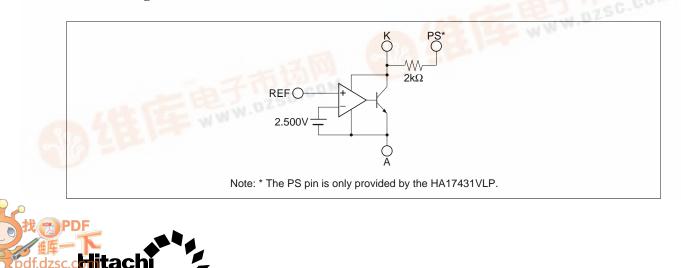
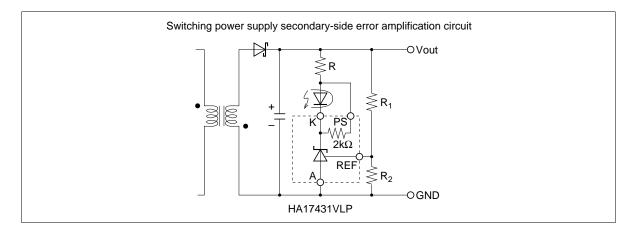


Shunt Regulator


Description

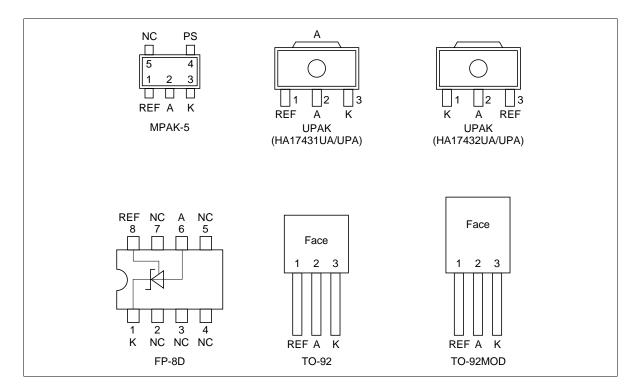
The HA17431 series is a family of voltage referenced shunt regulators. The main application of these products is in voltage regulators that provide a variable output voltage. The HA17431 series products are provided in a wide range of packages; TO-92 and TO-92MOD insertion mounting packages and MPAK-5, UPAK, and FP-8D surface mounting packages are available. The on-chip high-precision reference voltage source can provide $\pm 1\%$ accuracy in the V versions, which have a V_{KA} max of 16 volts. The HA17431VLP, which is provided in the MPAK-5 package, is designed for use in switching mode power supplies. It provides a built-in photocoupler bypass resistor for the PS pin, and an error amplifier can be easily constructed on the supply side.


Features

- The V versions provide 2.500 V $\pm 1\%$ at Ta = 25°C
- The HA17431VLP includes a photocoupler bypass resistor (2 k Ω)
- The reference voltage has a low temperature coefficient
- The MPAK-5 and UPAK miniature packages are optimal for use on high mounting density circuit boards
- A wide operating temperature range (-40 to +85°C) is provided by the TO-92, TO-92MOD, and FP-8D package versions

Block Diagram

Application Circuit Example


Ordering Information

		Version				
Item		V Version	A Version	Normal Version Version		Temp. Range
Reference	Accuracy	±1% (at 25°C)	±2.2%	±4%		
voltage	Max	2.525 V	2.550 V	2.595 V	-	
	Тур	2.500 V	2.495 V	2.495 V	-	
	Min	2.475 V	2.440 V	2.395 V	-	
Cathode volta	age	16 V max	40 V max	40 V max	-	
Cathode curr	ent	50 mA max	150 mA max	150 mA max	-	
Wide temperative	ature use	HA17431VPJ	HA17431PNAJ		TO-92	–40 to +85°C
			HA17431PAJ		TO-92MOD	
				HA17431PJ	TO-92MOD	
			HA17431FPAJ		FP-8D	
				HA17431FPJ	FP-8D	

Ordering Information (cont)

	Version				
ltem	V Version	A Version	Normal Version	Package	Temp. Range
Industrial use	HA17431VLP			MPAK-5	–20 to +85°C
	HA17431VP	HA17431PNA		TO-92	
		HA17431UPA		UPAK	-
		HA17432UPA		UPAK	-
		HA17431PA		TO-92MOD	-
			HA17431P	TO-92MOD	-
		HA17431FPA		FP-8D	-
			HA17431FP	FP-8D	-
Commercial use		HA17431UA		UPAK	-
		HA17432UA		UPAK	-

Pin Arrangement

Absolute Maximum Ratings (Ta = 25° C)

