OKI Semiconductor

This version: Jan. 1998 Previous version: Nov. 1996

WWW.DZSC

MSM7557

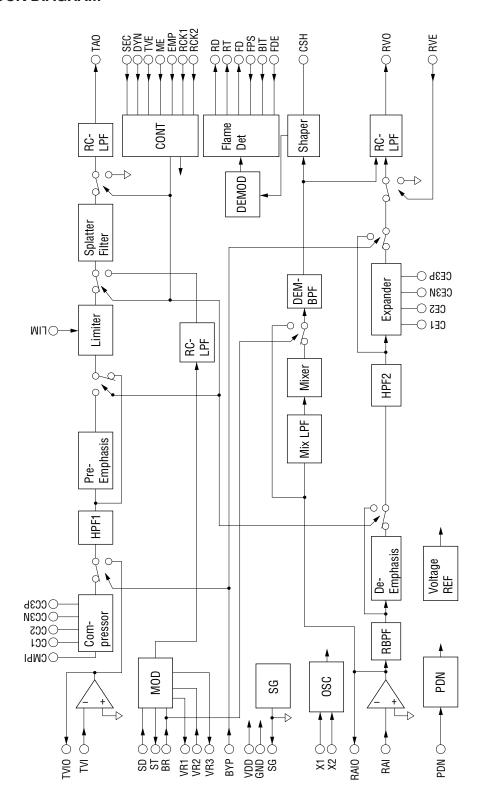
Single Chip MSK Modem with Compandor for Cordless Telephone

GENERAL DESCRIPTION

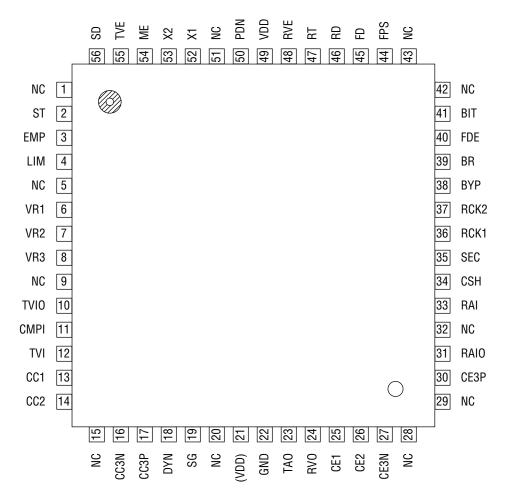
The MSM7557 is a single chip MSK modem with base band voice processor for cordless telephone. The MSM7557 voice transmit block consists of high pass filter, compressor, pre-emphasis, limiter and splatter filter.

W.DZSC.COM

Voice receive block consists of Band pass filter, De-emphasis and Expander.


FEATURES

- Available to transmit modem signal and also transmit base band voice signal through wireless transmission path (0.3 kHz to 3.4 kHz)
- Built-in compandor circuit
- Upper limit of voice band (3306 Hz/3400 Hz/3500 Hz) is selectable
- Modem bit rate (2400/1200 bps) is selectable
- Transmit function and receive function operate separately
- Emphasis mode selectable
- Built-in bit synchronous detector and frame synchronous detector
- Built-in limiter level generator and external limit voltage input
- Dynamic range selectable
- Built-in crystal oscillator circuit
- Wide range power supply voltage (2.7V ~ 5.5V)
- Package:


56-pin plastic QFP (QFP56-P-910-0.65-2K) (Product name : MSM7557GS-2K)

BLOCK DIAGRAM

PIN CONFIGURATION (TOP VIEW)

Notes: The pin 49 should be used for V_{DD}.

The pin 21 should be connected to V_{DD} or opened.

NC: No connect pin

PIN DESCRIPTION

0

Name		Descriptio	n						
		data input.							
	The data	on SD pin are took into MSK modulator and th	ne data are available on the positive edge of ST						
		ME							
	SE) input							
SD		ST The state of th							
		lulator t data							
	In order to synchronize a receive modem, more than 18bits bit-synchronous signal should be								
		transmitted before data transmission. If S/N ratio of the receive signal is always good, more than							
		11bits bit-synchronous signal synchronizes the receiver.							
		ta timing clock output.							
ST	When digita	I "0" is put on ME pin, ST is fixed to digital "1"	level.						
	Emphasis path selection.								
	EMP	Transmit side	Receive side						
EMP	0	Pre-emphasis circuit is bypassed to the path	De-emphasis circuit is bypassed to the path						
		Dra amphasia sirauit is connected to the	De-emphasis circuit is connected to the						
	4	Pre-emphasis circuit is connected to the	De-emphasis circuit is confidented to the						
	1	path	path						
		·	, ·						
	Deviation lir	path	path						
	Deviation lir	path niter control.	path						
	Deviation lir Voice signal this pin.	path niter control.	path						
	Deviation lir Voice signal this pin. Input imped	path niter control. maximum Rf modulation level is controlled b	path y connecting external reference voltage to						
LIM	Deviation lir Voice signal this pin. Input imped When this p	path niter control. maximum Rf modulation level is controlled b ance of this pin is about 200 kΩ.	path y connecting external reference voltage to						
LIM	Deviation lir Voice signal this pin. Input imped When this p	path niter control. maximum Rf modulation level is controlled b ance of this pin is about 200 kΩ. in is left open, internal reference voltage is us	path y connecting external reference voltage to						

