Features

- Supply voltage up to 40 V
- R_{DSon} typ. 0.5 Ω @ 25°C, max. 1Ω @ 150°C
- Up to 1.5 A output current
- Three high-side and three low-side drivers usable as single outputs or half bridges
- Capable to switch all kinds of loads such as DC motors, bulbs, resistors, capacitors and inductors
- PWM capability for each output controlled by external PWM signal
- No crossover current
- Very low quiescent current Is < 10 μA in stand-by mode over total temperature range
- · Outputs short-circuit protected
- Selective overtemperature protection for each switch and overtemperature prewarning
- Undervoltage protection
- Various diagnosis functions such as shorted output, open load, overtemperature and power-supply fail
- Serial data interface, daisy chain capable, up to 2 MHz clock frequency
- SO16 power package

T6819 / T6829 are fully protected driver interfaces designed in 0.8 µm BCDMOS technology. It is used to control up to 6 different loads by a microcontroller in automotive and industrial applications.

Each of the 3 high-side and 3 low-side drivers is capable to drive currents up to 1.5 A. Each driver is free configurable and can be controlled separately from a standard serial data interface. Therefore, all kinds of loads such as bulbs, resistors, capacitors and inductors can be combined. The IC design especially supports the applications of H-bridges to drive DC motors. The capability to control each output with an external PWM signal opens additional applications.

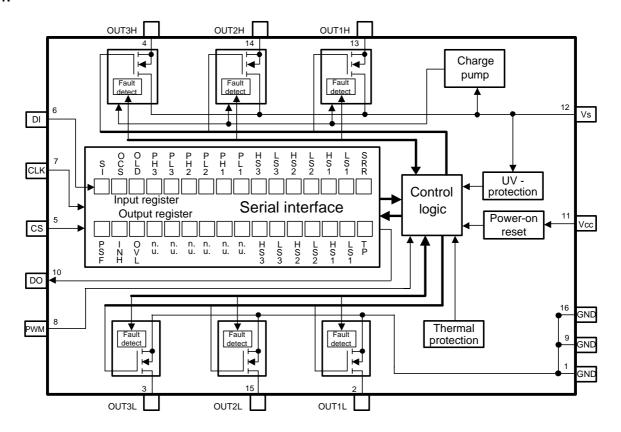
Protection is guaranteed in terms of short-circuit conditions, overtemperature and undervoltage. Various diagnosis functions and a very low quiescent current in stand-by mode opens a wide range of applications. Automotive qualification referring to conducted interferences, EMC protection and 2 kV ESD protection give added value and enhanced quality for demanding up-market applications.

Ordering Information

Extended Type Number	Package	Remarks
T6819-TBS	SO16	Power package, tubed
T6819-TBQ	SO16	Power package, taped and reeled
T6829-TBS	SO16	Power package with heat slug, tubed
T6829-TBQ	SO16	Power package with heat slug, taped and reeled

Dual Triple
DMOS Output
Driver with
Serial Input
Control

T6819 T6829



Rev. A1, 12-Nov-01

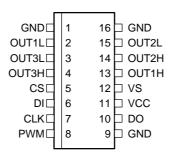

Block Diagram

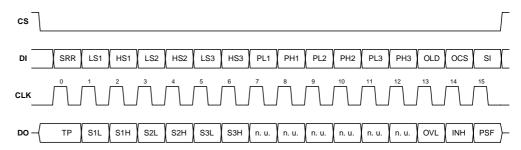
Figure 1.

Pin Configuration

Figure 2.

