

### ***General Description***

The MAX3930/MAX3931/MAX3932 are designed for direct modulation of laser diodes at data rates up to 10.7Gbps. They provide adjustable laser bias and modulation currents and are implemented using Maxim's second-generation in-house SiGe process.

The MAX3930 accepts differential CML clock and data input signals and includes  $50\Omega$  on-chip termination resistors. It delivers a 1mA to 100mA laser bias current and a 20mA to 100mA modulation current with a typical (20% to 80%) 25ps rise time. An input data retiming latch can be used to reject input pattern-dependent jitter if a clock signal is available.

The MAX3931/MAX3932 have an alternate pad out with respect to the MAX3930. The MAX3931 includes the series damping resistor  $R_D$  on chip.

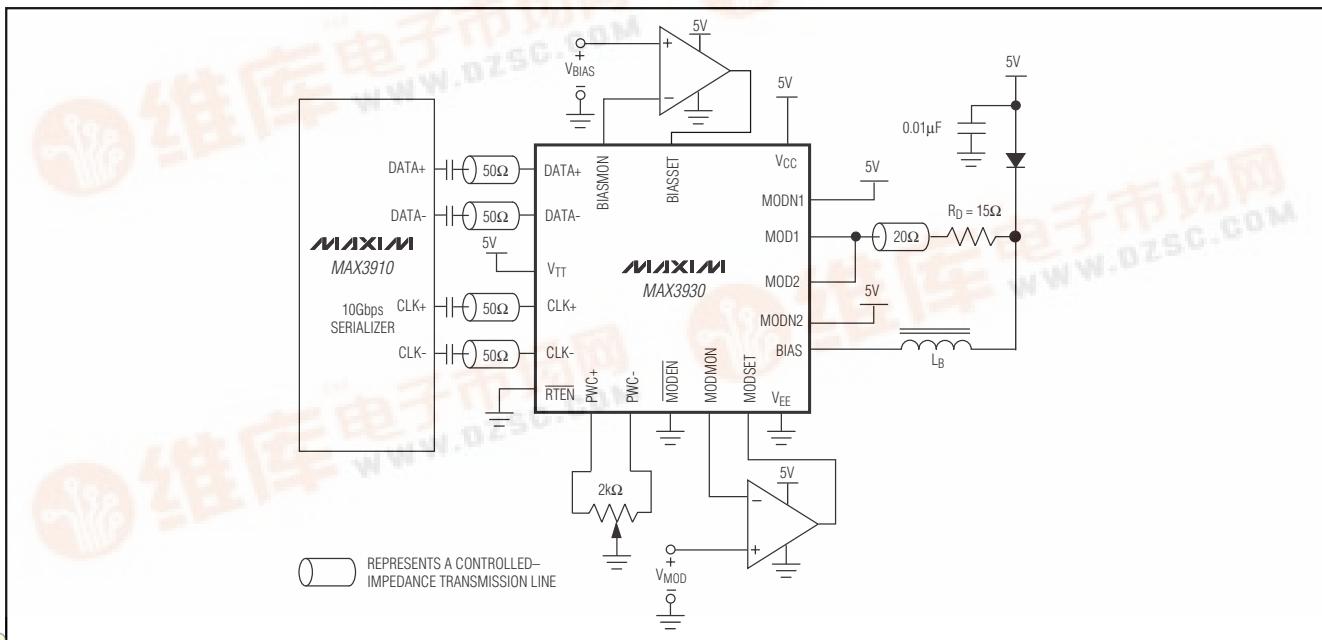
The MAX3930/MAX3931/MAX3932 also include an adjustable pulse-width control circuit to minimize laser pulse-width distortion.