Item	Symbol	HA17431VLP	HA17431VP	HA17431VPJ	Unit	Notes
Cathode voltage	V _{KA}	16	16	16	V	1
PS term. voltage	V _{PS}	V_{KA} to 16	_	_	V	1, 2, 3
Continuous cathode current	Ι _κ	-50 to +50	-50 to +50	-50 to +50	mA	
Reference input current	Iref	-0.05 to +10	-0.05 to +10	-0.05 to +10	mA	
Power dissipation	P _T	150 *4	500 * ⁵	500 * ⁵	mW	4, 5
Operating temperature range	Topr	-20 to +85	-20 to +85	-40 to +85	°C	
Storage temperature	Tstg	-55 to +150	-55 to +150	-55 to +150	°C	

Item	Symbol	HA17431P/PA	HA17431FP/FPA	HA17431UA/UPA	Unit	Notes
Cathode voltage	V _{KA}	40	40	40	V	1
Continuous cathode current	Ι _κ	-100 to +150	-100 to +150	-100 to +150	mA	
Reference input current	Iref	-0.05 to +10	-0.05 to +10	–0.05 to +10	mA	
Power dissipation	Ρ _τ	800 *6	500 * ⁷	800 *8	mW	6, 7, 8
Operating temperature range	Topr	-20 to +85	-20 to +85	-20 to +85	°C	
Storage temperature	Tstg	–55 to +150	–55 to +125	–55 to +150	°C	

Item	Symbol	HA17431PJ/PAJ	HA17431FPJ/FPAJ	Unit	Notes
Cathode voltage	V _{KA}	40	40	V	1
Continuous cathode current	Ι _κ	-100 to +150	-100 to +150	mA	
Reference input current	Iref	–0.05 to +10	-0.05 to +10	mA	
Power dissipation	P _T	800 *6	500 * ⁷	mW	6, 7
Operating temperature range	Topr	-40 to +85	-40 to +85	°C	
Storage temperature	Tstg	–55 to +150	-55 to +125	°C	

Symbol	HA17432UA/UPA	HA17431PNA	HA17431PNAJ	Unit	Notes
V _{KA}	40	40	40	V	
Ι _κ	-100 to +150	-100 to +150	-100 to +150	mA	
Iref	-0.05 to +10	-0.05 to +10	-0.05 to +10	mA	
P _T	800 *8	500 * ⁵	500* ⁵	mW	
Topr	-20 to +85	-20 to +85	-40 to +85	°C	
Tstg	-55 to +150	-55 to +150	-55 to +150	°C	
	V _{KA} I _K Iref P _T Topr	V_{KA} 40 I_K -100 to +150 Iref -0.05 to +10 P_T 800 *8 Topr -20 to +85	V_{KA} 40 40 I_{K} -100 to +150 -100 to +150 Iref -0.05 to +10 -0.05 to +10 P_{T} 800 *8 500 *5 Topr -20 to +85 -20 to +85	V _{KA} 40 40 40 I _K -100 to +150 -100 to +150 -100 to +150 Iref -0.05 to +10 -0.05 to +10 -0.05 to +10 P _T 800 * ⁸ 500 * ⁵ 500* ⁵ Topr -20 to +85 -20 to +85 -40 to +85	V _{KA} 40 40 40 V I _K -100 to +150 -100 to +150 -100 to +150 mA Iref -0.05 to +10 -0.05 to +10 -0.05 to +10 mA P _T 800 * ⁸ 500 * ⁵ 500* ⁵ mW Topr -20 to +85 -20 to +85 -40 to +85 °C

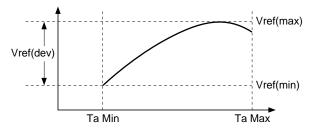
Notes: 1. Voltages are referenced to anode.

2. The PS pin is only provided by the HA17431VLP.

- 3. The PS pin voltage must not fall below the cathode voltage. If the PS pin is not used, the PS pin is recommended to be connected with the cathode.
- 4. Ta \leq 25°C. If Ta > 25°C, derate by 1.2 mW/°C.
- 5. Ta \leq 25°C. If Ta > 25°C, derate by 4.0 mW/°C.
- 6. Ta \leq 25°C. If Ta > 25°C, derate by 6.4 mW/°C.
- 7. 50 mm \times 50 mm \times t1.5mm glass epoxy board, Ta \leq 25°C. If Ta > 25°C, derate by 5 mW/°C.
- 8. 15 mm \times 25 mm \times t0.7mm alumina ceramic board,Ta \leq 25°C. If Ta > 25°C, derate by 6.4 mW/°C.