Pin Description

Pin	Symbol	Function
1	GND	T6819: Ground; reference potential; internal connection to Pin 9 and Pin 16; cooling tab T6829: Additional connection to heat slug
2	OUT1L	Low-side driver output 1; Power-MOS open drain with internal reverse diode; short-circuit protection; overtemperature protection; diagnosis for short and open load; PWM ability
3	OUT3L	Low-side driver output 3; see Pin 2
4	OUT3H	High-side driver output 3; Power-MOS open source with internal reverse diode; short-circuit protection; overtemperature protection; diagnosis for short and open load; PWM ability
5	CS	Chip select input; 5-V CMOS logic level input with internal pull up; low = serial communication is enabled, high = disabled
6	DI	Serial data input; 5-V CMOS logic level input with internal pull down; receives serial data from the control device; DI expects a 16-bit control word with LSB being transferred first
7	CLK	Serial clock input; 5-V CMOS logic level input with internal pull down; controls serial data input interface and internal shift register (f _{max} = 2 MHz)
8	PWM	PWM input; 5-V CMOS logic level input with internal pull down; receives PWM signal to control outputs which are selected for PWM mode by the serial data interface
9	GND	Ground; see Pin 1
10	DO	Serial data output; 5-V CMOS logic-level tristate output for output (status) register data; sends 16-bit status information to the μ C (LSB is transferred first); output will remain tristated, unless device is selected by CS = low, therefore, several ICs can operate on one data-output line only.
11	VCC	Logic supply voltage (5 V)
12	VS	Power supply for high-side output stages OUT1H, OUT2H, OUT3H, internal supply
13	OUT1H	High-side driver output 3; see PIN 4
14	OUT2H	High-side driver output 2; see PIN 4
15	OUT2L	Low-side driver output 2; see Pin 2
16	GND	Ground; see Pin 1



Functional Description

Serial Interface

Data transfer starts with the falling edge of the CS signal. Data must appear at DI synchronized to CLK and are accepted on the falling edge of the CLK signal. LSB (bit 0, SRR) has to be transferred first. Execution of new input data is enabled on the rising edge of the CS signal. When CS is high, Pin DO is in tristate condition. This output is enabled on the falling edge of CS. Output data will change their state with the rising edge of CLK and stay stable until the next rising edge of CLK appears. LSB (bit 0, TP) is transferred first.

Figure 3. Data transfer

Input Data Protocol

Bit	Input Register	Function
0	SRR	Status register reset (high = reset; the bits PSF and OVL in the output data register are set to low)
1	LS1	Controls output LS1 (high = switch output LS1 on)
2	HS1	Controls output HS1 (high = switch output HS1 on)
3	LS2	See LS1
4	HS2	See HS1
5	LS3	See LS1
6	HS3	See HS1
7	PL1	Output LS1 additionally controlled by PWM Input
8	PH1	Output HS1 additionally controlled by PWM Input
9	PL2	See PL1
10	PH2	See PH1
11	PL3	See PL1
12	PH3	See PH1
13	OLD	Open load detection (low = on)
14	ocs	Overcurrent shutdown (high = overcurrent shutdown is active)
15	SI	Software inhibit; low = stand by, high = normal operation (data transfer is not affected by stand by function because the digital part is still powered)

4 (16)

Output Data Protocol

Bit	Output (Status) Register	Function
0	TP	Temperature prewarning: high = warning
1	Status LS1	Normal operation: high = output is on, low = output is off Open load detection: high = open load, low = no open load (correct load condition is detected if the corresponding output is switched off); not affected by SRR
2	Status HS1	Normal operation: high = output is on, low = output is off Open load detection: high = open load, low = no open load (correct load condition is detected if the corresponding output is switched off); not affected by SRR
3	Status LS2	Description see LS1
4	Status HS2	Description see HS1
5	Status LS3	Description see LS1
6	Status HS3	Description see HS1
7	n. u.	Not used
8	n. u.	Not used
9	n. u.	Not used
10	n. u.	Not used
11	n. u.	Not used
12	n. u.	Not used
13	OVL	Overload detected: set high, when at least one output is switched off by a short circuit condition or an overtemperature event. Bits 1 to 6 can be used to detect the affected switch. (open-load detection bit OLD = high)
14	INH	Inhibit: this bit is controlled by software (bit SI in input register) High = standby, low = normal operation
15	PSF	Power-supply fail: undervoltage at Pin VS detected

After power-on reset, the input register has the following status

	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	SI	OCS	OLD	PH3	PL3	PH2	PL2	PH1	PL1	HS3	LS3	HS2	LS2	HS1	LS1	SRR
Ī	Н	Н	Н	L	L	L	L	L	L	L	L	L	L	L	L	L

Power-Supply Fail

In case of undervoltage at Pin VS the power-supply fail bit (PSF) in the output register is set and all outputs are disabled. An undervoltage condition is only detected if it occurs over the undervoltage detection delay time t_{dUV} . After the undervoltage occurred the outputs are enabled immediately. The PSF bit keeps high until it is reset by the SRR bit in the input register.