## ***Applications***

## SONET OC-192 and SDH STM-64 Transmission Systems

Up to 10.7Gbps Optical Transmitters  
Section Regenerators

## Features


- ◆ Single +5V or -5.2V Power Supply
- ◆ 108mA Supply Current
- ◆ Operates to 10.7Gbps
- ◆  $50\Omega$  On-Chip Input Termination Resistors
- ◆ Programmable Modulation Current to 100mA
- ◆ Programmable Laser Bias Current to 100mA
- ◆ 25ps Rise Time (MAX3930/MAX3932)
- ◆ Adjustable Pulse-Width Control
- ◆ Selectable Data Retiming Latch
- ◆ ESD Protection
- ◆ Internal Series Damping Resistor (MAX3931)

## **Ordering Information**

| PART              | TEMP RANGE     | PIN-PACKAGE |
|-------------------|----------------|-------------|
| <b>MAX3930E/D</b> | -40°C to +85°C | Dice        |
| <b>MAX3931E/D</b> | -40°C to +85°C | Dice        |
| <b>MAX3932E/D</b> | -40°C to +85°C | Dice        |
| MAX3932E/W        | -40°C to +85°C | Wafer       |

**Note:** Dice are designed to operate over a  $-40^{\circ}\text{C}$  to  $+120^{\circ}\text{C}$  junction temperature ( $T_J$ ) range but are tested and guaranteed at  $T_A = +25^{\circ}\text{C}$ .

### **Typical Application Circuit**



 Covered by U.S. Patent number 5,883,910.

Maxim Integrated Products 1

**For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-800-622-4648, or visit Maxim's website at [www.maxim-is.com](http://www.maxim-is.com).**

# 10.7Gbps Laser Diode Drivers

## ABSOLUTE MAXIMUM RATINGS

|                                                                |                                                                                               |
|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Supply Voltage (V <sub>CC</sub> - V <sub>EE</sub> )            | -0.5V to +6.0V                                                                                |
| DATA+, DATA-, CLK+, CLK-                                       | (V <sub>TT</sub> - 1.2V) to the lower of (V <sub>TT</sub> + 1.2V) or (V <sub>CC</sub> + 0.5V) |
| MODEN, RTEN, V <sub>TT</sub> , BIASMON, MODMON, PWC+, and PWC- | (V <sub>EE</sub> - 0.5V) to (V <sub>CC</sub> + 0.5V)                                          |
| MODN1, MODN2                                                   | (V <sub>CC</sub> - 0.5V) to (V <sub>CC</sub> + 0.5V)                                          |
| BIA5, MOD1, MOD2                                               | (V <sub>EE</sub> + 1V) to (V <sub>EE</sub> + 1.5V)                                            |

|                                                                                  |                                                      |
|----------------------------------------------------------------------------------|------------------------------------------------------|
| MODSET and BIASSET                                                               | (V <sub>EE</sub> - 0.5V) to (V <sub>EE</sub> + 1.5V) |
| Storage Temperature Range                                                        | -55°C to +150°C                                      |
| Operating Junction Temperature                                                   | -55°C to +150°C                                      |
| Processing Temperature (die)                                                     | +400°C                                               |
| Current into DATA+, DATA-, CLK+, CLK- (V <sub>TT</sub> = V <sub>CC</sub> )       | -24mA to +30.5mA                                     |
| Current into DATA+, DATA-, CLK+, CLK- (V <sub>TT</sub> = V <sub>CC</sub> - 1.3V) | -24mA to +24mA                                       |

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## DC ELECTRICAL CHARACTERISTICS—MAX3930

(V<sub>CC</sub> - V<sub>EE</sub> = 4.75V to 5.5V, T<sub>A</sub> = -40°C to +85°C. Typical values are at V<sub>CC</sub> - V<sub>EE</sub> = 5V, I<sub>BIAS</sub> = 50mA, I<sub>MOD</sub> = 70mA, and T<sub>A</sub> = +25°C, unless otherwise noted.)

