTLINE DIMENSIONS


T SUFFIX
PLASTIC PACKAGE
CASE 221A-06
ISSUE Y

NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIM Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRRREGULARITIES ARE ALLOWED.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.570	0.620	14.48	15.75
B	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
H	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	—	1.15	—
Z	—	0.080	—	2.04

D2T SUFFIX
PLASTIC PACKAGE
CASE 936-03
(D²PAK)
ISSUE B

NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. TAB CONTOUR OPTIONAL WITHIN DIMENSIONS A AND K.
 4. DIMENSIONS U AND V ESTABLISH A MINIMUM MOUNTING SURFACE FOR TERMINAL 4.
 5. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH OR GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED 0.025 (0.635) MAXIMUM.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.386	0.403	9.84	10.236
B	0.356	0.368	9.042	9.347
C	0.170	0.180	4.318	4.572
D	0.026	0.036	0.660	0.914
E	0.045	0.055	1.143	1.397
F	0.051	REF	1.295	REF
G	0.100	BSC	2.540	BSC
H	0.539	0.579	13.691	14.707
J	0.125	MAX	3.175	MAX
K	0.050	REF	1.270	REF
L	0.000	0.010	0.000	0.254
M	0.088	0.102	2.235	2.591
N	0.018	0.026	0.457	0.660
P	0.058	0.078	1.473	1.981
R	5°	REF	5°	REF
S	0.116	REF	2.946	REF
U	0.200	MIN	5.080	MIN
V	0.250	MIN	6.350	MIN

Mfax is a trademark of Motorola, Inc.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447

JAPAN: Nippon Motorola Ltd.; SPD, Strategic Planning Office, 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. 81-3-5487-8488

Customer Focus Center: 1-800-521-6274

Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 1-602-244-6609
Motorola Fax Back System – US & Canada ONLY 1-800-774-1848
– <http://sps.motorola.com/mfax/>

HOME PAGE: <http://motorola.com/sps/>

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

MOTOROLA

◊

6367252 0100743 931

84003

MC7800/D

16