Electrical Characteristics (Ta = 25° C)

HA17431VLP/VP/VPJ (Ta = 25°C, $I_K = 10 \text{ mA}$)

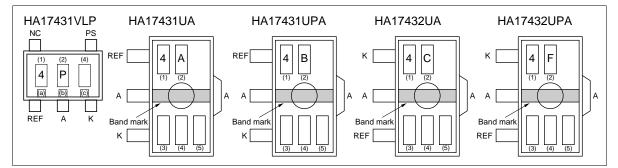

ltem	Symbol	Min	Тур	Max	Unit	Test Conditions	Notes
Reference voltage	Vref	2.475	2.500	2.525	V	$V_{KA} = Vref$	
Reference voltage temperature deviation	Vref(dev)	—	10	—	mV	$V_{KA} = Vref,$ Ta = -20°C to +85°C	1
Reference voltage temperature coefficient	$\Delta Vref/\Delta Ta$	—	±30	—	ppm/°C	V _{KA} = Vref, 0°C to 50°C gradient	
Reference voltage regulation	$\Delta \text{Vref} / \Delta \text{V}_{\text{KA}}$	_	2.0	3.7	mV/V	V_{KA} = Vref to 16 V	
Reference input current	Iref	_	2	6	μΑ	$R_1 = 10 \text{ k}\Omega, R_2 = \infty$	
Reference current temperature deviation	Iref(dev)	_	0.5	—	μΑ	R_1 = 10 kΩ, R_2 = ∞, Ta = -20°C to +85°C	
Minimum cathode current	Imin	—	0.4	1.0	mA	V _{KA} = Vref	2
Off state cathode current	loff	_	0.001	1.0	μΑ	V_{KA} = 16 V, Vref = 0 V	
Dynamic impedance	Z _{KA}	_	0.2	0.5	Ω	$V_{\kappa A} = Vref,$ $I_{\kappa} = 1 mA to 50 mA$	
Bypass resistance	R _{PS}	1.6	2.0	2.4	kΩ	I _{PS} = 1 mA	3
Bypass resistance temperature coefficient	$\Delta R_{PS} / \Delta Ta$	_	+2000	_	ppm/°C	I _{PS} = 1 mA, 0°C to 50°C gradient	3

HA17431PJ/PAJ/FPJ/FPAJ/P/PA/UA/UPA/FP/FPA/PNA/PNAJ, HA17432UA/UPA

 $(Ta = 25^{\circ}C, I_{K} = 10 \text{ mA})$

ltem	Symbol	Min	Тур	Max	Unit	Test Cond	itions	Notes
Reference voltage	Vref	2.440	2.495	2.550	V	$V_{KA} = Vref$		А
		2.395	2.495	2.595				Normal
Reference voltage temperature deviation	Vref(dev)	_	11	(30)	mV	$V_{KA} = Vref$	Ta = −20°C to +85°C	1, 4
		—	5	(17)	_		Ta = 0°C to +70°C	1, 4
Reference voltage	$\Delta \text{Vref} / \Delta \text{V}_{\text{KA}}$	—	1.4	3.7	mV/V	V_{KA} = Vref to 10 V		
regulation		_	1	2.2		$V_{KA} = 10 \text{ V to } 40 \text{ V}$		
Reference input current	Iref	_	3.8	6	μA	$R_1 = 10 \text{ k}\Omega_2$	$R_2 = \infty$	
Reference current temperature deviation	Iref(dev)	_	0.5	(2.5)	μA	R_1 = 10 kΩ, R_2 = ∞, Ta = 0°C to +70°C		4
Minimum cathode current	Imin	_	0.4	1.0	mA	$V_{KA} = Vref$		2
Off state cathode current	loff	_	0.001	1.0	μΑ	V _{KA} = 40 V,	Vref = 0 V	
Dynamic impedance	Z _{KA}	_	0.2	0.5	Ω	$V_{KA} = Vref,$ $I_{K} = 1 mA te$	o 100 mA	

Notes: 1. Vref(dev) = Vref(max) – Vref(min)


2. Imin is given by the cathode current at Vref = $Vref_{(IK=10mA)} - 15 \text{ mV}$.

3. $R_{\mbox{\tiny PS}}$ is only provided in HA17431VLP.

4. The maximum value is a design value (not measured).

MPAK-5 and UPAK Marking Patterns

The marking patterns shown below are used on MPAK-5 and UPAK products. Note that the product code and mark pattern are different. The pattern is laser-printed.

Notes: 1. Boxes (1) to (5) in the figures show the position of the letters or numerals, and are not actually marked on the package.

