加急出货

TEA5711; TEA5711T

FEATURES

- Wide supply voltage range: 1.8 or 2.1 to 12 V
- Low current consumption: 15 mA at AM, 16 mA at FM
- · High selectivity with distributed IF gain
- · LED driver for stereo indication
- High input sensitivity: 1.6 mV/m (AM), 2.0 μV (FM) for 26 dB S/N
- Good strong signal behaviour: 10 V/m at AM, 500 mV at FM
- Low output distortion: 0.8% at AM, 0.3% at FM
- · Signal level output
- Soft mute
- Signal dependent stereo

- Designed for simple and reliable printed-circuit board layout
- · High impedance MOSFET input on AM.

APPLICATIONS

- · Portable AM/FM stereo radio
- Mini/midi receiver sets
- · Personal headphone radio.

DESCRIPTION

The TEA5711 is a high performance Bimos IC for use in AM/FM stereo radios. All necessary functions are integrated: from AM and FM front-end to AM detector and FM stereo output stages.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	TYP
V _P	dynamic supply voltage		1.8	- 43	12	٧
V _P	static supply voltage		2.1		12	٧
l _P	supply current		_179			
	AM mode	- 47 100	11.9	15.0	18.9	mA
	FM mode	-Z-FD I'D COM	13.5	16.5	20.2	mA
T _{amb}	operating ambient temperature	1 1 2750.00	-15	-	+60	oc
AM perfor	mance	MM.				
V _{in1}	RF sensitivity		40	55	70	μV
V ₂₈	AF output voltage		36	45	70	mV
THD	total harmonic distortion		_	0.8	2.0	%
FM perfor	mance					
V _{in3}	RF sensitivity		1.0	2.0	3.8	μV
V ₂₈	AF output voltage		50	61	72	mV
THD	total harmonic distortion		-190	0.3	0.8	%
MPX perf	ormance	- 17-134				
α _{cs}	channel separation	THE THE PERSON	26	30		dB
A _{MPX}	MPX voltage gain	V _{AF-L} /V _{in9} ; S5 in position MONO	-1.5	0	+1.0	dB
THD	total harmonic distortion	W. Art.]_	0.5	1.0	%

ORDERING INFORMATION

	PACKAGE				
TYPE NUMBER	NAME	DESCRIPTION	VERSION		
TEA5711	SDIP32	plastic shrink dual in-line package; 32 leads (400 mil)	SOT232-1		
TEA5711PDF	SO32	plastic small outline package; 32 leads; body width 7.5 mm	SOT287-1		

TEA5711; TEA5711T

BLOCK DIAGRAM

TEA5711; TEA5711T

PINNING

SYMBOL PIN		DESCRIPTION		
n.c.	1	not connected		
AF-L _O	2	left channel audio output (output impedance typ. 4.3 kΩ)		
AF-R _O	3	right channel audio output (output impedance typ. 4.3 kΩ)		
PILFIL	4	pilot detector filter pin		
FM-DEM	5	ceramic discriminator pin		
IFGND	6	ground of IF, detector and MPX stages		
FM-IF2 ₁	7	second FM-IF input (input impedance typ. 330 Ω)		
VSTAB _B	8	stabilized internal supply voltage (B)		
FM-IF1 _O	9	first FM-IF output (output impedance typ. 330 Ω)		
AM-IF2 _{I/O}	10	input/output to IFT; output: current source		
FM-IF1 _I	11	first FM-IF input (input impedance typ. 330 Ω)		
VSTAB _A	12	stabilized internal supply voltage (A)		
FM-MIXER	13	output to ceramic IF filter (output impedance typ. 330 Ω)		
AM-MIXER	14	open-collector output to IFT		
AM-IF1 _I	15	input from IFT or ceramic filter (input impedance typ. $3 \text{ k}\Omega$)		
FM-RF _I	16	FM-RF aerial input (input impedance typ. 50 Ω)		
RFGND	17	FM-RF ground		
AM-RF _t	18	parallel tuned AM aerial circuit to ground (total input capacitance typ. 3 pF)		
RIPPLE	19	ripple capacitor pin		
AM-AGC/FM-AFC	20	AGC/AFC capacitor pin		
FM-RF _O	21	parallel tuned FM-RF circuit to ground		
SUBGND	22	substrate and RF ground		
FM-OSC	23	parallel tuned FM-oscillator circuit to ground		
AM-OSC	24	parallel tuned AM-oscillator circuit to ground		
V _P	25	positive supply voltage		
IND	26	signal level output		
VCO/AM-FM SWITCH	27	VCO and switch terminal: open for AM; ground for FM		
AF _O	28	AM/FM AF output (output impedance typ. 5 kΩ)		
MPX	29	input for stereo decoder (input impedance typ. 180 kΩ)		
ST-LED	30	stereo indicator		
LPF-M/S	31	pin for loop-filter and mono/stereo switch		
MUTE	32	mute pin		