0.50 V

1.26 V

This internal clamp level is made by internal reference voltage which is unrelated with V_{DD} . Negative clamp level is made by internal operational amplifier and the voltage is reversed at VSG.

-9 dBV

-1 dBV

Name	Description							
	Modulator output level control. Refer to the following figure.							
	From modulator $\begin{array}{c c} R1 \geq 40 \ k\Omega \\ R2 \geq 40 \ k\Omega \\ R1 \geq R2 \\ \hline \end{array}$							
VR1 VR2 VR3	To transmit filter VR2 R2 VR3							
	$V_{TAO} = 20 \times log \; (R2/R1) - 9 \; dBV \; (DYN = "0" \;)$ $V_{TAO} = 20 \times log \; (R2/R1) - 1 \; dBV \; (DYN = "1" \;)$ This level is made from internal voltage reference, so this level doesn't depend on power supply voltage.							
	Transmit side RC active filter input (TVI) and output (TVIO). If over 50 kHz frequency element is in the input signal, folding noise is generated from internal SCF circuit, so second order RC-active filter is needed. (fc = 10 kHz)							
TVIO TVI	$\begin{array}{c c} C1 & R3 & R5 & \hline TVIO & R5 \geq 60 \text{ k}\Omega \\ \hline C1 & A1 & A2 & A2 & A3 & A3 & A3 & A3 & A3 & A3$							
	SG SG SG							
CC1	When digital "1" is applied to TVE pin, transmit voice signal comes out to TAO. Capacitor connection pins to remove for DC offset of the compressor.							
CC2	A 1 μF capacitor between SG pin and each pin should be connected.							
- 002	Capacitor connection pins for the compressor attack and recovery time.							
CC3N								
CC3P	When DYN is digital "0" level, a 0.22 μF capacitor should be connected between CC3N and CC3P.							
	And when DYN is digital "1" level, a 0.47 µF capacitor should be connected between them.							

Name	Description								
CMDI	Compressor	r circuit input.							
CMPI	Α 0.47 μF ca	apacitor shoul	d be connected b	etween CMPI and TVIO.					
	Dynamic range control input.								
	For an application of which V_{DD} is always higher than 4.5 V (Base station), by setting DYN = "1",								
				signal level, limiter clamp level and compandor					
DYN				nprove S/N ratio.					
				an 4.5 V (Hand-set) DYN shall be digital "0".					
			with the RF part,	one solution is to put digital "0" on DYN pin for both Base					
	station and								
00				age is half of V _{DD} .					
SG		-		wer and to ensure the device performance, it is necessary to					
GND		-	more man iµr b	etween SG and $\ensuremath{V_{DD}}$ in close physical proximity to the device.					
GND	Ground pin,	. ,	ıta ut						
	Transmit analog signal output. According to control data on ME and TVE, TAO is set as follows.								
	ME TVE TAO								
TAO	-			No signal output (potential = SG)					
1710	=	0	0						
	-	0 1	1 X	Voice signal output MSK modulator output					
	-	ı	Λ	X : Don't care					
	ъ								
	Receive voice signal output.								
	RVO pin state is defined by RVE control.								
RV0		RVE		RVO					
	_	0	Output disable	(potential = SG)					
		1	Output enable						
CE1	Capacitor co	onnection pins	s to remove DC o	ffset of the expander.					
CE2	A 1 μF capa	citor between	SG pin and each	pin should be connected.					
CE3N	-		-	r attack time and recovery time.					
CE3P	When DYN is digital "0" level, a 0.22 μF capacitor should be connected between CE3N and CE3P.								
	And when DYN is digital "1" level, a 0.47 μF capacitor should be connected between them.								
RAI0			ut (RAI) and outp						
RAI	Second order RC-active filter is needed like TVIO and TVI. Refer to TVIO and TVI pin description.								
			-	set of the modem shaper circuit.					
CSH				veen GND pin and CSH.					
	λιμι σαμα	ortor ortoutu b	5 50111100100 DGIV	voon area piir and oori.					

