T0810

# 3-Channel Laser Driver with RF Osc. and APC Amplifier

#### **Description**

The T0810 is a laser diode driver for the operation of a grounded laser diode for CD-RW drives. It includes three channels for three different optical power levels which are controlled by a separate IC. The read channel generates a continuous output level whereas the channels 2 and 3 are provided as write channels with very fast switching speeds. Write current pulses are enabled when a 'low' signal is applied to the NE Pins. All channels are summed together at the IOUT Pin. Each channel can contribute up to 150 mA to the total output current of up to 200 mA. A total gain of 400 mA is provided between each reference current input and output. Although the reference inputs are current inputs, voltage control is possible by using external resistors.

An on-chip RF oscillator is provided to reduce laser mode hopping noise during read mode. Frequency and swing can be set by two external resistors. Oscillation is enabled by a 'high' at the ENOSC Pin. Complete output current and oscillator switch-off is achieved by a 'low' at the ENABLE input.

The T0810 also includes a fast settling APC (Adaptive Power Control) transimpedance amplifier. It is provided to interface between the front end monitor photo diode and the ALPC (Adaptive Laser Diode Power Controller) circuit.

Electrostatic sensitive device. Observe precautions for handling.



#### **Features**

- Current-controlled output current source with 3 input channels
- Low-power consumption
- Output current per channel to 150 mA
- Total output current to 200 mA
- Rise time 1.0 ns / fall time 1.1 ns
- On-chip RF oscillator
- Control of frequency and swing by use of 2 external resistors
- Oscillator frequency range from 200MHz to 500 MHz

- Oscillator swing to 100 mA
- Fast settling APC amplifier
- Single 5-V power supply
- Common enable / disable input
- TTL/CMOS control signals
- Small SSO16 package

## **Application**

- CD-RW drives
- Writable optical drives

#### **Block Diagram**

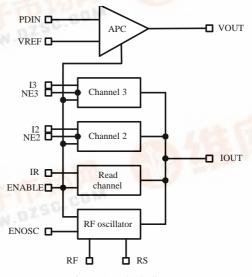



Figure 1. Block diagram



# **Ordering Information**

| Extended Type Number | Package | Remarks          |
|----------------------|---------|------------------|
| T0810-TCQ            | SSO16   | Taped and reeled |

### **Pin Description**

| r in Description |        |                                                    |  |  |  |  |  |
|------------------|--------|----------------------------------------------------|--|--|--|--|--|
| Pin              | Symbol | Function                                           |  |  |  |  |  |
| 1                | VOUT   | APC amplifier output                               |  |  |  |  |  |
| 2                | VREF   | Reference voltage input                            |  |  |  |  |  |
| 3                | IR     | Inp. current, bias voltage approx. GND             |  |  |  |  |  |
| 4                | RF     | External resistor to GND sets oscillator frequency |  |  |  |  |  |
| 5                | I2     | Inp. current, bias voltage approx. GND             |  |  |  |  |  |
| 6                | I3     | Inp. current, bias voltage approx. GND             |  |  |  |  |  |
| 7                | NE2    | Digital control of channel 2 (low active)          |  |  |  |  |  |
| 8                | NE3    | Digital control of channel 3 (low active)          |  |  |  |  |  |
| 9                | VCC    | + 5 V power supply                                 |  |  |  |  |  |
| 10               | ENOSC  | Enables RF oscillator (high active)                |  |  |  |  |  |
| 11               | ENABLE | Enables output current (high active)               |  |  |  |  |  |
| 12               | RS     | External resistor to GND sets oscillator swing     |  |  |  |  |  |
| 13               | GND    | Ground                                             |  |  |  |  |  |
| 14               | IOUT   | Output current source for laser diode              |  |  |  |  |  |
| 15               | VCC    | + 5 V power supply                                 |  |  |  |  |  |
| 16               | PDIN   | Photo diode input                                  |  |  |  |  |  |