TEA5711; TEA5711T

FUNCTIONAL DESCRIPTION

The AM circuit incorporates a double balanced mixer, a one pin low-voltage oscillator (up to 30 MHz) a field-strength indicator output and is designed for distributed selectivity.

The AM input is designed to be connected to the top of a tuned circuit. AGC controls the IF amplification and for large signals it lowers the input impedance.

The first AM selectivity can be an IFT as well as an IFT combined with a ceramic filter; the second one is an IFT.

The FM circuit incorporates a tuned RF stage, a double balanced mixer, a one-pin oscillator, a field-strength indicator output and is designed for distributed IF ceramic filters. The FM quadrature detector uses a ceramic resonator.

The PLL stereo decoder incorporates a signal dependent stereo circuit, a soft-mute circuit and a stereo indicator LED driver.

Supply voltage behaviour

The TEA5711 incorporates internal stabilized power supplies. The maximum supply voltage is 12 V, the minimum voltage can go down temporarily to 1.8 V without any loss in performance.

Due to the capacitor at pin 19 (RIPPLE) the IC gives excellent performance, even when the actual supply voltage at pin 25 (V_P) drops below the voltage at pin 19 (RIPPLE).

Figures 4, 5 and 6 show that V_{stab} , which is dominant for the overall IC performance, remains unaffected, even if V_P drops down to 1.8 V or less. In this typical example the static or average V_P is equal to 2.5 V. Dips in V_{stab} appear only when the peak-to-peak value of the AC-component of $V_P > 2$ V, i.e. when the dynamic value of V_P drops down to 1.5 V for a short moment.

TEA5711; TEA5711T

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
V_P	supply voltage	0	12	V
T _{stg}	storage temperature	-55	+150	°C
T _{amb}	operating ambient temperature	-15	+60	°C
T ₁	junction temperature	-15	+150	°C

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	VALUE	UNIT
R _{th j-a}	thermal resistance from junction to ambient in free air		
	SDIP32	54	k∕w
	SO32	68	k∕w

TEA5711; TEA5711T

CIRCUIT DESIGN DATA

	DIN CVMDOI	DC PIN VO	LTAGE (V)	EQUIVALENT CIRCUIT
PIN NO.	PIN SYMBOL	АМ	FM	Egoli ALLIN Gilloon
1	n.c.	_	_	
2	AF-L _O output	0.65	0.65	5 0 MKA268.1
3	AF-R _O output	0.65	0.65	3 0 4.3 KD 4 6 0 MKAZER,1
4	PILFIL	0.95	0.95	4 0 10 kn 10
5	FM-DEM	_	1.0	5 c 180 n 910 n 1
6	IFGND	0	0	

PIN NO.	PIN SYMBOL	DC PIN VC	DLTAGE (V)	
Fit ito.	PIN STWBOL	АМ	FM	EQUIVALENT CIRCUIT
7	FM-IF2 _I input	_	0.73	8 0 180 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8	VSTAB _B	1.4	1.4	25 O
9	FM-IF1 _O output		0.69	9 G 560 D MAJ73.1
10	AM-IF2 _{I/O} input/output	1.4	1.4	8 0————————————————————————————————————

	DC PIN VOLTAGE (V)		LTAGE (V)	EQUIVALENT CIRCUIT
PIN NO.	PIN SYMBOL	AM	FM	EGOIVALENT CINCOTT
11	FM-IF1 _I input	_	0.73	12 0 11 0 120 0 2.7 kD
12	VSTAB _A	1.4	1.4	25 O
13	FM-MIXER output	_	1.0	13 O S80 N MKA277 I
14	AM-MIXER output	1.4	1.4	14 0————————————————————————————————————

TEA5711; TEA5711T

PIN NO.	DIN CYARDOI	DC PIN VC	OLTAGE (V)	
PIN NO.	PIN SYMBOL	АМ	FM	EQUIVALENT CIRCUIT
15	AM-IF1 _I input	1.4	1.4	12 0 3 kO 15 0 MKA278.1
16	FM-RF _I input	-	0.73	220 n 15 0 17 0 17 0 17 0 17 0 17 0 17 0 17 0
17	RFGND	0	0	220 a 16 0 17 0 21 0
18	AM-RF _I input	0	0	22 G T T T T T T T T T T T T T T T T T T