Name		Function									
SEC	Device test input. SEC shall be connected to GND.										
	Voice band sel	ect.									
DOIG	_	RCK1	I RCK2 Upper Limit		imit of \	/oice Band					
RCK1 RCK2	_	0	1		3306 H	Iz					
NUK2	_	Х	0		3400 H	lz					
	_	1	1		3500 H	Iz					
	Compandor pa	ath selection.									
	ВҮР		Transmi	t side	Receive side						
BYP	0	Compress	or is conn	ected to the path.	Expander is connected to the path.						
	1	Compress	or is bypa	ssed to the path.	Expa	nder is bypassed to the path.					
	Modem data s	ignaling rate s	elect pin.								
BR		_	BR	Date signaling rate		_					
DIT		_	0	1200 bps	1	_					
		_	1	2400 bps		_					

Name			Function								
	Frame s	synchro	onous signal detector control.								
	When digital "0" is applied to this pin, FD pin is fixed to "0" level. RT and RD always work.										
FDE	When digital "1" is applied to this pin, frame synchronous detector works, and RT and RD pins are fixed										
	to "1" level untill synchronous signal detector detects frame synchronous signal and FD becomes "1" level.										
	Refer to	Fig.3	(receive signal timing).								
	Bit synd	Bit synchronous signal detector control.									
			FDE pins are digital "1" level and when bit synchronous signal a	nd frame synchronous							
BIT	"		cted continously, FD becomes digital "1".								
			is digital "0" level and FDE pin is digital "1" level and when 16-bit	frame synchronous							
	"		ted, FD pin becomes digital "1" level.								
	Refer to	FPS p	in detection.								
	Frame s	synchro	onous pattern control.								
	BIT	FPS	Detect pattern	Receiver							
	0	0	1001 0011 0011 0110 (=9336H)	Handset side							
FPS	0	1	1100 0100 1101 0110 (=C4D6H)	Base station							
	1	0	1010 1001 0011 0011 0110 (=A9336H)	Handset side							
	1	1	1010 1100 0100 1101 0110(=AC4D6H)	Base station							
			(Note : This pattern is for Japanese Cord	lless Telephone.)							
	Frame synchronous detector output.										
FD	When receive data correspond to detection pattern, FD pin is held to digital "1" level.										
Гυ	When FDE is applied to digital "0" level, FD pin is reset to digital "0" level.										
	And at the full power down state (PDN = "1", RVE = "0"), FD pin is reset to digital "0" level.										
	Demod	Demodulator serial data output.									
RD	The dat	a are s	ynchronized with the re-generated timing clock of RT.								
	When F	When FDE is digital "1" level and also FD is digital "0" level, RD is fixed to digital "1" level.									
			ming clock output.								
	1		re-generated by internal digital PLL. The falling edge of this clock	k output is coincident							
RT		with the transitions of RD.									
			e of RT can be used to latch the valid receive data.	1 DT 1 1 1 1 1 1							
		When FDE pin is applied to digital "1" level and also FD pin output digital "0" level, RT pin is fixed to									
	_		. Refer to Fig.3.								
RVE			signal control.								
			oin description.								
		supply		auge are utilized							
V_{DD}			s sensitive to power supply noises as switched capacitor tequnic pacitor of more than 10 μF between V_{DD} and GND pin should be								
		ass cap rforma	• •	CONTROLEU TO GUSULE							
	lile pe	HUHHA									

Name						Function					
	Power down control. Power down state is controlled by PDN, ME, RVE, and TVE.										
		PDN	ME	RVE	TVE	Voice control path	Transmit side modem	Receive side modem			
	Mode1	1	Χ	0	Х	OFF	OFF	OFF			
PDN	Mode2	1	Χ	1	Х	OFF	OFF	ON			
I DIV	Mode3	0	1	0	0	OFF	ON	ON			
	Mode4		oth	ners		ON	ON	ON			
								X : Don't care			
X1 X2	Crystal conn 3.6864 MHz	ection. crystal s ernal ma	shall be	connect	ed. plied, the	<u> </u>	pplied to X2 pin via	a 200 pF capacitor for			
ME	MSK moudulator output. When digital "1" is applied to this pin, MSK modulator is connected to the splatter filter. Refer to TAO pin description.										
TVE	Transmit side voice signal contorol. Refer to TAO pin description.										