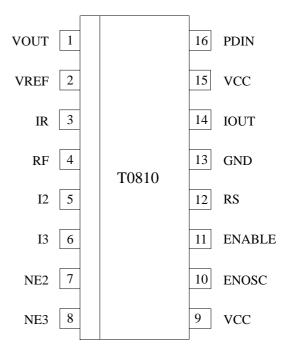



Figure 2. Pinning SSO16

## **Absolute Maximum Ratings**

| Parameter                        | Symbol           | Value                      | Unit |
|----------------------------------|------------------|----------------------------|------|
| Supply voltage                   | V <sub>CC</sub>  | -0.5 to +6.0               | V    |
| Input voltage at IR, I2, I3      | V <sub>IN1</sub> | -0.5  to + 0.5             | V    |
| Input voltage at NE2, NE3, ENOSC | V <sub>IN2</sub> | $-0.5$ to $V_{CC} + 0.5$   | V    |
| Output voltage                   | V <sub>OUT</sub> | −0.5 to V <sub>CC</sub> −1 | V    |
| Power dissipation                | P <sub>MAX</sub> | 1 1)                       | W    |
| Junction temperature             | $T_{J}$          | 150                        | °C   |
| Storage temperature range        | T <sub>STG</sub> | -65 to +125                | °C   |

1)  $R_{thJA} \le 80 \text{ K/W}$ 



## **Thermal Resistance**

| Parameter        | Symbol     | Value | Unit |
|------------------|------------|-------|------|
| Junction ambient | $R_{thJA}$ | 150   | K/W  |

## **Recommended Operating Conditions**

| Parameter                                            | Symbol                 | Value      | Unit |
|------------------------------------------------------|------------------------|------------|------|
| Supply voltage range                                 | VCC                    | 4.5 to 5.5 | V    |
| Input current                                        | $I_{IR}/I_{I2}/I_{I3}$ | < 0.4      | mA   |
| External resistor to GND to set oscillator frequency | RF                     | > 3        | kΩ   |
| External resistor to GND to set oscillator swing     | RS                     | > 100      | Ω    |
| Operating temperature range                          | T <sub>amb</sub>       | 0 to +70   | °C   |

#### **Electrical Characteristics: General**

 $V_{CC} = 5$  V,  $T_{amb} = 25$  °C, ENABLE = High, NE2 = NE3 = High, ENOSC = Low, unless otherwise specified

| Parameter                                         | <b>Test Conditions / Pins</b>                                                                                                           | Symbol            | Min. | Тур. | Max. | Unit |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|------|------|------|
| Power supply                                      |                                                                                                                                         |                   |      |      |      |      |
| Supply current, power down                        | ENABLE = Low,<br>NE2 = NE3 = Low                                                                                                        | ICC <sub>PD</sub> |      | 0.2  | 0.4  | mA   |
| Supply current, read mode,<br>Oscillator disabled | $I_{IR} = I_{I2} = I_{I3} = 125 \ \mu A$                                                                                                | ICC <sub>R1</sub> |      | 90   | 107  | mA   |
| Supply current, read mode,<br>Oscillator enabled  | $\begin{split} I_{IR} &= I_{I2} = I_{I3} = 125 \; \mu A, \\ &= NOSC = High, \; RS = 560 \; \Omega, \\ &RF = 6.8 \; k\Omega \end{split}$ | ICC <sub>R2</sub> |      | 100  | 118  | mA   |
| Supply current, write mode                        | $I_{IR} = I_{I2} = I_{I3} = 125 \mu A,$<br>NE2 = NE3 = Low                                                                              | ICC <sub>W</sub>  |      | 190  | 220  | mA   |
| Supply current, input off                         | $I_{IR} = I_{I2} = I_{I3} = 0 \mu A$                                                                                                    | $ICC_{off}$       |      | 15   | 20   | mA   |
| Digital inputs                                    |                                                                                                                                         |                   |      |      |      |      |
| NE2/NE3 low voltage                               |                                                                                                                                         | VNE <sub>LO</sub> |      |      | 1.3  | V    |
| NE2/NE3 high voltage                              |                                                                                                                                         | VNE <sub>HI</sub> | 2.0  |      |      | V    |
| ENABLE low voltage                                |                                                                                                                                         | VEN <sub>LO</sub> |      |      | 0.5  | V    |
| ENABLE high voltage                               |                                                                                                                                         | VEN <sub>HI</sub> | 3.0  |      |      | V    |
| ENOSC low voltage                                 |                                                                                                                                         | $VEO_{LO}$        |      |      | 0.5  | V    |
| ENOSC high voltage                                |                                                                                                                                         | VEO <sub>HI</sub> | 2.0  |      |      | V    |
| Current at digital inputs                         |                                                                                                                                         |                   |      |      |      |      |
| NE2/NE3 low current                               | NE = 0 V                                                                                                                                | INE <sub>LO</sub> | -300 |      |      | μΑ   |
| NE2/NE3 high current                              | NE = 5 V                                                                                                                                | INE <sub>HI</sub> |      |      | 800  | μΑ   |
| ENABLE low current                                | ENABLE = 0 V                                                                                                                            | IEN <sub>LO</sub> | -150 |      |      | μΑ   |
| ENABLE high current                               | ENABLE = 5 V                                                                                                                            | IEN <sub>HI</sub> |      |      | 100  | μΑ   |
| ENOSC low current                                 | ENOSC = 0 V                                                                                                                             | IEO <sub>LO</sub> | -100 |      |      | μΑ   |
| ENOSC high current                                | ENOSC = 5 V                                                                                                                             | IEO <sub>HI</sub> |      |      | 800  | μΑ   |

