## FEATURES

－Wide supply voltage range： 1.8 or 2.1 to 12 V
－Low current consumption： 15 mA at $\mathrm{AM}, 16 \mathrm{~mA}$ at FM
－High selectivity with distributed IF gain
－LED driver for stereo indication
－High input sensitivity： $1.6 \mathrm{mV} / \mathrm{m}(\mathrm{AM}), 2.0 \mu \mathrm{~V}(\mathrm{FM})$ for 26 dB S／N
－Good strong signal behaviour： $10 \mathrm{~V} / \mathrm{m}$ at AM ， 500 mV at FM
－Low output distortion： $0.8 \%$ at AM， $0.3 \%$ at FM
－Signal level output
－Soft mute
－Signal dependent stereo
－Designed for simple and reliable printed－circuit board layout
－High impedance MOSFET input on AM．

## APPLICATIONS

－Portable AM／FM stereo radio
－Mini／midi receiver sets
－Personal headphone radio．

## DESCRIPTION

The TEA5711 is a high performance Bimos IC for use in AM／FM stereo radios．All necessary functions are integrated：from AM and FM front－end to AM detector and FM stereo output stages．

## QUICK REFERENCE DATA

| SYMBOL | PARAMETER | CONDITIONS | MIN． | TYP． | MAX． | TYP． |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $V_{P}$ | dynamic supply voltage |  | 1.8 | - | 12 | $V$ |
| $V_{P}$ | static supply voltage |  | 2.1 | - | 12 | $V$ |
| $I_{P}$ | supply current |  | 11.9 | 15.0 | 18.9 | mA |
|  | AM mode |  | 13.5 | 16.5 | 20.2 | mA |
|  | FM mode |  | -15 | - | +60 | ${ }^{\circ} \mathrm{C}$ |

AM performance

| $V_{\text {in }}$ | RF sensitivity |  | 40 | 55 | 70 | $\mu \mathrm{~V}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $V_{28}$ | AF output voltage |  | 36 | 45 | 70 | mV |
| THD | total harmonic distortion |  | - | 0.8 | 2.0 | $\%$ |

## FM performance

| $V_{\text {In }}$ | RF sensitivity |  | 1.0 | 2.0 | 3.8 | $\mu \mathrm{~V}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~V}_{\text {28 }}$ | AF output voltage |  | 50 | 61 | 72 | mV |
| THD | total harmonic distortion |  | - | 0.3 | 0.8 | $\%$ |

MPX performance

| MPX performance |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\alpha_{\text {cs }}$ | channel separation |  | 26 | 30 | - | $d B$ |
| $A_{\text {MPX }}$ | MPX voltage gain | $V_{\text {AF－L }} N_{\text {In9；}}$ S5 in position MONO | -1.5 | 0 | +1.0 | $d B$ |
| THD | total harmonic distortion |  | - | 0.5 | 1.0 | $\%$ |

ORDERING INFORMATION

| TYPE NUMBER | PACKAGE |  |  |
| :---: | :---: | :--- | :---: |
|  | NAME | DESCRIPTION | VERSION |
| TEA5711 | SDIP32 | plastic shrink dual in－line package；32 leads（400 mil） | SOT232－1 |
| TEA5711TD | SO32 | plastic small outline package；32 leads；body width 7.5 mm | SOT287－1 |