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rating	Unit
Power Supply Voltage	V _{DD}	Ta = 25°C	-0.3 to +7.0	
Analog Input Voltage *1	VIA		0.0 to 1/pp . 0.0	V
Digital Input Voltage *2	V _{ID}	Refer to GND -0.3 to VDD +		
Storage Temperature	T _{STG}	_	-55 to +150	°C

^{*1 :} LIM, VR2, TVI, RAI, CMPI

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition		Min.	Тур.	Max.	Unit	
Power Supply Voltage	V	from	DYN = "0"	2.7	3.6	5.5	V	
rower Supply voltage	V_{DD}	GND level	DYN= "1"	4.5	5.0	5.5	V	
Operating Temperature	T _{op}	$V_{DD} = 2.7$	V to 5.5 V	-30	+25	+70	°C	
Crystal Oscillating Freq.	f _{X'TAL}	_	_	3.6860	3.6864	3.6868	MHz	
Data Signaling Rate	т.	BR	= 0"	_	1200	_	bit/sec	
Data Signaling hate	T _S	BR = "1"		_	2400	_	DIL/SEC	
C4, C5, C11, C12, C15	_	_		_	1.0	_		
C6, C13	_	DYN	I = "0"	_	0.22	_		
00, 013	_	DYN = "1"		_	0.47	_		
C7, C8	_	_	_	_	1.0	_	μF	
C9, C10	_	RL≥	40kΩ	_	0.22	_		
C14	_	_		_	10	_		
C19	_	_		_	0.47	_		
C20, C21	_	_	_	_	20	_	pF	

^{*2 :} SD, EMP, DYN, SEC, RCK1, RCK2, BYP, BR, FDE, BIT, FPS, RVE, PDN, X2, ME, TVE

ELECTRICAL CHARACTERISTICS

DC Characteristics

 $\left(\begin{array}{c} \text{DYN} = "0" : V_{DD} = 2.7 \text{ V to } 5.5 \text{ V}, \text{Ta} = -30 ^{\circ}\text{C to } 70 ^{\circ}\text{C} \\ \text{DYN} = "1" : V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}, \text{Ta} = -30 ^{\circ}\text{C to } 70 ^{\circ}\text{C} \end{array}\right)$

Parameter	Symbol	Condit	Condition		Тур.	Max.	Unit	
	I _{DD}	Normal 3.6 V		_	9.0	18	mA	
	טטי	(mode 4)	5.5 V	_	14.0	24	ША	
Power Supply Current *1	I _{DDS1}	Power down mode 1	5.5 V		1.0	20	μА	
rower Supply Current 1	I _{DDS2}	Power down mode 2	3.6 V	_	3.8	7.0	- mA	
	I _{DDS3}	Power down mode 3	0.0 V	_	4.6	9.0		
Input Leakage Current *2	I _{IL}	V _{IN} = 0 V		_10		+10	μA	
input Leakage ourreint 2	I _{IH}	V _{IN} = V	DD	-10		+10	μΛ	
Input Voltege *2	I _{IL}			0		0.2V _{DD}		
input voitege 2	I _{IH}			0.7V _{DD}	_	V_{DD}	V	
Output Voltege *3	V_{OL}	I _{OL} = -20) μΑ	0	_	0.1V _{DD}	V	
Output voitege 3	V _{OH}	I _{OH} = 20	μΑ	0.8V _{DD}	_	V_{DD}		

^{*1} Refer to PDN pin description

^{*2} SD, EMP, DYN, SEC, RCK1, RCK2, BYP, BR, FDE, BIT, FPS, RVE, PDN, ME, TVE

^{*3} ST, FD, RD, RT

AC Characteristics

 $\left(\begin{array}{c} {\rm DYN}="0":V_{DD}=2.7\ V\ to\ 5.5\ V,\ Ta=-30^{\circ}C\ to\ 70^{\circ}C} \\ {\rm DYN}="1":V_{DD}=4.5\ V\ to\ 5.5\ V,\ Ta=-30^{\circ}C\ to\ 70^{\circ}C} \end{array}\right)$

Paramete	er	Symbol	Cond	ition	Min.	Тур.	Max.	Unit	
		f _{M1}	SD = "1"	BR = "0"	1199	1200	1201		
Transmit		f _{S1}	SD= "0"	ME= "1"	1799	1800	1801	Hz	
Carrier Frequenc	У	f _{M2}	SD = "1"	BR = "1"	1199	1200	1201	112	
		f _{S2}	SD= "0"	ME= "1"	2399	2400	2401		
Transmit		W.	D1 D0	DYN = "0"	-11	-9	-7		
Carrier Level		V _{OX}	R1 = R2	DYN = "1"	-3	-1	+1	dBV	
Receive Carrier Input Level		V _{IR}			-32	_	-2	ubv	
	1200		Defined at RAIO	8 dB	_	1 × 10 ⁻³	_	_	
Bit Error Rate	bps	B _{ER}		10 dB		5 × 10 ⁻⁵	_		
Dit Lifti Hate	2400	DER		11 dB	_	1 × 10-3	_		
	bps			13 dB		5 × 10 ⁻⁵	_		
Number of PLL Lock-in Data Bits *1		V	Number of or required for be locked in phase differ 22.5° or les	the PLL to within the ence of	_	_	18	bit	
		V _{IR}	Number of or required for be locked in phase differ 90° or less	the PLL to within the	_	_	11	Dit	

^{*1} Receive MSK signal is bit synchronous signal (modulated signal of alternating "0", "1" pattern).