| PARAMETER                          | SYMBOL                            | CONDITIONS                                    | MIN                 | TYP                   | MAX  | UNITS  |
|------------------------------------|-----------------------------------|-----------------------------------------------|---------------------|-----------------------|------|--------|
| Power-Supply Voltage               | V <sub>CC</sub> - V <sub>EE</sub> |                                               | 4.75                | 5                     | 5.50 | V      |
| Power-Supply Current               | I <sub>CC</sub>                   | Excluding bias current and modulation current |                     | 108                   | 140  | mA     |
| Single-Ended Input Resistance      |                                   |                                               | 42.5                | 50                    | 57.5 | Ω      |
| Bias Current-Setting Range         |                                   |                                               | 1                   | 100                   |      | mA     |
| Bias Current-Setting Error         |                                   | Bias current = 100mA, T <sub>A</sub> = +25°C  | -5                  | +5                    |      | %      |
|                                    |                                   | Bias current = 1mA, T <sub>A</sub> = +25°C    | -10                 | +10                   |      |        |
| Bias Sensing Resistor              | R <sub>BIAS</sub>                 |                                               | 2.7                 | 3                     | 3.3  | Ω      |
| Bias Current Temperature Stability |                                   | I <sub>BIAS</sub> = 100mA (Note 1)            | -480                | +480                  |      | ppm/°C |
|                                    |                                   | I <sub>BIAS</sub> = 1mA (Note 1)              |                     | -200                  |      |        |
| Bias Off-Current                   |                                   | BIASSET ≤ (V <sub>EE</sub> + 0.4V)            |                     |                       | 0.05 | mA     |
| MODEN and RTEN Input High          | V <sub>IH</sub>                   |                                               | V <sub>EE</sub> + 2 |                       |      | V      |
| MODEN and RTEN Input Low           | V <sub>IL</sub>                   |                                               |                     | V <sub>EE</sub> + 0.8 |      | V      |
| Power-Supply Rejection Ratio       | PSRR                              | V <sub>CC</sub> = 4.75V to 5.5V (Note 2)      | 39.5                | 60                    |      | dB     |

### SIGNAL INPUT FOR V<sub>TT</sub> = V<sub>CC</sub>

|                                                                  |                  |         |                         |     |                  |
|------------------------------------------------------------------|------------------|---------|-------------------------|-----|------------------|
| Single-Ended Input (DC-Coupled)                                  | V <sub>IS</sub>  | At high | V <sub>CC</sub>         | V   |                  |
|                                                                  |                  | At low  | V <sub>CC</sub> - 1     |     |                  |
| Single-Ended Input (AC-Coupled)                                  | V <sub>IS</sub>  | At high | V <sub>CC</sub> + 0.075 | V   |                  |
|                                                                  |                  | At low  | V <sub>CC</sub> - 0.4   |     |                  |
| Differential Input Swing (DC-Coupled)                            | V <sub>ID</sub>  |         | 0.3                     | 2.0 | V <sub>P-P</sub> |
| Differential Input Swing (AC-Coupled)                            | V <sub>ID</sub>  |         | 0.3                     | 1.6 | V <sub>P-P</sub> |
| <b>SIGNAL INPUT FOR V<sub>TT</sub> = (V<sub>CC</sub> - 1.3V)</b> |                  |         |                         |     |                  |
| Input Common Mode                                                | V <sub>ICM</sub> |         | V <sub>CC</sub> - 1.3   | V   |                  |

# 10.7Gbps Laser Diode Drivers

MAX3930/MAX3931/MAX3932

## DC ELECTRICAL CHARACTERISTICS—MAX3930 (continued)

( $V_{CC} - V_{EE} = 4.75V$  to  $5.5V$ ,  $T_A = -40^\circ C$  to  $+85^\circ C$ . Typical values are at  $V_{CC} - V_{EE} = 5V$ ,  $I_{BIAS} = 50mA$ ,  $I_{MOD} = 70mA$ , and  $T_A = +25^\circ C$ , unless otherwise noted.)

| PARAMETER                | SYMBOL   | CONDITIONS | MIN              | TYP              | MAX | UNITS            |
|--------------------------|----------|------------|------------------|------------------|-----|------------------|
| Single-Ended Input       | $V_{IS}$ | At high    | $V_{CC} - 1.225$ | $V_{CC} - 0.8$   |     | V                |
|                          |          | At low     | $V_{CC} - 1.8$   | $V_{CC} - 1.375$ |     |                  |
| Differential Input Swing | $V_{ID}$ |            | 0.3              | 2.0              |     | V <sub>P-P</sub> |