## PINNING

| SYMBOL | PIN | DESCRIPTION |
| :---: | :---: | :---: |
| n．c． | 1 | not connected |
| AF－Lo | 2 | left channel audio output（output impedance typ． $4.3 \mathrm{k} \Omega$ ） |
| $A F-R_{0}$ | 3 | right channel audio output（output impedance typ． $4.3 \mathrm{k} \Omega$ ） |
| PILFIL | 4 | pilot detector filter pin |
| FM－DEM | 5 | ceramic discriminator pin |
| IFGND | 6 | ground of IF，detector and MPX stages |
| $\mathrm{FM}^{\text {－IF2 }} 1$ | 7 | second FM－IF input（input impedance typ． $330 \Omega$ ） |
| VSTAB $_{\text {B }}$ | 8 | stabilized internal supply voltage（B） |
| FM－IF10 | 9 | first FM－IF output（output impedance typ． $330 \Omega$ ） |
| AM－IF $2_{1 / O}$ | 10 | input／output to IFT；output：current source |
| $\mathrm{FM}^{\text {－IF }} 1_{1}$ | 11 | first FM－IF input（input impedance typ． 330 ） |
| VSTAB ${ }_{\text {A }}$ | 12 | stabilized internal supply voltage（A） |
| FM－MIXER | 13 | output to ceramic IF filter（output impedance typ． $330 \Omega$ ） |
| AM－MIXER | 14 | open－collector output to IFT |
| AM－IF1 ${ }_{1}$ | 15 | input from IFT or ceramic filter（input impedance typ． $3 \mathrm{k} \Omega$ ） |
| FM－RF1 | 16 | FM－RF aerial input（input impedance typ． $50 \Omega$ ） |
| RFGND | 17 | FM－RF ground |
| AM－RF ${ }_{1}$ | 18 | parallel tuned AM aerial circuit to ground（total input capacitance typ． 3 pF ） |
| RIPPLE | 19 | ripple capacitor pin |
| AM－AGC／FM－AFC | 20 | AGC／AFC capacitor pin |
| FM－RFo | 21 | parallel tuned FM－RF circuit to ground |
| SUBGND | 22 | substrate and RF ground |
| FM－OSC | 23 | parallel tuned FM－oscillator circuit to ground |
| AM－OSC | 24 | parallel tuned AM－oscillator circuit to ground |
| $V_{P}$ | 25 | positive supply voltage |
| IND | 26 | signal level output |
| VCO／AM－FM SWITCH | 27 | VCO and switch terminal：open for AM；ground for FM |
| $\mathrm{AF}_{0}$ | 28 | AM／FM AF output（output impedance typ． $5 \mathrm{k} \Omega$ ） |
| MPX ${ }_{1}$ | 29 | input for stereo decoder（input impedance typ． $180 \mathrm{k} \Omega$ ） |
| ST－LED | 30 | stereo indicator |
| LPF－M／S | 31 | pin for loop－filter and mono／stereo switch |
| MUTE | 32 | mute pin |

## AM/FM stereo radio circuit




## AM／FM stereo radio circuit

## FUNCTIONAL DESCRIPTION

The AM circuit incorporates a double balanced mixer，a one pin low－voltage oscillator（up to 30 MHz ）a field－strength indicator output and is designed for distributed selectivity．

The AM input is designed to be connected to the top of a tuned circuit．AGC controls the IF amplification and for large signals it lowers the input impedance．

The first AM selectivity can be an IFT as well as an IFT combined with a ceramic filter；the second one is an IFT．

The FM circuit incorporates a tuned RF stage，a double balanced mixer，a one－pin oscillator，a field－strength indicator output and is designed for distributed IF ceramic filters．The FM quadrature detector uses a ceramic resonator．

The PLL stereo decoder incorporates a signal dependent stereo circuit，a soft－mute circuit and a stereo indicator LED driver．

## Supply voltage behaviour

The TEA5711 incorporates internal stabilized power supplies．The maximum supply voltage is 12 V ，the minimum voltage can go down temporarily to 1.8 V without any loss in performance．

Due to the capacitor at pin 19 （RIPPLE）the IC gives excellent performance，even when the actual supply voltage at pin $25\left(V_{P}\right)$ drops below the voltage at pin 19 （RIPPLE）．

Figures 4,5 and 6 show that $V_{\text {stab }}$ ，which is dominant for the overall IC performance，remains unaffected，even if $V_{P}$ drops down to 1.8 V or less．In this typical example the static or average $\mathrm{V}_{\mathrm{P}}$ is equal to 2.5 V ．Dips in $\mathrm{V}_{\text {stab }}$ appear only when the peak－to－peak value of the AC－component of $V_{P}>2 \mathrm{~V}$ ，i．e．when the dynamic value of $V_{P}$ drops down to 1.5 V for a short moment．