Voice Signal Interfaces

 $\left(\begin{array}{c} \text{DYN} = "0" : V_{DD} = 2.7 \text{ V to } 5.5 \text{ V}, \, \text{Ta} = -30 ^{\circ}\text{C to } 70 ^{\circ}\text{C} \\ \text{DYN} = "1" : V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}, \, \text{Ta} = -30 ^{\circ}\text{C to } 70 ^{\circ}\text{C} \end{array}\right)$

Para	meter	Symbol	Cond	lition	Min.	Тур.	Max.	Unit
RV0 Maximu	um Output	M	fin = 1 kHz	DYN = "0"	_	_	-6	
Signal Level		V _{OUT}	BYP = "0" *1	DYN = "1"	_	_	+2	IDV.
Limitar Clam	Limiter Clamp Level		fin = 1 kHz	DYN = "0"	-10	-9	-8	dBV
Limiter Giam			LIM = open	DYN = "1"	-2	-1	0	
Transmit Ou	tput Distortion	H _{DT}	fin = 1 kHz, -	12 dBV	_	-40	_	
Receive Outp	out Distortion	H_{DR}	BYP = "0", EM	P = "1"	_	-40	_	dB
Transmit Ga	in	G _T	fin = 1 kHz, B	/P = EMP = "1"	-1.5	-0.2	+1	uБ
Receive Gair	1	G_R	fin = 1 kHz, B	/P = EMP = "1"	-1.5	-0.2	+1	
Transmit Idle	e Noise	H _{IT}	BYP = "0"		_	- 51	_	dBV
Receive Idle	Noise	H _{IR}	EMP = "1"		_	-85	_	
Cross Talk	$R_{CV.} \rightarrow T_{ran.}$	C _{TT}	RAIO = -2 dB	<i>\</i>	_	- 75	-60	ubv
	Tran.→Rcv.	C_TR	TVIO = $-2 dB$	1	_	-80	-60	
		FT1	EMP = "1"	100 Hz	_	-28	-23	
Transmit Filt	or	FT3	BYP = "1"	300 Hz	-12.5	-10.5	-8.5	
Response	.UI	FT25	RCK2 = "0"	2.5 kHz	+6.5	+8.0	+9.5	
riesponse		FT34	Ref. = 1 kHz	3.4 kHz	+8.5	+10.5	+12.5	
-		FT60	IIGI. — I KIIZ	6 kHz	_	-40	-30	dB
		FR1	EMP = "1"	100 Hz	+1.5	+3.0	+4.5	ub
Receive Filte	r	FR3	BYP = "1"	300 Hz	+8.0	+9.5	+11.0	
	1	FR25	RCK2 = "0"	2.5 kHz	-9.5	-8.0	-6.5	
ricopoliot	Response		Ref. = 1 kHz	3.4 kHz	-12.5	-10.5	-8.5	
		FR60	TIOL - TRAIL	6 kHz	_	-40	-30	

^{*1} $S/D \ge 20 dB$

^{*2} fIN = 1 kHz, BYP = EMP = "1"

(Continued)

 $\left(\begin{array}{c} {\rm DYN}="0":V_{DD}=2.7~V~to~5.5~V,\,Ta=-30^{\circ}C~to~70^{\circ}C\\ {\rm DYN}="1":V_{DD}=4.5~V~to~5.5~V,\,Ta=-30^{\circ}C~to~70^{\circ}C \end{array}\right)$