Rev. A5, 08-Aug-01 3 (9)



## **Electrical Characteristics: Laser Amplifier**

 $V_{CC} = 5$  V,  $T_{amb} = 25$  °C, ENABLE = High, unless otherwise specified

| Parameter                                            | Test Conditions / Pins                                                                     | Symbol            | Min. | Тур. | Max. | Unit     |
|------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------|------|------|------|----------|
| Best fit current gain                                | Any channel 1)                                                                             | GAIN              |      | 400  |      | mA/mA    |
| Best fit current offset                              | Any channel 1)                                                                             | IOS               | -8   |      | +4   | mA       |
| Output current linearity                             | Any channel 1)                                                                             | ILIN              | -3   |      | +3   | %        |
| Input current range                                  | Input is sinking                                                                           | IDAC              | 0    |      | 0.4  | mA       |
| Output current per channel                           | Output is sourcing                                                                         | I <sub>OUTR</sub> | 150  |      |      | mA       |
| Total output current                                 |                                                                                            | I <sub>OUT</sub>  | 200  |      |      | mA       |
| I <sub>OUT</sub> series resistance                   | I <sub>OUT</sub> = 180 mA total<br>R <sub>OUT</sub> to V <sub>CC</sub> – Rail              | R <sub>OUT</sub>  |      | 8    |      | Ω        |
| I <sub>IN</sub> input impedance                      | R <sub>IN</sub> is to GND                                                                  | R <sub>IN</sub>   | 1200 | 2000 | 2500 | Ω        |
| NE threshold                                         | Temperature stabilized                                                                     | VTH               |      | 1.68 |      | V        |
| Output off current 1                                 | ENABLE = Low                                                                               | IOFF <sub>1</sub> |      |      | 0.5  | mA       |
| Output off current 2                                 | $NE2 = NE3 = High, \\ I_{IR} = 0, I_{I2} = I_{I3} = 125 \ \mu A$                           | IOFF <sub>2</sub> |      |      | 0.7  | mA       |
| Output off current 3                                 | $\begin{aligned} NE2 &= NE3 = Low, \\ I_{IR} &= I_{I2} = I_{I3} = 0 \ \mu A \end{aligned}$ | IOFF <sub>3</sub> |      |      | 5    | mA       |
| I <sub>OUT</sub> supply sensitivity, read mode       | $I_{OUT} = 40 \text{ mA},$<br>$V_{CC} = 5 \text{ V} \pm 10\%, \text{ read only}$           | VSE <sub>R</sub>  | -4   |      | 1    | %/V      |
| I <sub>OUT</sub> supply sensitivity, write mode      | I <sub>OUT</sub> = 80 mA, 40 mA read + 40 mA write, V <sub>CC</sub> = 5 V ± 10%            | VSE <sub>W</sub>  | -6   |      | 0    | %/V      |
| I <sub>OUT</sub> current output noise                | I <sub>OUT</sub> = 40 mA, ENOSC = Low                                                      | INO <sub>O</sub>  |      | 3    |      | nA/rt-Hz |
| I <sub>OUT</sub> temperature sensitivity, read mode  | I <sub>OUT</sub> = 40 mA, read only                                                        | TSE <sub>R</sub>  |      | 100  |      | ppm/°C   |
| I <sub>OUT</sub> temperature sensitivity, write mode | I <sub>OUT</sub> = 80 mA, 40 mA read + 40 mA write                                         | TSEW              |      | 100  |      | ppm/°C   |