		DC PIN VO	LTAGE (V)	EQUIVALENT CIRCUIT
PIN NO.	PIN SYMBOL	АМ	FM	EGGIVALENT CIRCOTT
19	RIPPLE	2.1	2.1	25 o
20	AM-AGC/ FM-AFC	0.1	0.7	20 0 WKAJ83
21	FM-RF _O	O	0	220 D 16 G 17 G 21 G 1-
22	SUBGND	0	0	
23	FM-OSC	o	0	23 0 10 kn 1 10 kn 22 0 10 kn 284.1

500.00		DC PIN VO	LTAGE (V)	
PIN NO.	PIN SYMBOL	AM	FM	EQUIVALENT CIRCUIT
24	AM-OSC	0	O	24 g 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
25	V _P	3.0	3.0	
26	IND output	3.0	3.0	25 G 26 G 6 G MKAZER.I
27	VCO and AM/FM switch	1.3	0.95	27 O MILAZET.1
28	AF output	0.6	0.7	28 G 25 kΩ 36.1

	DC PIN VOLTAGE (V)		LTAGE (V)	EQUIVALENT CIRCUIT
PIN NO.	PIN SYMBOL	АМ	FM	EQUIVALENT CIRCUIT
29	MPX input	1.23	1.23	29 9.5 kΩ 180 kΩ MMA286.1
30	ST-LED	3.0	3.0	50 О МИАЗВО
31	LPF-M/S	0.1	0.8	31 G 10 KD 1
32	MUTE	0.7	0.7	32 G WHAZEZ

TEA5711; TEA5711T

AM CHARACTERISTICS

 f_i = 1 MHz; m = 0.3; f_m = 1 kHz; V_P = 3.0 V; measured in Fig.7 with S1 in position B, S2 in position A and S7 in position A; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MIN. TYP.		UNIT
lр	supply current	no input signal	11.9	15.0	18.9	mA
C,	input capacitance V ₂₀ = 0.2 V		_	3	_	pF
G _c	front-end conversion gain	V ₂₀ = 0.2 V	1.8	3.3	5.0	
V _{in1}	RF sensitivity	S/N = 26 dB	40	55	70	μV
V _{in2}	IF sensitivity	V ₂₈ = 30 mV; S1 in position A	0.13	0.2	0.45	mV
V ₂₈	AF output voltage	V _{in2} = 3.16 mV; S1 in position A	36	45	70	mV
THD	total harmonic distortion	V _{in1} = 1 mV	_	0.8	2.0	%
V _{In1}	large signal handling	m = 0.8; THD ≤ 8%	150	300	-	mV
I _{IND}	indicator current	V _{in2} = 100 mV; S1 in position A	120	170	230	μΑ
INDOFF	indicator OFF current	V _{in2} = 0 V; S1 in position A	_	0	10	μА

FM CHARACTERISTICS

 f_i = 100 MHz; Δf = 22.5 kHz; f_m = 1 kHz; V_P = 3.0 V; measured in Fig.7 with S1 in position B, S2 in position A and S7 in position A; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
lр	supply current	no input signal	13.5	16.5	20.2	mA
V _{in3}	RF limiting sensitivity	$V_{28} = -3 \text{ dB}$	0.4	1.2	3.8	μV
V _{in3}	RF sensitivity	S/N = 26 dB	1.0	2.0	3.8	μV
V ₁₁ /V _{in3}	front-end voltage gain	V _{m3} ≤ 1 mV; including ceramic filter K1	12	18	22	dB
V _{in4}	IF sensitivity	S2 in position B; V ₂₈ = -3 dB	1-	20	30	μV
V ₂₈	AF output voltage	V _{in3} = 1 mV	50	61	72	mV
THD	total harmonic distortion	$V_{in3} = 1 \text{ mV}; \Delta f = 22.5 \text{ kHz}$	-	0.3	0.8	%
V _{in3}	large signal handling	THD ≤ 5%	-	500	-	mV
I _{IND}	indicator current	V _{in4} = 100 mV; S2 in position B	190	255	320	μА
INDOFF	indicator OFF current	V _{in4} = 0 V; S2 in position B	-	0	2	μА