Open-Load Detection

f the open-load detection bit (OLD) is set to low, a pull-up current for each high-side switch and a pull-down current for each low-side switch is turned on (open-load detec-

tion current I_{HS1-3}, I_{LS1-3}). If the current through a high-side or low-side switch in ON-state does not reach the open-load detection threshold, the corresponding bit of the output in the output register is set to high.

Switching on an output stage with OLD bit set to low disables the open-load function for this output.

Overtemperature Protection

If the junction temperature at one ore more switches exceeds the thermal prewarning threshold $T_{jPW\,set}$, the temperature prewarning bit (TP) in the output register is set. When temperature falls below the thermal prewarning threshold $T_{jPW\,reset}$, the Bit TP is reset. The TP bit can be read without transferring a complete 16-bit data word: with CS = high to low the state of TP appears at Pin DO. After the μ C has read this information CS is set high and the data transfer is interrupted without affecting the state of input and output registers.

If the junction temperature at a switch exceeds the thermal shutdown threshold $T_{j \text{ switch off}}$, the affected output is disabled and the corresponding bit in the output register is set to low. Additional the overload detection bit (OVL) in the output register is set. The output can be enabled again when the temperature falls below the thermal shutdown threshold $T_{j \text{ switch on}}$ and writing a high to the SRR bit in the input register. Thermal prewarning and shutdown threshold have hysteresis.

Short-Circuit Protection

The output currents are limited by a current regulator. If the overcurrent shutdown bit (OCS) in the input register is set, the affected output is switched off after a short delay time (t_{dSd}) when the current exceeds the overcurrent limitation and shutdown threshold. In this case the overload detection bit (OVL) is set and the corresponding status bit in the output register is set to low. For OCS = low the overcurrent shutdown is inactive and the OVL bit is not set by an overcurrent. By writing a high to the SRR bit in the input register the OVL bit is reset and the disabled outputs are enabled.

Inhibit

To inhibit the T6819 / T6829 the INH bit in the input register must be set to zero.

In this case all output stages are turned off but the serial interface stays active. The current consumption is reduced to less than 10 μ A out of V_S and less than 20 μ A out of V_{CC}. The output stages can be activated again by bit SI = 1.

Absolute Maximum Ratings

All values refer to GND pins

Parameter		Symbol	Value	Unit
Supply voltage	Pin 12	V _{VS}	-0.3 to 40	V
Supply voltage t<0.5s; IS>-2A	Pin 12	V _{VS}	-1	V
Logic supply voltage	Pin 11	V _{vcc}	-0.3 to 7	V
Logic input voltage	Pins 5to 8	$V_{CS}, V_{DI}, V_{CLK}, V_{PWM}$	-0.3 to V _{VCC} +0.3	V
Logic output voltage	Pin 10	V _{DO}	-0.3 to V _{VCC} +0.3	V
Input current	Pins 5to 8	I _{CS} ,I _{DI} , I _{CLK} , I _{PWM}	-10 to +10	mA
Output current	Pin 10	I _{DO}	-10 to +10	mA
Output current	Pins 2 to 4 and 13 to 15	I _{Out3H} , I _{Out2H} , I _{Out1H} I _{Out3L} , I _{Out2L} , I _{Out1L}	Internal limited, see output specification	
Reverse conducting current (tpulse = 150 µs)	Pins 2 to 4 and 13 to 15 towards Pin 3	I _{Out3H} , I _{Out2H} , I _{Out1H} I _{Out3L} , I _{Out2L} , I _{Out1L}	17	А
Junction-temperature range		T _J	-40 to 150	°C
Storage-temperature range		T _{STG}	-55 to 150	°C

Thermal Resistance

Parameter	Test Conditions	Symbol	Value	Unit
T6819		·		
Junction – pin	Measured to GND Pins 1, 9, 16	R _{thJP}	30	K/W
Junction – ambient		R _{thJA}	65	K/W
T6829		<u>.</u>		
Junction – pin	Measured to heat slug, GND Pins 1, 9, 16	R _{thJP}	5	K/W
Junction – ambient		R _{thJA}	30	K/W