	Parameter	Symbol	Condit	ion	Min.	Тур.	Max.	Unit
	Standard Input			DYN = "0"	-16.1	-13.7	-11.3	
	Level	V_{ICS}		DYN = "1"	-7.1	-5.5	-3.9	.=
	Maximum Input	W .	f _{IN} = 1 kHz	DYN = "0"	_	_	-7	dBV
_	Level	V _{ICM}		DYN = "1"	_	_	+1.0	
Compressor	Output	GC2		-20 dB	-10.6	-9.9	-9.2	
mpre	Level *3	GC4	f _{IN} = 1 kHz	–40 dB	-21.0	-19.8	-18.6	dB
Co	Level 5	GC5		-60 dB	_	-29.5	_	
	Attack Time	T _{AT1}	DYN = "0", C6 = 0).22 μF	_	3.4	_	
	Allack Tille	T _{AT2}	DYN = "1", C6 = 0).47 μF	_	3.5	_	ms
	Recovery Time	T _{RE1}	DYN = "0", C6 = 0).22 μF	1	17	_	
	necovery fille	T _{RE2}	DYN = "1", C6 = 0	.47 μF		16	_	
	Standard Input Level	V		*4	-12.9	-10.8	-8.7	dBV
		V_{IES}		*5	-13.3	-11.2	-9.1	
	N.A		f _{IN} = 1 kHz	*6	-4.7	-3.1	-1.5	
	Maximum	V_{IEM}		DYN = "0"	-	_	-6	
der	Output Level			DYN = "1"		_	+2	
Expander	Output	GE1		−10 dB	-21.5	-20	-18.3	
ŭ	Level	GE2	f _{IN} = 1 kHz *3	−20 dB	-42.2	-40	-37.5	dB
	LOVOI	GE3		−30 dB	_	-59	_	
	Attack	T_{AT3}	DYN = "0", C13 =	0.22 μF	1	3.4	_	
	Time	T _{AT4}	DYN = "1", C13 =	0.47 μF	_	3.5	_	ms
	Recovery	T _{RE3}	DYN = "0", C13 =	0.22 μF	_	17	_	
	Time	T _{RE4}	DYN = "1", C13 =	0.47 μF	_	16	_	

^{*3 0} dB is defined as the input level and the output level when the standard input level is input.

^{*4} $V_{DD} = 3.6 \text{ V}$, DYN = "0"

^{*5} V_{DD} = 5.0 V, DYN = "0"

^{*6} $V_{DD} = 5.0 \text{ V, DYN} = "1"$

Common Characteristics

 $\left(\begin{array}{c} \text{DYN} = "0" : V_{DD} = 2.7 \text{ V to } 5.5 \text{ V}, \text{ Ta} = -30 ^{\circ}\text{C to } 70 ^{\circ}\text{C} \\ \text{DYN} = "1" : V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}, \text{ Ta} = -30 ^{\circ}\text{C to } 70 ^{\circ}\text{C} \end{array}\right)$

Parameter	Symbol	Condition		Min.	Тур.	Max.	Unit
Input Resistance	RIA	TVI, RAI, VR2		_	10	_	MΩ
	R _{IC}	LIM		_	200	_	kΩ
Output Resistance	R ₀ x1	TAO		_	1750	_	Ω
	R ₀ x2	VR1, VR3, RV0		_	600		
	R ₀ x3	TVIO, RAIO		_	100	_	
Output Load Resistance	RXL1	S/D ≥ 20 dB	*1	40		_	kΩ
	RXL2		TVIO	60	_	_	
Output DC Voltage	V_{SG}	SG		$\frac{V_{DD}}{2} - 0.1$	$\frac{V_{DD}}{2}$	$\frac{V_{DD}}{2} + 0.1$	V
	V _{AO}	TAO, RVO		$\frac{V_{DD}}{2} - 0.15$	$\frac{V_{DD}}{2}$	$\frac{V_{DD}}{2} + 0.15$	

^{*1} VR1, VR3, TAO, RVO, RAIO

Digital Timing Characteristics

 $\left(\begin{array}{c} DYN = "0" : V_{DD} = 2.7 \text{ V to } 5.5 \text{ V}, Ta = -30^{\circ}\text{C to } 70^{\circ}\text{C} \\ DYN = "1" : V_{DD} = 4.5 \text{ V to } 5.5 \text{ V}, Ta = -30^{\circ}\text{C to } 70^{\circ}\text{C} \end{array}\right)$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Transmit Data	t _S	. Refer to Fig. 1	1	_	_	μs
Set-up Time						
Transmit Data	t _H		1	_	_	
Hold Time						
Receive Data	+_	Defer to Fig. 1	-300	_	300	ns
Output Delay	t _D	Refer to Fig. 1				
Sync-signal	t _{MS}	Refer to Fig. 1	0	_	834	μs
Output Delay (ME \rightarrow ST)						