 . The follow (1) and (2) show the product opeome many patient.						
Product	(1)	(2)				
HA17431VLP	4	Р				
HA17431UA	4	A				
HA17431UPA	4	В				
HA17432UA	4	С				
HA17432UPA	4	F				

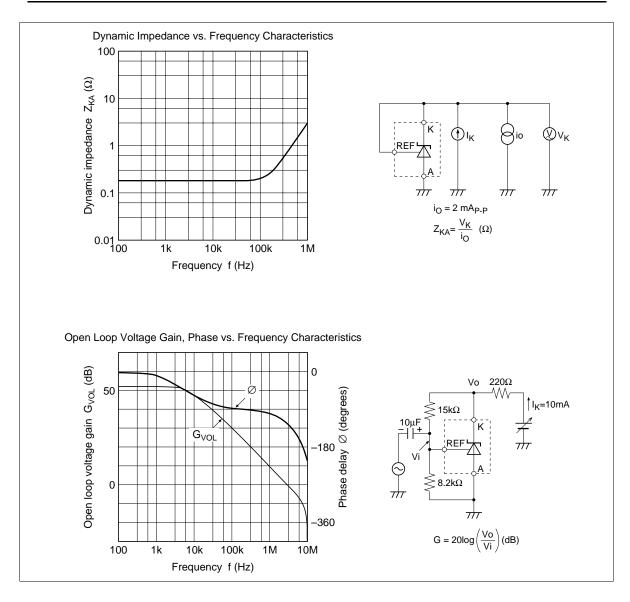
2. The letters (1) and (2) show the product specific mark pattern.

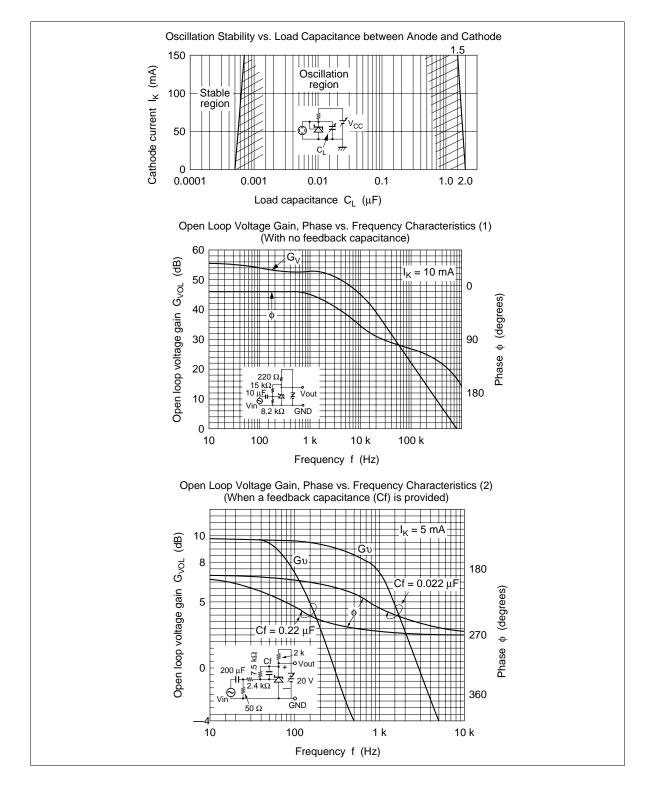
3. The letter (3) shows the production year code (the last digit of the year) for UPAK products.

^{4.} The bars (a), (b) and (c) show a production year code for MPAK-5 products as shown below. After 2005 the code is repeated every 8 years.

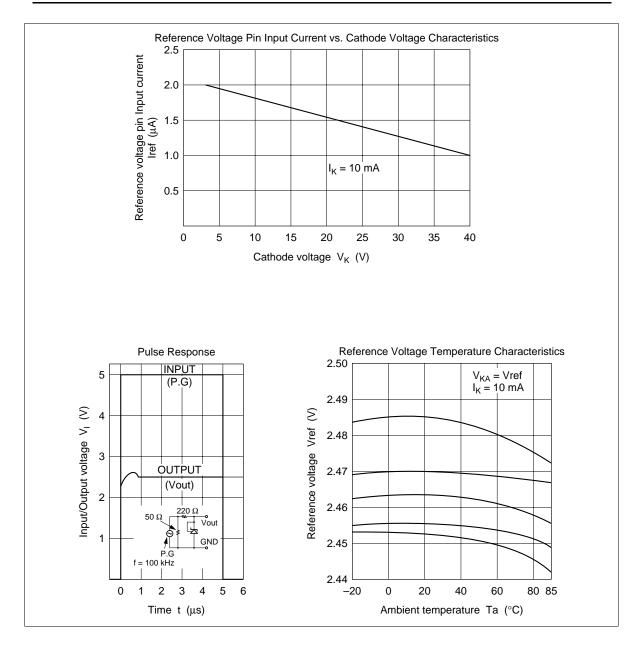
Year	1997	1998	1999	2000	2001	2002	2003	2004
(a)	Bar	Bar	Bar	Bar	None	None	None	None
(b)	None	None	Bar	Bar	None	None	Bar	Bar
(c)	None	Bar	None	Bar	None	Bar	None	Bar