Fig． 4 Supply voltage behaviour；$V_{P}$ as a function of time．


Fig． 5 Supply voltage behaviour；$V_{\text {ripple }}$ as a function of time．


Fig． 6 Supply voltage behaviour；$V_{\text {stab }}$ as a function of time．

## AM/FM stereo radio circuit

## LIMIting Values

In accordance with the Absolute Maximum Rating System (IEC 134).

| SYMBOL | PARAMETER | MIN. | MAX. | UNIT |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{V}_{\mathbf{P}}$ | supply voltage | 0 | 12 | V |
| $T_{\text {stg }}$ | storage temperature | -55 | +150 | ${ }^{\circ} \mathrm{C}$ |
| $T_{\text {amb }}$ | operating ambient temperature | -15 | +60 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{j}}$ | junction temperature | -15 | +150 | ${ }^{\circ} \mathrm{C}$ |

THERMAL CHARACTERISTICS

| SYMBOL | PARAMETER | VALUE | UNIT |
| :--- | :--- | :---: | :---: |
| $\mathrm{R}_{\mathrm{th} \text { j-a }}$ | thermal resistance from junction to ambient in free air |  |  |
|  | SDIP32 | 54 | KNW |
|  | SO32 | 68 | KWW |

## AM／FM stereo radio circuit

TEA5711；TEA5711T

CIRCUIT DESIGN DATA

| PIN NO． | PIN SYMBOL | DC PIN VOLTAGE（V） |  | EQUIVALENT CIRCUIT |
| :---: | :---: | :---: | :---: | :---: |
|  |  | AM | FM |  |
| 1 | n．c． | － | － |  |
| 2 | AF－Lo <br> output | 0.65 | 0.65 |  |
| 3 | AF－R $\mathrm{R}_{\mathrm{O}}$ output | 0.65 | 0.65 |  |
| 4 | PILFIL | 0.95 | 0.95 |  |
| 5 | FM－DEM | － | 1.0 |  |
| 6 | IFGND | 0 | 0 |  |

AM/FM stereo radio circuit


AM/FM stereo radio circuit

| PIN NO. | PIN SYMBOL | DC PIN VOLTAGE (V) |  | EQUIVALENT CIRCUIT |
| :---: | :---: | :---: | :---: | :---: |
|  |  | AM | FM |  |
| 11 | FM-IF1, input | - | 0.73 |  |
| 12 | VSTAB ${ }_{\text {A }}$ | 1.4 | 1.4 |  |
| 13 | FM-MIXER output | - | 1.0 |  |
| 14 | AM-MIXER output | 1.4 | 1.4 |  |


| PIN No. | PIN SYMBOL | dC Pin Voltage (V) |  | EQUIVALENT CIRCUIT |
| :---: | :---: | :---: | :---: | :---: |
|  |  | AM | FM |  |
| 15 | $\begin{aligned} & \text { AM-IF1\| } \\ & \text { input } \end{aligned}$ | 1.4 | 1.4 |  |
| 16 | FM-RFI input | - | 0.73 |  |
| 17 | RFGND | 0 | 0 |  |
| 18 | AM-RFI input | 0 | 0 |  |

PIN NO． | PIN SYMBOL |
| :---: |

## AM/FM stereo radio circuit

## TEA5711; TEA5711T



AM／FM stereo radio circuit

| PIN NO． | PIN SYMBOL | DC PIN VOLTAGE（V） |  | EQUIVALENT CIRCUIT |
| :---: | :---: | :---: | :---: | :---: |
|  |  | AM | FM |  |
| 29 | MPX <br> input | 1.23 | 1.23 |  |
| 30 | ST－LED | 3.0 | 3.0 |  |
| 31 | LPF－M／S | 0.1 | 0.8 |  |
| 32 | MUTE | 0.7 | 0.7 |  |