Operating Range

Parameter	Symbol	Value	Unit
Supply voltage	V _{VS}	V _{UV} 1) to 40	V
Logic supply voltage	V _{VCC}	4.75 to 5.25	V
Logic input voltage	V _{CS} , V _{DI} , V _{CLK} , V _{PVM}	-0.3 to V_{VCC}	V
Serial interface clock frequency	f _{CLK}	2	MHz
PWM input frequency	f _{PWM}	1	kHz
Junction-temperature range	T _j	-40 to 150	°C

Note: 1. Threshold for undervoltage detection

Noise and Surge Immunity

Parameter	Test Conditions	Value
Conducted interferences	ISO 7637-1	Level 4 1)
Interference suppression	VDE 0879 Part 3	Level 6
ESD (Human Body Model)	ESD S 5.1	2 kV
ESD (Machine Model)	JEDEC A115A	200 V

Electrical Characteristics

 $7.5~V < V_S < 40~V$; $4.75~V < V_{CC} < 5.25~V$; INH = High; $-40^{\circ}C < Tj < 150^{\circ}C$; unless otherwise specified, all values refer to GND pins.

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
1	Current Consumption								
1.1	Quiescent current (VS)	V _{VS} < 16 V, SI = low	12	I _{VS}		1	5	μA	А
1.2	Quiescent current (VCC)	4.75 V < V _{VCC} < 5.25 V, SI = low	11	I _{vcc}		60	100	μA	А
1.3	Supply current (VS)	V _{VS} < 16 V normal operating, one output stage on, no load	12	I _{VS}		6	10	mA	А
1.4	Supply current (VCC)	4.75 V < V _{VCC} < 5.25 V, normal operating	11	I _{vcc}		350	600	μА	А
2	Undervoltage Detection	on, Power-On Reset							
2.1	Power-on reset threshold		11	V _{VCC}	3.4	3.9	4.4	V	А
2.2	Power-on reset delay time	After switching on V _{CC}		t _{dPor}	30	95	160	μs	А
2.3	Undervoltage- detection threshold	V _{CC} = 5 V	12	V _{Uv}	5.5		7.0	V	А
2.4	Undervoltage- detection hysteresis	V _{CC} = 5 V	12	ΔV_{Uv}		0.6		V	А
2.5	Undervoltage- detection delay time			t _{dUV}	10		40	μs	А
3	Thermal Prewarning a	and Shutdown							
3.1	Thermal prewarning			T _{jPW set}	120	145	170	°C	В
3.2	Thermal prewarning			T _{jPW reset}	105	130	155	°C	В
3.3	Thermal prewarning hysteresis			ΔT _{jPW}		15		К	В
3.4	Thermal shutdown			T _{j switch off}	150	175	200	°C	В
3.5	Thermal shutdown			T _{j switch on}	135	160	185	°C	В
3.6	Thermal shutdown hysteresis			$\Delta T_{j \text{ switch off}}$		15		К	В
	*) Type means: A =100%	6 tested, B = 100% correl	ation test	ted, C = Chara	cterized or	n samples,	D = Desigr	paramete	r