TIMING DIAGRAM

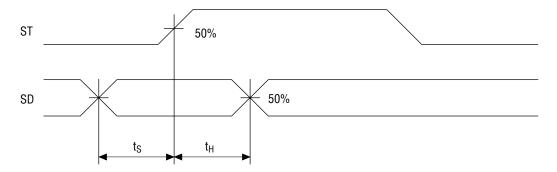


Figure 1 Input Data Timing

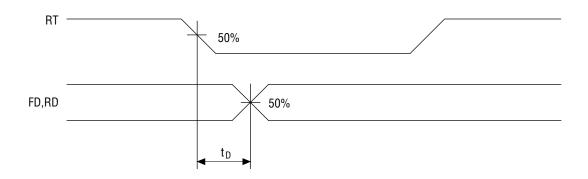
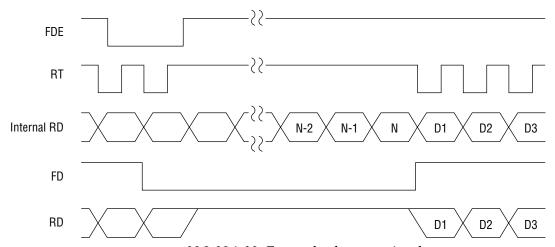
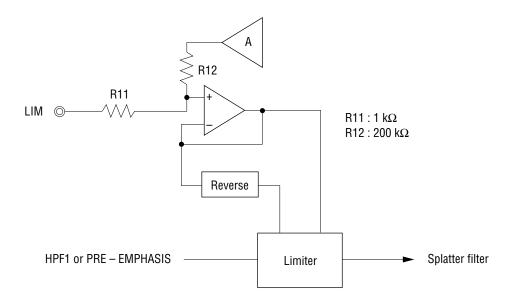



Figure 2 Output Data Timing



N-2, N-1, N: Frame shnchronous signal

Figure 3 Receive Signal Timing

OPERATION DESCRIPTION

Limiter Circuit

DYN = "0" : Clamp level = $VSG \pm 0.50 V$ DYN = "1" : Clamp level = $VSG \pm 1.26 V$

2. In case of using external voltage reference

LIM pin shall be supplied over VSG voltage.

Notes

- 1) R11 is protection resister from external extra voltage.
- 2) Resistor value of R11 and R12 changes 0.7 to 1.3 times from the typical value by lot variation and temperature variation.

Frame Detector

Frame detection pattern is defined by BIT and FPS.

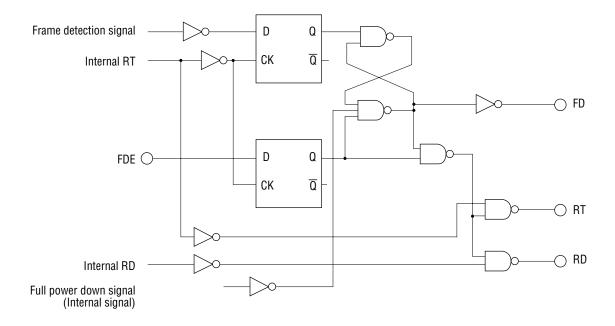
BIT	FPS	Sync-pattern	Receiver	Note
0	0	9336H	S.H.	Frame synchronous
0	1	C4D6H	M.T.	Frame synchronous
1	0	А9336Н	S.H.	Bit + Frame synchronous
1	1	AC4D6H	M.T.	Bit + Frame synchronous

M.T. = Master telephone

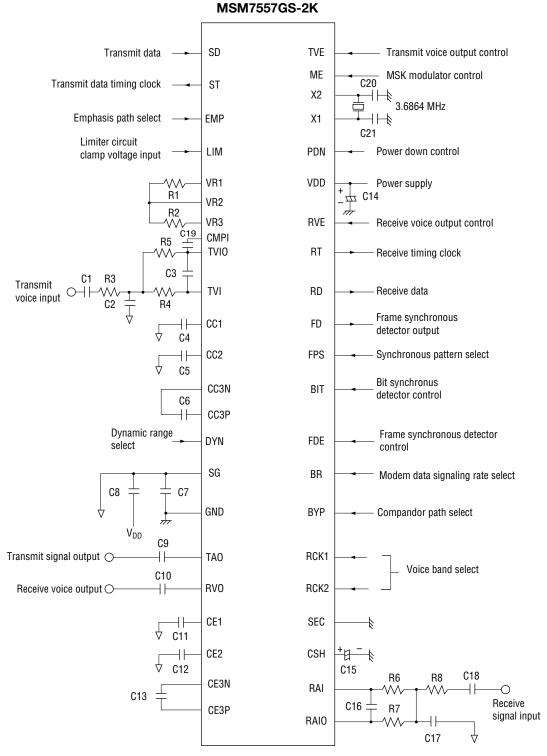
S.H. = Slave handset

Fig 3 shows detection timing

First, put digital "0" level to FDE pin more than 1 ms, then FD pin is reset to "0" level.


Next, put digital "1" level to FDE pin, then RT and RD output digital "1" level until frame synchronous signal detected.

When synchronous pattern is detected, FD pin is held to digital "1" level.


At the full power down state (PDN = "1", RVE = "0"), FD pin becomes reset state.

In order to detect frame synchronous signal certainly, receive side PLL should be locked in sufficiently.

When a modem starts data transmittion, the bit-synchronous signal of more than 18 bits should be transmitted before frame pattern of the upper table.

Application Circuit

Note: An arrow mark of $\begin{pmatrix} 1 \\ \nabla \end{pmatrix}$ indicates connection to the SG pin.