## DC ELECTRICAL CHARACTERISTICS—MAX3931/MAX3932

( $V_{CC} - V_{EE} = 4.75V$  to  $5.5V$ ,  $T_A = -40^\circ C$  to  $+85^\circ C$ . Typical values are at  $V_{CC} - V_{EE} = 5V$ ,  $I_{BIAS} = 50mA$ ,  $I_{MOD} = 70mA$ , and  $T_A = +25^\circ C$ , unless otherwise noted.)

| PARAMETER                          | SYMBOL            | CONDITIONS                                    | MIN          | TYP            | MAX  | UNITS           |
|------------------------------------|-------------------|-----------------------------------------------|--------------|----------------|------|-----------------|
| Power-Supply Voltage               | $V_{CC} - V_{EE}$ |                                               | 4.75         | 5              | 5.50 | V               |
| Power-Supply Current               | $I_{CC}$          | Excluding bias current and modulation current |              | 108            | 140  | mA              |
| Single-Ended Input Resistance      |                   |                                               | 42.5         | 50             | 57.5 | $\Omega$        |
| Bias Current Setting Range         |                   |                                               | 1            | 100            |      | mA              |
| Bias Current Setting Error         |                   | Bias current = 100mA, $T_A = +25^\circ C$     | -5           | +5             |      | %               |
|                                    |                   | Bias current = 1mA, $T_A = +25^\circ C$       | -10          | +10            |      |                 |
| Bias Sensing Resistor              | $R_{BIAS}$        |                                               | 2.7          | 3              | 3.3  | $\Omega$        |
| Bias Current Temperature Stability |                   | $I_{BIAS} = 100mA$ (Note 1)                   | -480         | +480           |      | ppm/ $^\circ C$ |
|                                    |                   | $I_{BIAS} = 1mA$                              |              | -200           |      |                 |
| Bias Off-Current                   |                   | $BIASSET \leq (V_{EE} + 0.4V)$                |              | 0.05           |      | mA              |
| MODEN and RTEN Input High          | $V_{IH}$          |                                               | $V_{EE} + 2$ |                |      | V               |
| MODEN and RTEN Input Low           | $V_{IL}$          |                                               |              | $V_{EE} + 0.8$ |      | V               |
| Power-Supply Rejection Ratio       | PSRR              | $V_{CC} = 4.75V$ to $5.5V$ (Note 3)           | 39.5         | 60             |      | dB              |

### SIGNAL INPUT

|                                       |          |         |                  |                  |                  |
|---------------------------------------|----------|---------|------------------|------------------|------------------|
| Single-Ended Input (DC-Coupled)       | $V_{IS}$ | At high | $V_{CC}$         |                  | V                |
|                                       |          | At low  | $V_{CC} - 1$     | $V_{CC} - 0.15$  |                  |
| Single-Ended Input (AC-Coupled)       | $V_{IS}$ | At high | $V_{CC} + 0.075$ | $V_{CC} + 0.4$   | V                |
|                                       |          | At low  | $V_{CC} - 0.4$   | $V_{CC} - 0.075$ |                  |
| Differential Input Swing (DC-Coupled) | $V_{ID}$ |         | 0.3              | 2.0              | V <sub>P-P</sub> |
| Differential Input Swing (AC-Coupled) | $V_{ID}$ |         | 0.3              | 1.6              | V <sub>P-P</sub> |

# 10.7Gbps Laser Diode Drivers

## AC ELECTRICAL CHARACTERISTICS—MAX3930/MAX3932

( $V_{CC} - V_{EE} = 4.75V$  to  $5.5V$ ,  $V_{TT} = V_{CC}$ ,  $T_A = -40^\circ C$  to  $+85^\circ C$ . Typical values are at  $V_{CC} - V_{EE} = 5V$ ,  $I_{MOD} = 70mA$ , and  $T_A = +25^\circ C$ , unless otherwise noted.) (Note 3)