Electrical Characteristics

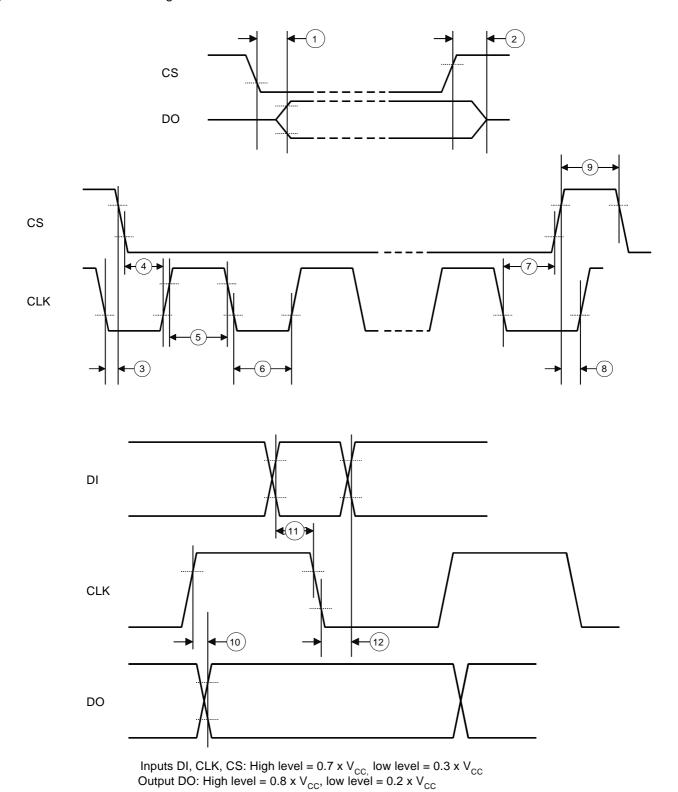
 $7.5~V < V_S < 40~V$; $4.75~V < V_{CC} < 5.25~V$; INH = High; $-40^{\circ}C < Tj < 150^{\circ}C$; unless otherwise specified, all values refer to GND pins.

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type
3.7	Ratio thermal shutdown / thermal prewarning			T _{j switch off /} T _{jPW set}	1.05	1.2			В
3.8	Ratio thermal shutdown / thermal prewarning			T _j switch on / T _{jPW reset}	1.05	1.2			В
4	Output Specification	(OUT1-OUT3)							
4.1	On resistance	I _{Out} = 1.5 A	2, 3, 15	R _{DS On L}			1	W	А
4.2	On resistance	I _{Out} = -1.5 A	4, 13, 14	R _{DS On H}			1	W	А
4.3	Source output leakage current	V _{Out1-3} = 0 V _, output stages off	4, 13, 14	I _{Out1-3}	-5			μA	А
4.4	Sink output leakage current	V _{Out1-3} = V _{VS} , output stages off	2, 3, 15	I _{Out1-3}			5	μA	А
4.5	High-side switch reverse diode forward voltage	I _{Out} = 1.5 A	4, 13, 14	V _{Out1-3-} V _{VS}			1.3	V	А
4.6	Low-side switch reverse diode forward voltage	I _{Out} = -1.5 A	2, 3, 15	V _{Out1-3}			1.3	V	А
4.7	Source overcurrent limitation and shutdown threshold		4, 13, 14	I _{Out1-3}	-2.5	-2	-1.5	А	А
4.8	Sink overcurrent limitation and shutdown threshold		2, 3, 15	I _{Out1-3}	1.5	2	2.5	А	А
4.9	Overcurrent shutdown delay time			t _{dSd}	10		40	μs	А
4.10	Source open load detection current	Input register bit 13 (OLD) = low, output off	4, 13, 14	I _{Out1-3}	-4	-2		mA	А
4.11	Sink open load detection current	Input register bit 13 (OLD) = low, output off	2, 3, 15	I _{Out1-3}		2	4	mA	А
4.12	Source output switch on delay 1)	$V_{VS} = 13 \text{ V},$ RLoad=30 Ω		t _{don}		5	15	μs	А
4.13	Sink output switch on delay 1)	$V_{VS} = 13 \text{ V},$ $R_{Load} = 30 \Omega$		t _{don}		15	25	μs	А
4.14	Source output switch off delay 1)	$V_{VS} = 13V$, $R_{Load} = 30 \Omega$		t _{doff}		5	15	μs	А
4.15	Sink output switch off delay 1)	$V_{VS} = 13V$, $R_{Load} = 30 \Omega$		t _{doff}		1	2	μs	А

Electrical Characteristics

 $7.5~V < V_S < 40~V$; $4.75~V < V_{CC} < 5.25~V$; INH = High; $-40^{\circ}C < Tj < 150^{\circ}C$; unless otherwise specified, all values refer to GND pins.