STEREO DECODER CHARACTERISTICS

 $f_1 = 1$ kHz; $V_{in9(L+R)} = 195$ mv; pilot = 20 mV; $V_P = 3.0$ V; measured in Fig.7 with S1 in position B, S2 in position A, S6 in position A, S7 in position A and S5 in position STEREO; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT dB
A _{MPX}	MPX voltage gain V _{AF-L} /V _{in9}	S5 in position MONO	-1.5	0	+1.0	
THD	total harmonic distortion		-	0.5	1.0	%
(S+N)/N	signal plus noise-to-noise ratio	pilot = 20 mV	_	74	1-	dB
α_{cs}	channel separation	L = 1; R = 0 or L = 0; R = 1	26	30	_	dB
SC	stereo control	V _{in3} = 120 μV		30	_	dB
		$V_{in3} = 10 \mu V$	_	1	_	dB
α _{Μυτε}	AF output signal suppression	V _{in3} ≤ 2 μV	_	20	1-	dB

TEA5711; TEA5711T

2290

TEA5711; TEA5711T

APPLICATION INFORMATION

TEA5711; TEA5711T

Components for Figs 7 and 8

NUMBER	TYPE	DESCRIPTION	CIRCUIT
Coils			
L1	AM-AERIAL	ferroceptor length = 6 cm L1-2 = 625 μH N1-2 = 105 turns unloaded Q	
L2	FM-RF	L1-2 = 66 nH N1-2 = 2.5 turns unloaded Q = 150T TOKO type S18 TOKO number 301SS-0200	
L3	FM-OSC	L1-2 = 40 nH N1-2 = 1.5 turns unloaded Q = 150 TOKO type S18 TOKO number 301SS-0100	
L4	AM-OSC	L1-3 = 270 µH N1-2 = 18 N2-3 = 70 unloaded Q = 100 wire diameter 0.07 mm TOKO type 7P material TOKO 7BRS	3 0 JAKA283 2 0 JAKA283
L5	AM-IF1	L1-3 = 625 µH N1-2 = 17 turns N2-3 = 141 turns N4-6 = 10 turns C1-3 = 180 pF unloaded Q = 90 wire diameter 0.07 mm TOKO type 7P material TOKO 7MCS	3 0 4 2 0 5 0 6
L6	AM-IF2	L1-3 = 625 µH N1-2 = 28 turns N2-3 = 130 turns C1-3 = 180 pF unloaded Q = 90 wire diameter 0.07 mm TOKO type 7P material TOKO 7MCS	3 0 wkajes 2 0 L6
L7	FM-AERIAL	printcoil L1-2 = 60 nH N1-2 = 2.5 turns	

TEA5711; TEA5711T

NUMBER	TYPE	DESCRIPTION	CIRCUIT
L8	AM-RF	test circuit only: L1-3 = 40 µH N1-3 = 34 turns unloaded Q = 85 wire diameter 0.09 mm TOKO type 7P material TOKO 7BRS	3 0 wxx296
Ceramic filt	ers		
K1	FM-IF1	Murata SFE 10.7 MS 2	
K2	FM-IF2	Murata SFE 10.7 MS 2	
КЗ	FM-DET	Murata CDA 10.7 MC 40	
Capacitors			
C1	VARICON	AM: 140/82 pF FM: 2 × 20 pF trimmer: 4 × 8 pF TOKO type number HU-22124	

Application remarks

- Short circuiting: all pins are short-circuit proof except pin 16 (FM-RF_I) with respect to the supply voltage pin.
- For an example of printed-circuit board layout: see Figs 9 and 10.
- · Align VCO with aerial signal present.

voltage (V_{in1} ; $f_i = 1$ kHz). Measured in test circuit Fig.7 with $V_P = 3.0$ V.

Fig.12 Typical AM audio voltage (V_{AF} ; signal at m = 0.3), noise and THD as a function of field-strength ($f_1 = 1 \text{ kHz}$). Measured in application circuit Fig.8 with $V_P = 3.0 \text{ V}$.

Fig.13 Typical FM audio voltage (V_{AF} ; signal), noise, THD (at $\Delta f = 22.5$ kHz and $\Delta f = 75$ kHz) and indicator current (level) as a function of RF input voltage (V_{in1} ; $\Delta f = 22.5$ kHz). Curves are shown without mute (mono) and with mute (mono and stereo). Channel separation at $\Delta f = 75$ kHz. Measured in test circuit Fig.7 with $V_P = 3.0$ V.