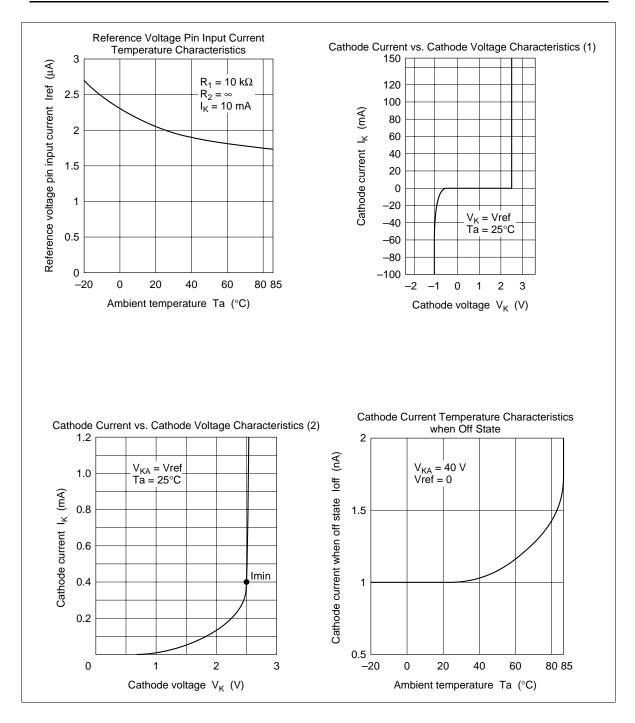

5. The letter (4) shows the production month code (see table below).


Production month	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Marked code	А	В	С	D	Е	F	G	Н	J	К	L	М


6. The letter (5) shows manufacturing code. For UPAK products.

Characteristics Curves


HA17431VLP/VP/VPJ



HA17431PJ/PAJ/FPJ/FPAJ/P/PA/UA/UPA/FP/FPA/PNA/PNAJ, HA17432UA/UPA

Application Examples

As shown in the figure on the right, this IC operates as an inverting amplifier, with the REF pin as input pin. The open-loop voltage gain is given by the reciprocal of "reference voltage deviation by cathode voltage change" in the electrical specifications, and is approximately 50 to 60 dB. The REF pin has a high input impedance, with an input current Iref of 3.8 μ A Typ (V version: Iref = 2 μ A Typ). The output impedance of the output pin K (cathode) is defined as dynamic impedance Z_{KA}, and Z_{KA} is low (0.2 Ω) over a wide cathode current range. A (anode) is used at the minimum potential, such as ground.

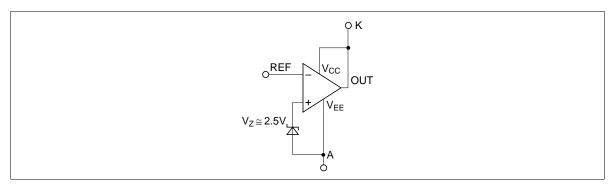
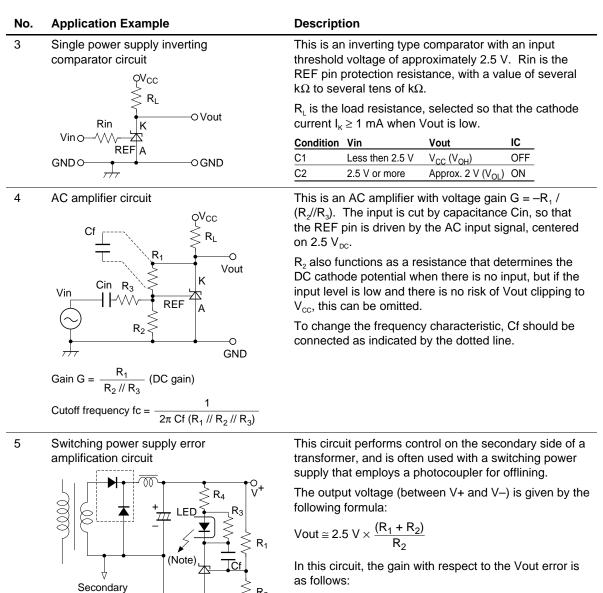