## AM CHARACTERISTICS

$f_{i}=1 \mathrm{MHz} ; m=0.3 ; f_{m}=1 \mathrm{kHz} ; \mathrm{V}_{\mathrm{P}}=3.0 \mathrm{~V}$ ；measured in Fig． 7 with S 1 in position $\mathrm{B}, \mathrm{S} 2$ in position A and S 7 in position $A$ ；unless otherwise specified．

| SYMBOL | PARAMETER | CONDITIONS | MIN． | TYP． | MAX． | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{l}_{\mathrm{P}}$ | supply current | no input signal | 11.9 | 15.0 | 18.9 | mA |
| $\mathrm{C}_{1}$ | input capacitance | $\mathrm{V}_{20}=0.2 \mathrm{~V}$ | － | 3 | － | pF |
| $\mathrm{G}_{\mathrm{c}}$ | front－end conversion gain | $\mathrm{V}_{20}=0.2 \mathrm{~V}$ | 1.8 | 3.3 | 5.0 |  |
| $V_{\text {In1 }}$ | RF sensitivity | $\mathrm{S} / \mathrm{N}=26 \mathrm{~dB}$ | 40 | 55 | 70 | $\mu \mathrm{V}$ |
| $V_{\text {In2 }}$ | IF sensitivity | $\mathrm{V}_{28}=30 \mathrm{mV}$ ； S 1 in position A | 0.13 | 0.2 | 0.45 | mV |
| $V_{28}$ | AF output voltage | $\mathrm{V}_{\mathrm{m} 2}=3.16 \mathrm{mV}$ ；S1 in position A | 36 | 45 | 70 | mV |
| THD | total harmonic distortion | $\mathrm{V}_{\mathrm{n} 1}=1 \mathrm{mV}$ | － | 0.8 | 2.0 | \％ |
| $V_{1 n 1}$ | large signal handling | $\mathrm{m}=0.8 ; \mathrm{THD} \leq 8 \%$ | 150 | 300 | － | mV |
| $I_{\text {IND }}$ | indicator current | $\mathrm{V}_{\mathrm{m} 2}=100 \mathrm{mV}$ ；S1 in position A | 120 | 170 | 230 | $\mu \mathrm{A}$ |
| I INDOFF | indicator OFF current | $\mathrm{V}_{\mathrm{in} 2}=0 \mathrm{~V} ; \mathrm{S} 1$ in position A | － | 0 | 10 | $\mu \mathrm{A}$ |

## FM CHARACTERISTICS

$f_{1}=100 \mathrm{MHz} ; \Delta f=22.5 \mathrm{kHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz} ; \mathrm{V}_{\mathrm{P}}=3.0 \mathrm{~V}$ ；measured in Fig． 7 with S 1 in position $\mathrm{B}, \mathrm{S} 2$ in position A and S 7 in position $A$ ；unless otherwise specified．

| SYMBOL | PARAMETER | CONDITIONS | MIN． | TYP． | MAX． | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{If}_{P}$ | supply current | no input signal | 13.5 | 16.5 | 20.2 | mA |
| $V_{\text {in3 }}$ | RF limiting sensitivity | $V_{28}=-3 \mathrm{~dB}$ | 0.4 | 1.2 | 3.8 | $\mu \mathrm{V}$ |
| $V_{\text {In3 }}$ | RF sensitivity | $\mathrm{S} / \mathrm{N}=26 \mathrm{~dB}$ | 1.0 | 2.0 | 3.8 | $\mu \mathrm{V}$ |
| $V_{11} N_{\text {in3 }}$ | front－end voltage gain | $V_{\mathrm{nn} 3} \leq 1 \mathrm{mV}$ ； <br> including ceramic filter K 1 | 12 | 18 | 22 | dB |
| $V_{\text {in4 }}$ | IF sensitivity | $S 2$ in position B；$V_{28}=-3 \mathrm{~dB}$ | － | 20 | 30 | $\mu \mathrm{V}$ |
| $\mathrm{V}_{28}$ | AF output voltage | $\mathrm{V}_{\mathrm{n} 3}=1 \mathrm{mV}$ | 50 | 61 | 72 | mV |
| THD | total harmonic distortion | $\mathrm{V}_{\mathrm{n} 3}=1 \mathrm{mV} ; \Delta \mathrm{f}=22.5 \mathrm{kHz}$ | － | 0.3 | 0.8 | \％ |
| $V_{\text {In3 }}$ | large signal handling | THD $\leq 5 \%$ | － | 500 | － | mV |
| IIND | indicator current | $\mathrm{V}_{1 \mathrm{n} 4}=100 \mathrm{mV}$ ； S 2 in position B | 190 | 255 | 320 | $\mu \mathrm{A}$ |
| I INDOFF | indicator OFF current | $\mathrm{V}_{\text {in4 }}=0 \mathrm{~V}$ ； S 2 in position B | － | 0 | 2 | $\mu \mathrm{A}$ |