| PARAMETER                                | SYMBOL           | CONDITIONS                             | MIN          | TYP          | MAX          | UNITS           |
|------------------------------------------|------------------|----------------------------------------|--------------|--------------|--------------|-----------------|
| Input Data Rates                         |                  | NRZ                                    |              | 10.7         |              | Gbps            |
| Modulation Current Setting Range         |                  |                                        | 20           | 100          | mA           |                 |
| Modulation Current Setting Error         |                  | 20 $\Omega$ load, $T_A = +25^\circ C$  | -5           | +5           | %            |                 |
| Modulation Sensing Resistor              | $R_{MOD}$        |                                        | 2.7          | 3            | 3.3          | $\Omega$        |
| Modulation Current Temperature Stability |                  |                                        | -480         |              | +480         | ppm/ $^\circ C$ |
| Modulation Off-Current                   |                  | MODSET $\leq (V_{EE} + 0.4V)$          |              | 0.1          | mA           |                 |
| Output Current Rise Time                 | $t_R$            | $Z_L = 20\Omega$ , 20% to 80% (Note 4) | 25           | 35           | ps           |                 |
| Output Current Fall Time                 | $t_F$            | $Z_L = 20\Omega$ , 20% to 80% (Note 4) | 29           | 36           | ps           |                 |
| Setup/Hold Time                          | $t_{SU}, t_{HD}$ | Figure 2                               | 25           |              | ps           |                 |
| Pulse-Width Adjustment Range             |                  | (Note 4)                               | $\pm 25$     | $\pm 55$     | ps           |                 |
| Pulse-Width Stability                    |                  | PWC+ and PWC- open (Note 4)            |              |              | $\pm 13$     | ps              |
| Pulse-Width Control Input Range          |                  | For PWC+ and PWC                       | $V_{EE} + 0$ | $V_{EE} + 1$ | $V_{EE} + 2$ | V               |
| Overshoot                                |                  | (Note 4)                               |              | 13           | %            |                 |
| Driver Random Jitter                     |                  |                                        | 0.75         | 1            | psRMS        |                 |
| Driver Deterministic Jitter              |                  | (Note 5)                               | 6.7          | 21           | psP-P        |                 |
| Input Return Loss                        |                  |                                        | 12           |              | dB           |                 |

## AC ELECTRICAL CHARACTERISTICS—MAX3931

( $V_{CC} - V_{EE} = 4.75V$  to  $5.5V$ ,  $V_{TT} = V_{CC}$ ,  $T_A = -40^\circ C$  to  $+85^\circ C$ . Typical values are at  $V_{CC} - V_{EE} = 5V$ ,  $I_{MOD} = 70mA$ , and  $T_A = +25^\circ C$ , unless otherwise noted.) (Note 3)

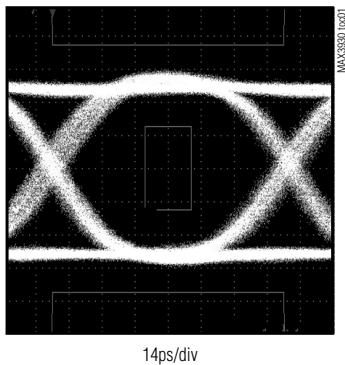
| PARAMETER                                | SYMBOL           | CONDITIONS                             | MIN          | TYP          | MAX          | UNITS           |
|------------------------------------------|------------------|----------------------------------------|--------------|--------------|--------------|-----------------|
| Input Data Rates                         |                  | NRZ                                    |              | 10.7         |              | Gbps            |
| Modulation Current Setting Range         |                  |                                        | 20           | 100          | mA           |                 |
| Modulation Current Setting Error         |                  | 20 $\Omega$ load, $T_A = +25^\circ C$  | -5           | +5           | %            |                 |
| Modulation Sensing Resistor              | $R_{MOD}$        |                                        | 2.7          | 3            | 3.3          | $\Omega$        |
| Output Series Resistance                 |                  | $R_{MOD1}$ in parallel with $R_{MOD2}$ | 12.75        | 15           | 17.25        | $\Omega$        |
| Modulation Current Temperature Stability |                  |                                        | -480         |              | +480         | ppm/ $^\circ C$ |
| Modulation Off-Current                   |                  | MODSET $\leq (V_{EE} + 0.4V)$          |              | 0.1          | mA           |                 |
| Setup/Hold Time                          | $t_{SU}, t_{HD}$ | Figure 2                               | 25           |              | ps           |                 |
| Pulse-Width Adjustment Range             |                  | (Note 4)                               | $\pm 25$     | $\pm 55$     | ps           |                 |
| Pulse-Width Stability                    |                  | PWC+ and PWC- open (Note 4)            |              | 13           | ps           |                 |
| Pulse-Width Control Input Range          |                  | For PWC+ and PWC-                      | $V_{EE} + 0$ | $V_{EE} + 1$ | $V_{EE} + 2$ | V               |
| Input Return Loss                        |                  |                                        | 12           |              | dB           |                 |