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*		
4.16	Dead time between corresponding high-and low-side switches	V_{VS} =13V, R_{Load} = 30 Ω		t _{don} -t _{doff}	1			μs	А		
5	Logic Inputs DI, CLK,	CS, PWM									
5.1	Input voltage low - evel threshold		5-8	V _{IL}	0.3 × V _{VCC}			V	А		
5.2	Input voltage high- level threshold		5-8	V_{IH}			0.7 × V _{VCC}	V	А		
5.3	Hysteresis of input voltage		5-7	ΔV_{I}	50		500	mV	А		
5.4	Pull-down current Pins DI, CLK, PWM	$V_{DI}, V_{CLK}, V_{PWM} = V_{CC}$	6, 7,8	I _{PD}	10		60	μA	А		
5.5	Pull-up current Pin CS	V _{CS} = 0 V	5	I _{PU}	-50		-10	μA	А		
5.6	Hysteresis of input voltage		8	ΔV_{I}	50		700	mV	А		
6	Serial Interface – Logi	ic Output DO									
6.1	Output-voltage low level	I _{OL} = 2mA	Pin 10	V_{DOL}			0.4	V	А		
6.2	Output-voltage high level	I _{OL} = -2mA	Pin 10	V_{DOH}	V _{VCC} - 0.7V			V	А		
6.3	Leakage current (tristate)	$V_{CS} = V_{CC}$ $0V < V_{DO} < V_{VCC}$	Pin 10	I _{DO}	-10		10	μA	А		
7	Inhibit Input – Timing										
7.1	Stand-by setup time			t _{INHSethl}			100	μs	Α		
8.2	Stand-by setup time			t _{INHSetlh}			100	μs	А		
	*) Type means: A =100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter										


Note: 1. Delay time between rising edge of CS after data transmission and switch on output stages to 90% of final level. Device not in stand-by for t >1ms

Serial Interface – Timing

Parameters	Test Conditions	Timing Chart No.	Symbol	Min.	Тур.	Max.	Unit
DO enable after CS falling edge	C _{DO} = 100 pF	1	t _{ENDO}			200	ns
DO disable after CS rising edge	C _{DO} = 100 pF	2	t _{DISDO}			200	ns
DO fall time	C _{DO} = 100 pF	-	t _{DOf}			100	ns
DO rise time	C _{DO} = 100 pF	-	t _{DOr}			100	ns
DO valid time	C _{DO} = 100 pF	10	t _{DOVal}			200	ns
CS setup time		4	t _{CSSethl}	225			ns
CS setup time		8	t _{CSSetIh}	225			ns
CS high time		9	t _{CSh}	500			ns
CLK high time		5	t _{CLKh}	225			ns
CLK low time		6	t _{CLKI}	225			ns
CLK period time		-	t _{CLKp}	500			ns
CLK setup time		7	t _{CLKSethI}	225			ns
CLK setup time		3	t _{CLKSetlh}	225			ns
DI setup time		11	t _{Diset}	40			ns
DI hold time		12	t _{DIHold}	40			ns

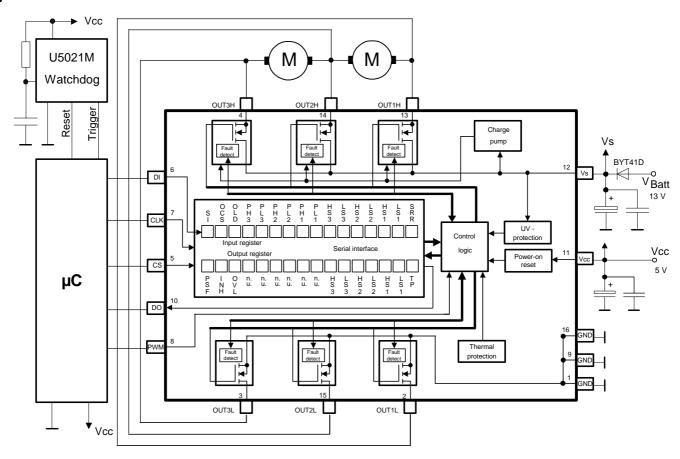


Figure 4. Serial interface timing with chart number

Application Circuit

Figure 5.