STEREO DECODER CHARACTERISTICS
$f_{1}=1 \mathrm{kHz} ; V_{\text {ing }}(\mathrm{L}+\mathrm{R})=195 \mathrm{mv}$ ；pilot $=20 \mathrm{mV}$ ； $\mathrm{V}_{\mathrm{P}}=3.0 \mathrm{~V}$ ；measured in Fig． 7 with S 1 in position $\mathrm{B}, \mathrm{S} 2$ in position $\mathrm{A}, \mathrm{S} 6$ in position $A, S 7$ in position $A$ and $S 5$ in position STEREO；unless otherwise specified．

| SYMBOL | PARAMETER | CONDITIONS | MIN． | TYP． | MAX． | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{A}_{\text {MPX }}$ | MPX voltage gain $\mathrm{V}_{\text {AF－L }} N_{\text {in9 }}$ | S5 in position MONO | －1．5 | 0 | ＋1．0 | dB |
| THD | total harmonic distortion |  | － | 0.5 | 1.0 | \％ |
| $(S+N) / N$ | signal plus noise－to－noise ratio | pilot $=20 \mathrm{mV}$ | － | 74 | － | dB |
| $\alpha_{\text {cs }}$ | channel separation | $L=1 ; R=0$ or $L=0 ; R=1$ | 26 | 30 | － | dB |
| SC | stereo control | $V_{\text {in3 }}=120 \mu \mathrm{~V}$ | － | 30 | － | dB |
|  |  | $\mathrm{V}_{\mathrm{tn} 3}=10 \mu \mathrm{~V}$ | － | 1 | － | dB |
| $\alpha_{\text {MUTE }}$ | AF output signal suppression | $\mathrm{V}_{\text {п33 }} \leq 2 \mu \mathrm{~V}$ | － | 20 | － | dB |






Fig． 10 Printed－circuit board layout（component side）for application circuit of Fig． 8 ．

AM／FM stereo radio circuit

## Components for Figs 7 and 8

| NUMBER | TYPE | DESCRIPTION | CIRCUIT |
| :---: | :---: | :---: | :---: |
| Coils |  |  |  |
| L1 | AM－AERIAL | ferroceptor length $=6 \mathrm{~cm}$ $\mathrm{L} 1-2=625 \mu \mathrm{H}$ N1－2 $=105$ turns unloaded Q |  |
| L2 | FM－RF | $\begin{aligned} & \hline \mathrm{L} 1-2=66 \mathrm{nH} \\ & \mathrm{~N} 1-2=2.5 \text { turns } \\ & \text { unloaded } \mathrm{Q}=150 \mathrm{~T} \\ & \text { TOKO type S18 } \\ & \text { TOKO number 301SS-0200 } \\ & \hline \end{aligned}$ |  |
| L3 | FM－OSC | $\mathrm{L1}-2=40 \mathrm{nH}$ <br> $\mathrm{N} 1-2=1.5$ turns unloaded $Q=150$ <br> TOKO type S18 TOKO number 301SS－0100 |  |
| L4 | AM－OSC | $\begin{aligned} & \mathrm{L} 1-3=270 \mu \mathrm{H} \\ & \mathrm{~N} 1-2=18 \\ & \mathrm{~N} 2-3=70 \end{aligned}$ <br> unloaded $\mathrm{Q}=100$ <br> wire diameter 0.07 mm TOKO type 7P material TOKO 7BRS |  |
| L5 | AM－IF1 | $\begin{aligned} & \hline \text { L1-3 }=625 \mu \mathrm{H} \\ & \mathrm{~N} 1-2=17 \text { turns } \\ & \text { N2-3 }=141 \text { turns } \\ & \text { N4-6 }=10 \text { turns } \\ & \mathrm{C} 1-3=180 \mathrm{pF} \\ & \text { unloaded } \mathrm{Q}=90 \\ & \text { wire diameter } 0.07 \mathrm{~mm} \\ & \text { TOKO type 7P } \\ & \text { material TOKO } 7 \mathrm{MCS} \\ & \hline \end{aligned}$ |  |
| L6 | AM－IF2 | L1－3 $=625 \mu \mathrm{H}$ <br> $\mathrm{N} 1-2=28$ turns <br> N2－3 $=130$ turns <br> $\mathrm{C} 1-3=180 \mathrm{pF}$ <br> unloaded $\mathrm{Q}=90$ <br> wire diameter 0.07 mm <br> TOKO type 7P <br> material TOKO 7MCS |  |
| L7 | FM－AERIAL | printcoil <br> $\mathrm{L1}-2=60 \mathrm{nH}$ <br> $\mathrm{N} 1-2=2.5$ turns |  |