**Note 1:** Guaranteed by design and characterization.

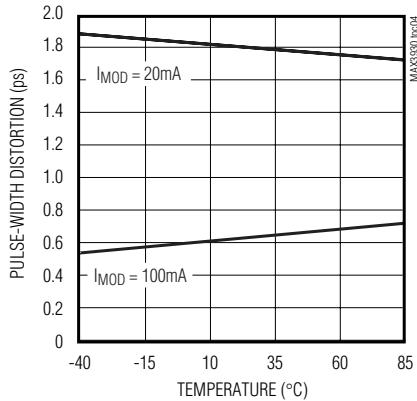
**Note 2:** PSRR =  $20 \times \log (\Delta V_{CC}/(\Delta I_{MOD} \times 20\Omega))$ .  $I_{MOD} = 100mA$

**Note 3:** Guaranteed by design and characterization using the circuit shown in Figure 1.

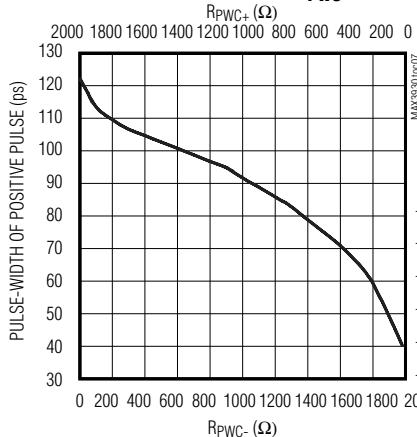
**Note 4:** Measured using a 10.7Gbps repeating 0000 0000 1111 1111 pattern.


**Note 5:** Measured using a 10.7Gbps  $2^{13} - 1$  PRBS with eighty 0s pattern.

# 10.7Gbps Laser Diode Drivers

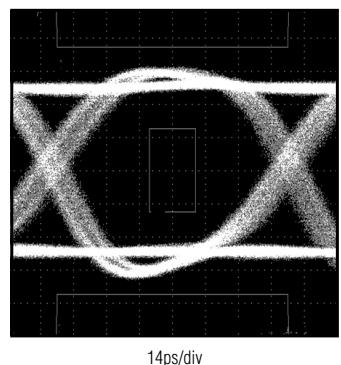

MAX3930/MAX3931/MAX3932

( $V_{CC} = 5V$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)

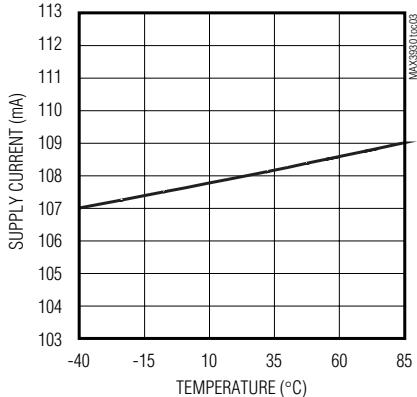

ELECTRICAL EYE DIAGRAM  
( $I_{MOD} = 100mA$ ,  $2^{13} - 1 + 80$  CID)