Linearity of the amplifier is calculated using a best fit method at three operating points of  $I_{OUT}$  at 20 mA, 40 mA, and 60 mA.  $I_{OUT} = (I_{IN} \times GAIN) + I_{OS}$ 



# **Electrical Characteristics : Laser Current Amplifier Outputs AC Performance**

VCC = +5 V,  $I_{OUT} = 40$  mA DC with 40 mA pulse,  $T_A = 25$ °C unless otherwise specified

| Parameter                              | Test Conditions / Pins                                             | Symbol            | Min. | Тур. | Max. | Unit   |
|----------------------------------------|--------------------------------------------------------------------|-------------------|------|------|------|--------|
| Write rise time                        | I <sub>OUT</sub> = 40 mA (read) + 40 mA (10% to 90%) <sup>1)</sup> | t <sub>RISE</sub> |      | 1.0  | 3.0  | ns     |
| Write fall time                        | I <sub>OUT</sub> = 40 mA (read) + 40 mA (10% to 90%) <sup>1)</sup> | t <sub>FALL</sub> |      | 1.4  | 3.0  | ns     |
| Output current overshoot               | $I_{OUT} = 40 \text{ mA (read)} + 40 \text{ mA}^{-1}$              | OS                |      | 5    |      | %      |
| I <sub>OUT</sub> ON propagation delay  | NE 50% High–Low to I <sub>OUT</sub> at 50% of final value          | t <sub>ON</sub>   |      | 2.0  |      | ns     |
| I <sub>OFF</sub> OFF propagation delay | NE 50% Low–High to I <sub>OUT</sub> at 50% of final value          | t <sub>OFF</sub>  |      | 2.0  |      | ns     |
| Disable time                           | ENABLE 50% High–Low to I <sub>OUT</sub> at 50% of final value      | $t_{ m DIS}$      |      | 10   |      | ns     |
| Enable time                            | ENABLE 50% Low–High to I <sub>OUT</sub> at 50% of final value      | t <sub>EN</sub>   |      | 50   |      | ns     |
| Amplifier bandwidth                    | I <sub>OUT</sub> = 50 mA, all channels,<br>-3dB value              | BW <sub>LCA</sub> |      | 16   |      | MHz    |
| Oscillator                             |                                                                    |                   |      |      |      |        |
| Oscillator frequency                   | $RF = 4.3 \text{ k}\Omega$                                         | Fosc              | 380  | 470  | 560  | MHz    |
| Osc. temperature coefficient           | $RF = 4.3 \text{ k}\Omega$                                         | $TC_{OSC}$        |      | -150 |      | ppm/°C |
| Disable time oscillator                | ENOSC 50% High-Low to I <sub>OUT</sub> at 50% of final value       | T <sub>DISO</sub> |      | 4    |      | ns     |
| Enable time oscillator                 | ENOSC 50% Low-High to I <sub>OUT</sub> at 50% of final value       | T <sub>ENO</sub>  |      | 2    |      | ns     |

Load resistor at IOUT:  $10 \Omega // 39 \Omega + 50 \Omega$  (see test circuit)

## **Electrical Characteristics : APC Amplifier**

 $V_{CC}\!=\!$  5 V,  $T_{A}\!=\!25^{\circ}C,\,R_{LOAD}\!=\!2~k\Omega$  to  $V_{REF}$  unless otherwise specified

| Parameter                   | Test Conditions / Pins                           | Symbol            | Min. | Тур. | Max.                 | Unit      |
|-----------------------------|--------------------------------------------------|-------------------|------|------|----------------------|-----------|
| Bandwidth                   | G = 1, Cload = 22 pF                             | BW <sub>APC</sub> |      | 200  |                      | MHz       |
| Slew rate                   | $G = 1$ , $V_{OUT} = 1 V$ to 3 V                 | SR                |      | 80   |                      | $V/\mu s$ |
| Setting time                | To 0.1%, $V_{OUT} = 1 \text{ V to } 3 \text{ V}$ | $t_s$             |      | 50   |                      | ns        |
| Open loop voltage gain      | V <sub>OUT</sub> = 1 V to 3 V                    | Avol              |      | 60   |                      | dB        |
| Offset voltage              | V <sub>REF</sub> = 3 V                           | V <sub>OS</sub>   | -5   |      | +5                   | mV        |
| Input bias current          | V <sub>REF</sub> = 3 V                           |                   |      | -1.5 |                      | μΑ        |
| Common mode input range     | CMRR > = 54 dB                                   | CMIR              | 1    |      | V <sub>CC</sub> -1.5 | V         |
| Common mode rejection ratio | $V_{CM} = 0.5 \text{ V to } 3.0 \text{ V}$       | CMRR              |      | 60   |                      | dB        |
| Input impedance             |                                                  | R <sub>IN</sub>   |      | 20   |                      | kΩ        |
| Input capacitance           | Pin 16 (PDIN)                                    | C <sub>IN</sub>   |      | 2    |                      | pF        |
| Output voltage swing        | $R_L = 2 k\Omega$ to $V_{REF}$                   | V <sub>OUT</sub>  | 1    |      | V <sub>CC</sub> -1.5 | V         |