Figure 1 Operation Diagram

Application Hints

No.	Application Example	Description
1	Reference voltage generation circuit Vin O	This is the simplest reference voltage circuit. The value of the resistance R is set so that cathode current $I_{K} \ge 1$ mA.
		Output is fixed at Vout \cong 2.5 V.
	GND O	The external capacitor C_L ($C_L \ge 3.3 \ \mu F$) is used to prevent oscillation in normal applications.
2	Variable output shunt regulator circuit	This is circuit 1 above with variable output provided.
	Vin O \bigvee Iref R ₁ \downarrow K REF A CL R ₂ \downarrow GND \bigcirc O Vout	Here, Vout $\cong 2.5 \text{ V} \times \frac{(R_1 + R_2)}{R_2}$ Since the reference input current Iref = 3.8 µA Typ (V version: Iref = 2 µA Typ) flows through R ₁ , resistance values are chosen to allow the resultant voltage drop to be ignored.
		20.9.000


Application Hints (cont)

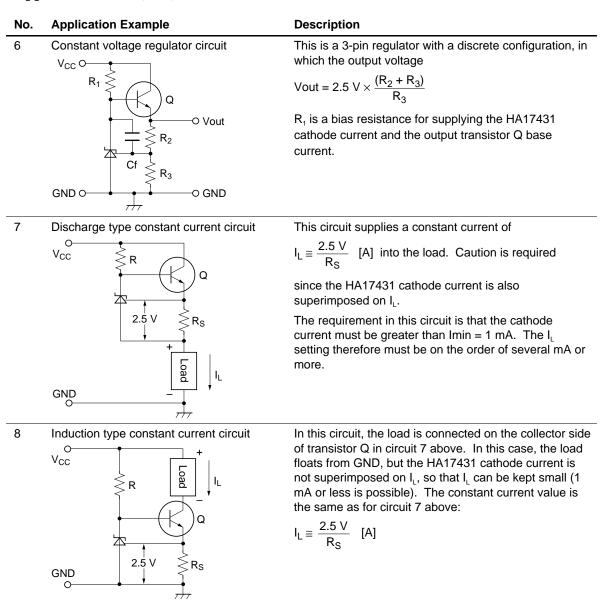
side GND

Note: LED : Light emitting diode in photocoupler

R3 : Bypass resistor to feed IK(>Imin)

when LED current vanishes R4 : LED protection resistance

 $G = \frac{R_2}{(R_1 + R_2)} \times \begin{bmatrix} HA17431 \text{ open} \\ loop \text{ gain} \end{bmatrix} \times \begin{bmatrix} photocoupler \\ total \text{ gain} \end{bmatrix}$


As stated earlier, the HA17431 open-loop gain is 50 to 60 dB.

HITACHI

 R_2

0

Application Hints (cont)

Design Guide for AC-DC SMPS (Switching Mode Power Supply)

Use of Shunt Regulator in Transformer Secondary Side Control

This example is applicable to both forward transformers and flyback transformers. A shunt regulator is used on the secondary side as an error amplifier, and feedback to the primary side is provided via a photocoupler.

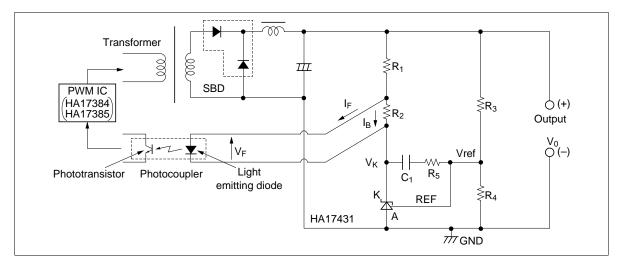


Figure 2 Typical Shunt Regulator/Error Amplifier

Determination of External Constants for the Shunt Regulator

DC characteristic determination: In figure 2, R_1 and R_2 are protection resistor for the light emitting diode in the photocoupler, and R_2 is a bypass resistor to feed I_K minimum, and these are determined as shown below. The photocoupler specification should be obtained separately from the manufacturer. Using the parameters in figure 2, the following formulas are obtained:

$$R_1 = \frac{V_0 - V_F - V_K}{I_F + I_B}$$
, $R_2 = \frac{V_F}{I_B}$

 $V_{\rm K}$ is the HA17431 operating voltage, and is set at around 3 V, taking into account a margin for fluctuation. R_2 is the current shunt resistance for the light emitting diode, in which a bias current $I_{\rm B}$ of around 1/5 $I_{\rm F}$ flows.

Next, the output voltage can be determined by R3 and R4, and the following formula is obtained:

$$V_0 = \frac{R_3 + R_4}{R_4} \times \text{Vref, Vref} = 2.5 \text{ V Typ}$$

The absolute values of R_3 and R_4 are determined by the HA17431 reference input current Iref and the AC characteristics described in the next section. The Iref value is around 3.8 μ A Typ. (V version: 2 μ A Typ)

AC characteristic determination: This refers to the determination of the gain frequency characteristic of the shunt regulator as an error amplifier. Taking the configuration in figure 2, the error amplifier characteristic is as shown in figure 3.