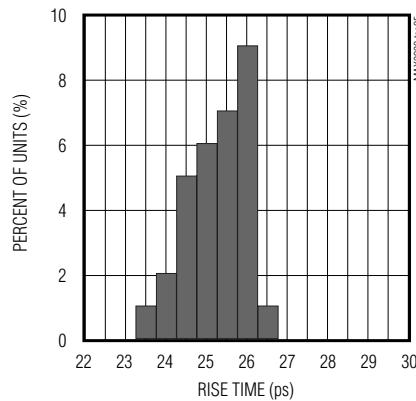
PULSE-WIDTH DISTORTION  
vs. TEMPERATURE



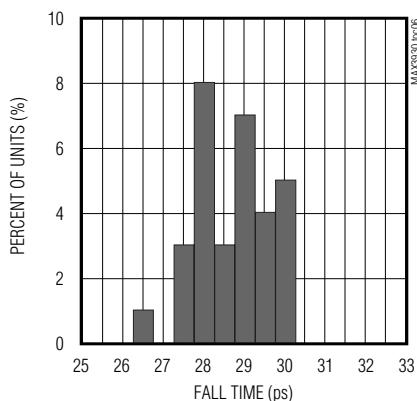

PULSE WIDTH vs.  $R_{PWC}$




MAX3930/MAX3932

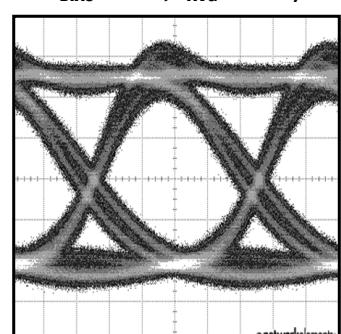

ELECTRICAL EYE DIAGRAM  
( $I_{MOD} = 20mA$ ,  $2^{13} - 1 + 80$  CID)




SUPPLY CURRENT vs. TEMPERATURE  
(EXCLUDES BIAS AND MODULATION CURRENTS)

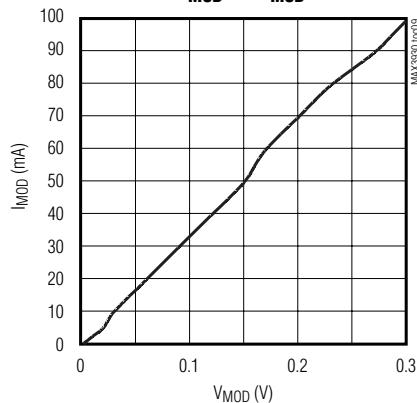


TYPICAL DISTRIBUTION OF RISE TIME




TYPICAL DISTRIBUTION OF FALL TIME



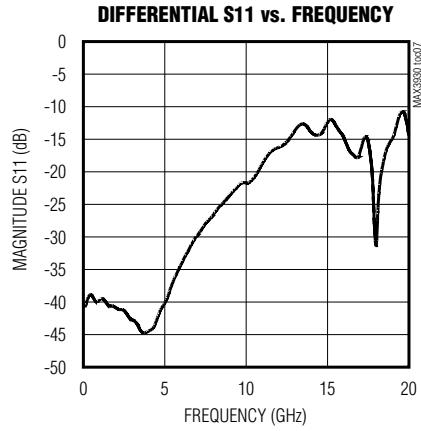
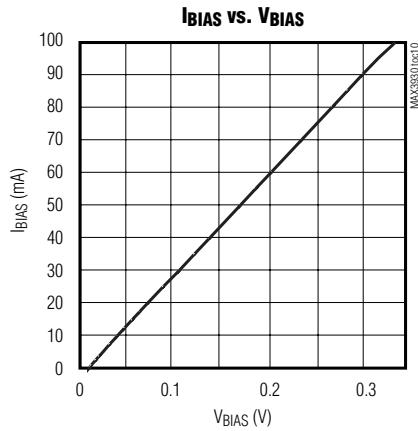

OC-192 OPTICAL EYE DIAGRAM

( $I_{MOD} = 70mA$  p-p,  
 $I_{BIAS} = 15mA$ ,  $P_{AVG} = -2dBm$ )



OPTICAL EYE DIAGRAM COURTESY  
OF NETWORK ELEMENTS, INC.  
COPYRIGHT©2000 BY NETWORK  
ELEMENTS, INC. ALL RIGHTS RESERVED.