MSM7557 Filter Characteristics

MSM7557 has wide band filters (0.3 kHz to 3.4 kHz) as follows.

. Fig.	4
. Fig.	5
_	
. Fig.	
. Fig.	10
	_

Fig. 4 to Fig. 10 show the filter characteristics when RCK2 is digital "0". When RCK1 is digital "0" and RCK2 is digital "1", the filter characteristics change 0.972 times on the frequency axis. (pass-band becomes narrow) When RCK1 is digital "1" and RCK2 is digital "1", the filter characteristics change 1.029 times on the frequency axis. (pass-band becomes wide)

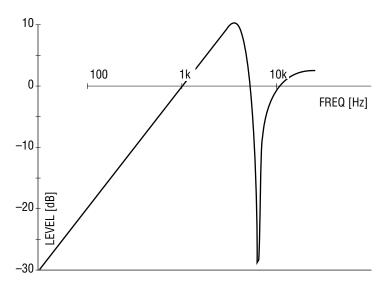


Figure 4 MSM7557 Pre-Emphasis

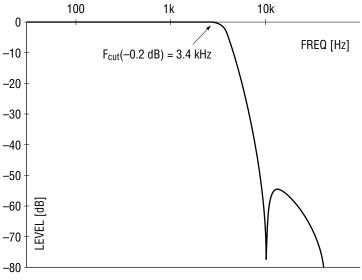


Figure 5 MSM7557 Splatter Filter

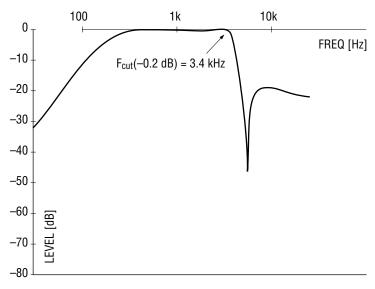


Figure 6 MSM7557 RBPF

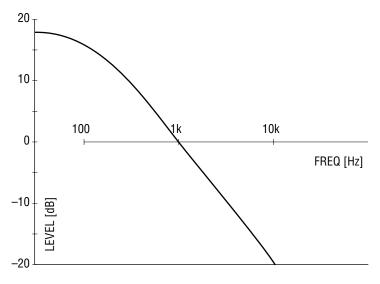


Figure 7 MSM7557 De-Emphasis

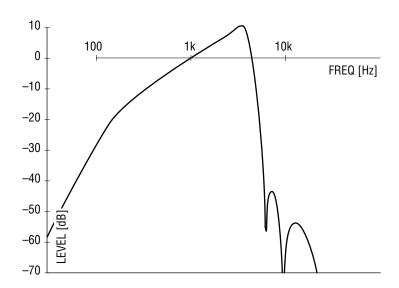


Figure 8 MSM7557 Transmit Total (HPF1 + Pre-Emphasis+Splatter)

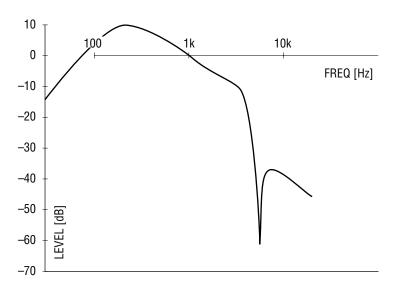


Figure 9 MSM7557 Receive Total (RBPF + De-Emphasis)

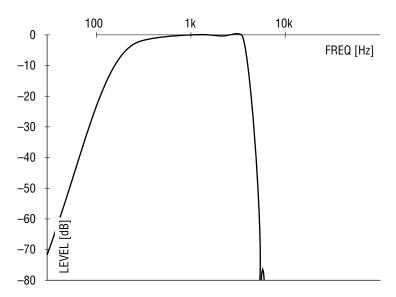
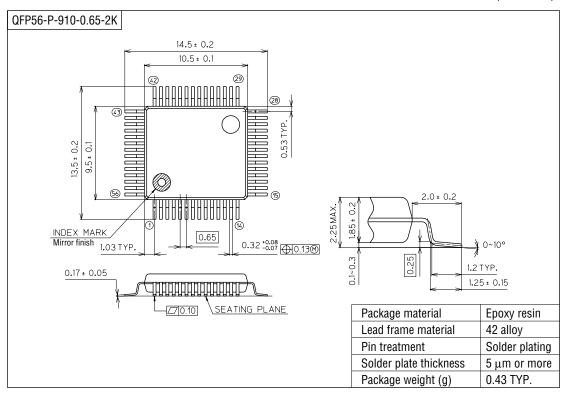



Figure 10 MSM7557 Transmit and Receive Total

PACKAGE DIMENSIONS

(Unit: mm)

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact Oki's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).