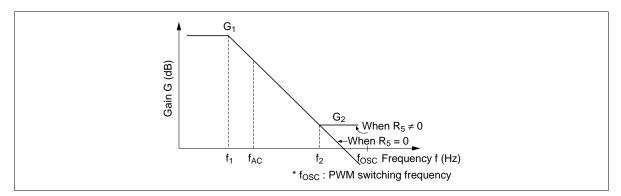


Figure 3 HA17431 Error Amplification Characteristic

In Figure 3, the following formulas are obtained:

Gain

 $G_1 = G_0 \approx 50 \text{ dB}$ to 60 dB (determined by shunt regulator)

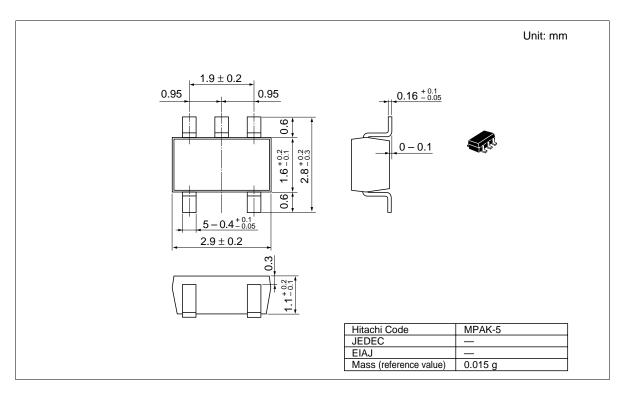
$$G_2 = \frac{R_5}{R_3}$$

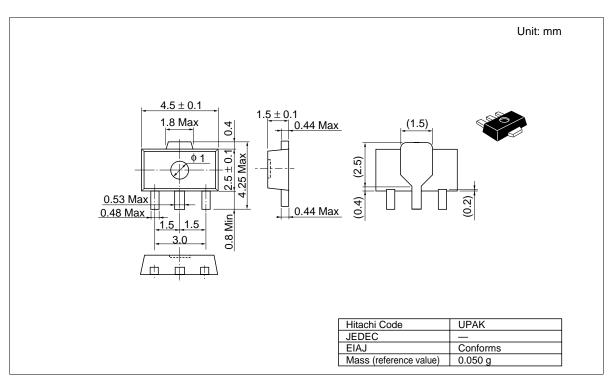
Corner frequencies

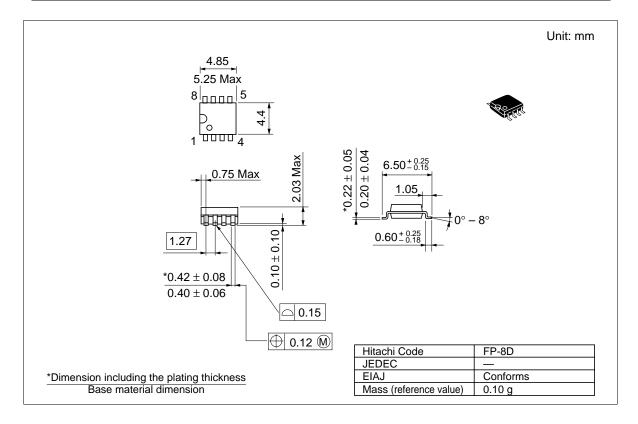
$$f_1 = 1/(2\pi C_1 G_0 R_3)$$
$$f_2 = 1/(2\pi C_1 R_5)$$

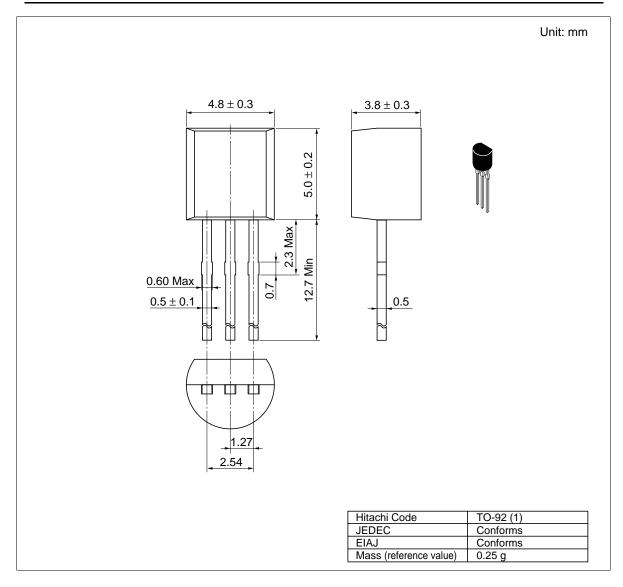
 G_0 is the shunt regulator open-loop gain; this is given by the reciprocal of the reference voltage fluctuation $\Delta V ref / \Delta V_{KA}$, and is approximately 50 dB.