Rev. A5, 08-Aug-01 5 (9)



# **Application Information Oscillator**

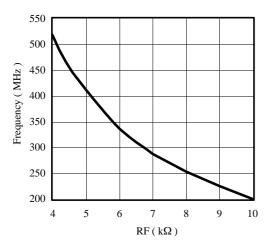



Figure 3. Frequency vs. resistor RF (RS =  $680 \Omega$ )

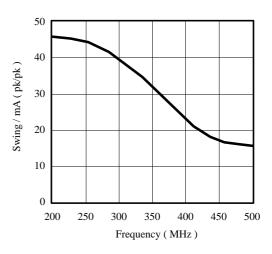



Figure 5. Frequency dependency of swing (RS =  $680 \Omega$ )

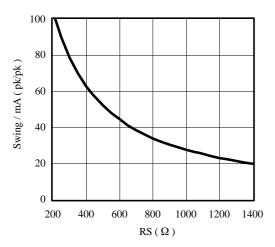



Figure 4. Swing vs. resistor RS (RF =  $6.8 \text{ k}\Omega$ )

## **Test Circuit**

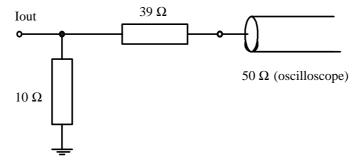



Figure 6. Test circuit for measurement of write rise and fall time



## **Timing Diagram**

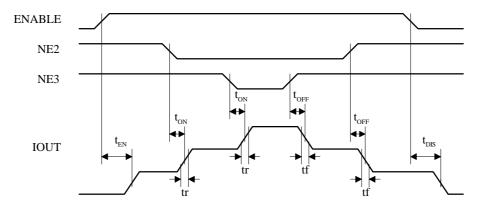
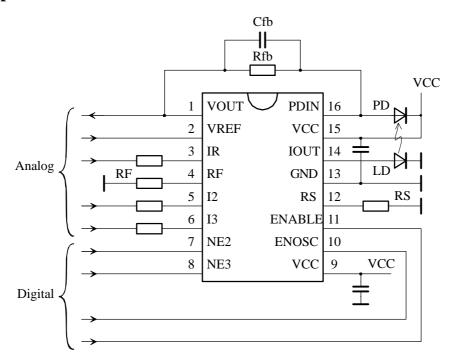
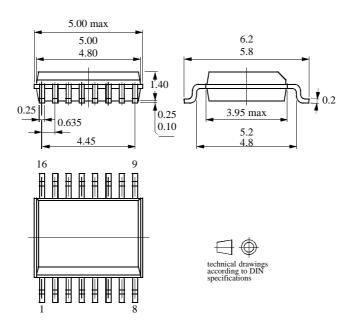



Figure 7. Timing diagram

# **Typical Application Circuit**





Figure 8. Application circuit

Rev. A5, 08-Aug-01 7 (9)



# **Package Information**

Package SSO16 Dimensions in mm





#### **Ozone Depleting Substances Policy Statement**

It is the policy of Atmel Germany GmbH to

- 1. Meet all present and future national and international statutory requirements.
- Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

**Atmel Germany GmbH** has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

**Atmel Germany GmbH** can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

#### We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Atmel Wireless & Microcontrollers products for any unintended or unauthorized application, the buyer shall indemnify Atmel Wireless & Microcontrollers against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Data sheets can also be retrieved from the Internet: http://www.atmel-wm.com

Atmel Germany GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2594, Fax number: 49 (0)7131 67 2423

Rev. A5, 08-Aug-01 9 (9)