AM/FM stereo radio circuit
TEA5711; TEA5711T

| NUMBER | TYPE | DESCRIPTION | CIRCUIT |
| :---: | :---: | :---: | :---: |
| L8 | AM-RF | test circuit only: <br> L1-3 $=40 \mu \mathrm{H}$ <br> $\mathrm{N} 1-3=34$ turns <br> unloaded $\mathrm{Q}=85$ <br> wire diameter 0.09 mm <br> TOKO type 7P material TOKO 7BRS |  |
| Ceramic filters |  |  |  |
| K1 | FM-IF1 | Murata SFE 10.7 MS 2 |  |
| K2 | FM-IF2 | Murata SFE 10.7 MS 2 |  |
| K3 | FM-DET | Murata CDA 10.7 MC 40 |  |
| Capacitors |  |  |  |
| C1 | VARICON | AM: 140/82 pF <br> FM: $2 \times 20 \mathrm{pF}$ <br> trimmer: $4 \times 8 \mathrm{pF}$ <br> TOKO type number HU-22124 |  |

## Application remarks

- Short circuiting: all pins are short-circuit proof except pin $16\left(F M-R F_{1}\right)$ with respect to the supply voltage pin.
- For an example of printed-circuit board layout: see Figs 9 and 10.
- Align VCO with aerial signal present.


Fig. 11 Typical $A M$ audio voltage ( $V_{A F}$; signal at $m=0.3$ ), noise and THD as a function of RF input voltage ( $\mathrm{V}_{\mathrm{m} 1} ; \mathrm{f}_{1}=1 \mathrm{kHz}$ ). Measured in test circuit Fig. 7 with $\mathrm{V}_{\mathrm{P}}=3.0 \mathrm{~V}$.


Fig． 12 Typical $A M$ audio voltage（ $V_{A F}$ ；signal at $m=0.3$ ），noise and THD as a function of field－strength $\left(f_{1}=1 \mathrm{kHz}\right)$ ． Measured in application circuit Fig． 8 with $\mathrm{V}_{\mathrm{P}}=3.0 \mathrm{~V}$ ．


Fig． 13 Typical FM audio voltage（ $\mathrm{V}_{\mathrm{AF}}$ ；signal），noise， THD （at $\Delta \mathrm{f}=22.5 \mathrm{kHz}$ and $\Delta \mathrm{f}=75 \mathrm{kHz}$ ）and indicator current（level）as a function of RF input voltage（ $\mathrm{V}_{\mathrm{m} 1} ; \Delta \mathrm{f}=22.5 \mathrm{kHz}$ ）．Curves are shown without mute（mono）and with mute（mono and stereo）．Channel separation at $\Delta f=75 \mathrm{kHz}$ ．Measured in test circuit Fig． 7 with $V_{p}=3.0 \mathrm{~V}$ ．