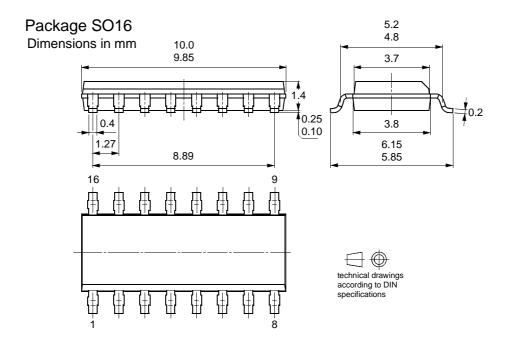
Application Notes

It is strongly recommended to connect the blocking capacitors at V_{CC} and V_{S} as close as possible to the power supply and GND pins.

Recommended value for capacitors at V_S:

Electrolytic capacitor C > 22 µF in parallel with a ceramic capacitor C = 100 nF. Value for electrolytic capacitor depends on external loads, conducted interferences and reverse conducting current I_{Outzx} (see Absolute Maximum Ratings).

Recommended value for capacitors at V_{CC}:


Electrolytic capacitor C > 10 μ F in parallel with a ceramic capacitor C = 100 nF.

To reduce thermal resistance it is recommended to place cooling areas on the PCB as close as possible to GND pins.

Package Information

Ozone Depleting Substances Policy Statement

It is the policy of Atmel Germany GmbH to

- 1. Meet all present and future national and international statutory requirements.
- Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Atmel Germany GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Atmel Germany GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

Atmel Wireless & Microcontrollers Sales Offices

France

3, Avenue du Centre 78054 St.-Quentin-en-Yvelines Cedex

Tel: +33 1 30 60 70 00 Fax: +33 1 30 60 71 11

Germany

Erfurter Strasse 31 85386 Eching Tel: +49 89 319 70

Tel: +49 89 319 70 0 Fax: +49 89 319 46 21

Kruppstrasse 6 45128 Essen

Tel: +49 201 247 30 0 Fax: +49 201 247 30 47

Theresienstrasse 2 74072 Heilbronn

Tel: +49 7131 67 36 36 Fax: +49 7131 67 31 63

Italy

Via Grosio, 10/8 20151 Milano

Tel: +39 02 38 03 71 Fax: +39 02 38 03 72 34

Spain

Principe de Vergara, 112 28002 Madrid

Tel: +34 91 564 51 81 Fax: +34 91 562 75 14

Sweden

Kavallerivaegen 24, Rissne 17402 Sundbyberg Tel: +46 8 587 48 800 Fax: +46 8 587 48 850

United Kingdom

Easthampstead Road Bracknell Berkshire RG12 1LX Tel: +44 1344 707 300 Fax: +44 1344 427 371

USA Western

2325 Orchard Parkway San Jose, California 95131 Tel: +1 408 441 0311 Fax: +1 408 436 4200

USA Eastern

1465 Route 31, Fifth floor Annandale New Jersey 08801

Tel: +1 908 848 5208 Fax: +1 908 848 5232

Hong Kong

Room #1219, Chinachem Golden Plaza 77 Mody Road, Tsimhatsui East East Kowloon, Hong Kong Tel: +852 23 789 789

Fax: +852 23 789 789

Korea

25-4, Yoido-Dong, Suite 605, Singsong Bldg. Youngdeungpo-Ku 150-010 Seoul

Tel: +822 785 1136 Fax: +822 785 1137

Rep. of Singapore

Keppel Building #03-00 25 Tampines Street 92, Singapore 528877 Tel: +65 260 8223 Fax: +65 787 9819

Taiwan, R.O.C.

8F-2, 266 Sec.1 Wen Hwa 2 Rd. Lin Kou Hsiang, 244 Taipei Hsien

Tel: +886 2 2609 5581 Fax: +886 2 2600 2735

Japan

Tonetsushinkawa Bldg. 1-24-8 Shinkawa Chuo Ku Tokyo 104-0033

Tel: +81 3 3523 3551 Fax: +81 3 3523 7581

Web Site

http://www.atmel-wm.com

© Atmel Germany GmbH 2001.

Atmel Germany GmbH makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel Germany GmbH's Terms and Conditions. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel Germany GmbH are granted by the Company in connection with the sale of AtmelGermany GmbH products, expressly or by implication. Atmel Germany GmbH's products are not authorized for use as critical components in life support devices or systems.

Data sheets can also be retrieved fron the Internet: http://www.atmel-wm.com