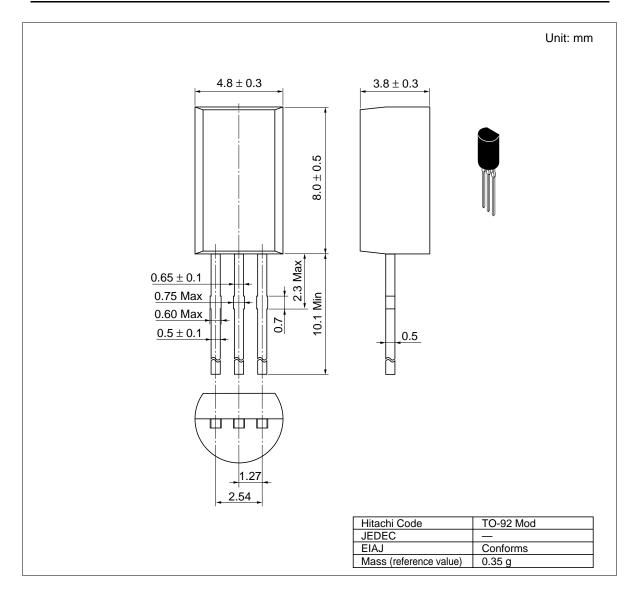
Practical Example


Consider the example of a photocoupler, with an internal light emitting diode $V_F = 1.05$ V and $I_F = 2.5$ mA, power supply output voltage $V_2 = 5$ V, and bias resistance R_2 current of approximately 1/5 I_F at 0.5 mA. If the shunt regulator $V_K = 3$ V, the following values are found.


$$R_{1} = \frac{5V - 1.05V - 3V}{2.5mA + 0.5mA} = 316(\Omega) (330\Omega \text{ from E24 series})$$
$$R_{2} = \frac{1.05V}{0.5mA} = 2.1(k\Omega) (2.2k\Omega \text{ from E24 series})$$


Next, assume that $R_3 = R_4 = 10 \text{ k}\Omega$. This gives a 5 V output. If $R_5 = 3.3 \text{ k}\Omega$ and $C_1 = 0.022 \mu\text{F}$, the following values are found.


$$\begin{split} G_{_2} &= 3.3 \text{ k}\Omega \ / \ 10 \text{ k}\Omega = 0.33 \text{ times } (-10 \text{ dB}) \\ f_{_1} &= 1 \ / \ (2 \times \pi \times 0.022 \ \mu\text{F} \times 316 \times 10 \text{ k}\Omega) = 2.3 \ (\text{Hz}) \\ f_{_2} &= 1 \ / \ (2 \times \pi \times 0.022 \ \mu\text{F} \times 3.3 \text{ k}\Omega) = 2.2 \ (\text{kHz}) \end{split}$$


Package Dimensions

Cautions

- 1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document.
- 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use.
- 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support.
- 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product.
- 5. This product is not designed to be radiation resistant.
- 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi.
- 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.

IITACH

Hitachi, Ltd.

Semiconductor & Integrated Circuits. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: Tokyo (03) 3270-2111 Fax: (03) 3270-5109 URL NorthAmerica http:semiconductor.hitachi.com/ Europe Asia (Singapore) Asia (Taiwan) Asia (HongKong)

http://www.hitachi-eu.com/hel/ecg http://www.has.hitachi.com.sg/grp3/sicd/index.htm http://www.hitachi.com.tw/E/Product/SICD_Frame.htm http://www.hitachi.com.hk/eng/bo/grp3/index.htm http://www.hitachi.co.jp/Sicd/indx.htm

For further information write to:

Hitachi Semiconductor (America) Inc. 179 East Tasman Drive, San Jose CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223

Japan

Hitachi Europe GmbH Electronic components Group Dornacher Straße 3 D-85622 Feldkirchen Munich Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Europe Ltd. Electronic Components Group. Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 778322

Hitachi Asia Pte. Ltd. 16 Collyer Quay #20-00 Hitachi Tower Singapore 049318 Tel: 535-2100 Fax: 535-1533

Hitachi Asia Ltd. Taipei Branch Office 3F, Hung Kuo Building. No.167, Tun-Hwa North Road, Taipei (105) Tel: <886> (2) 2718-3666 Fax: <886> (2) 2718-8180

Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Tsim Sha Tsui, Kowloon, Hong Kong Tel: <852> (2) 735 9218 Fax: <852> (2) 730 0281 Telex: 40815 HITEC HX

Copyright ' Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.