$I_{MOD}$  vs.  $V_{MOD}$


## 10.7Gbps Laser Diode Drivers

### Typical Operating Characteristics (continued)

( $V_{CC} = 5V$ ,  $T_A = +25^\circ C$ , unless otherwise noted.)

#### MAX3930/MAX3932



# 10.7Gbps Laser Diode Drivers

## Pad Description

| PAD                                      |                                                | NAME            | FUNCTION                                                                                                                         |
|------------------------------------------|------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------|
| MAX3930                                  | MAX3931/<br>MAX3932                            |                 |                                                                                                                                  |
| 1, 5, 9, 12,<br>22, 23, 28,<br>29        | 1, 3, 5, 7,<br>9, 10, 12,<br>22, 23, 28,<br>29 | VCC             | Power-Supply Voltage (VCC - VEE = 5V). All pads must be connected to VCC.                                                        |
| 2                                        | 2                                              | DATA+           | Noninverting Data Input. CML with on-chip termination resistor.                                                                  |
| 3                                        | —                                              | VTT             | Terminating Voltage for Data Inputs                                                                                              |
| 4                                        | 4                                              | DATA-           | Inverting Data Input. CML with on-chip termination resistor.                                                                     |
| 6                                        | 6                                              | CLK+            | Noninverting Clock Input for Data Retiming. CML with on-chip termination resistor.                                               |
| 7                                        | —                                              | VTT             | Terminating Voltage for Clock Inputs                                                                                             |
| 8                                        | 8                                              | CLK-            | Inverting Clock Input for Data Retiming. CML with on-chip termination resistor.                                                  |
| 10, 11, 17,<br>18, 21, 32,<br>35, 36, 37 | 11, 17, 18,<br>19, 32, 35,<br>36, 37           | VEE             | Power-Supply Voltage (VCC - VEE = 5V)                                                                                            |
| 13                                       | 13                                             | RTEN            | TTL/CMOS Data Retiming Input. Low for latched data, high for direct data. Internal 100kΩ pullup to VCC.                          |
| 14                                       | 14                                             | PWC+            | Positive Input for Modulation Pulse-Width Adjustment. Connected to ground through RPWC.                                          |
| 15                                       | 15                                             | PWC-            | Negative Input for Modulation Pulse-Width Adjustment. Connected to ground through RPWC.                                          |
| 16                                       | 16                                             | MODEN           | TTL/CMOS Modulation Enable Input. Low for normal operation, high to switch modulation output off. Internal 100kΩ pullup to VCC.  |
| 19                                       | 20                                             | MODMON          | Modulation Current Monitor (V <sub>MODMON</sub> - VEE) / R <sub>MOD</sub> = I <sub>MOD</sub>                                     |
| 20                                       | 21                                             | MODSET          | Modulation Current Set. Connected to the output of the external operational amplifier (see the <i>Design Procedure</i> section). |
| 24, 27                                   | 24, 27                                         | MODN2,<br>MODN1 | Complementary Laser Modulation Current Outputs. Connect to VCC.                                                                  |
| 25, 26                                   | 25, 26                                         | MOD2,<br>MOD1   | Laser Modulation Current Outputs                                                                                                 |
| 30                                       | 30                                             | BIAS            | Laser Bias Current Output                                                                                                        |
| 31                                       | 31                                             | N.C.            | No Connection. Leave unconnected.                                                                                                |
| 33                                       | 33                                             | BIASSET         | Bias Current Set. Connected to the output of the external operational amplifier (see the <i>Design Procedure</i> section).       |
| 34                                       | 34                                             | BIASMON         | Bias Current Monitor (V <sub>BIASMON</sub> - VEE) / R <sub>BIAS</sub> = I <sub>BIAS</sub>                                        |

**MAX3930/MAX3931/MAX3932**

## 10.7Gbps Laser Diode Drivers

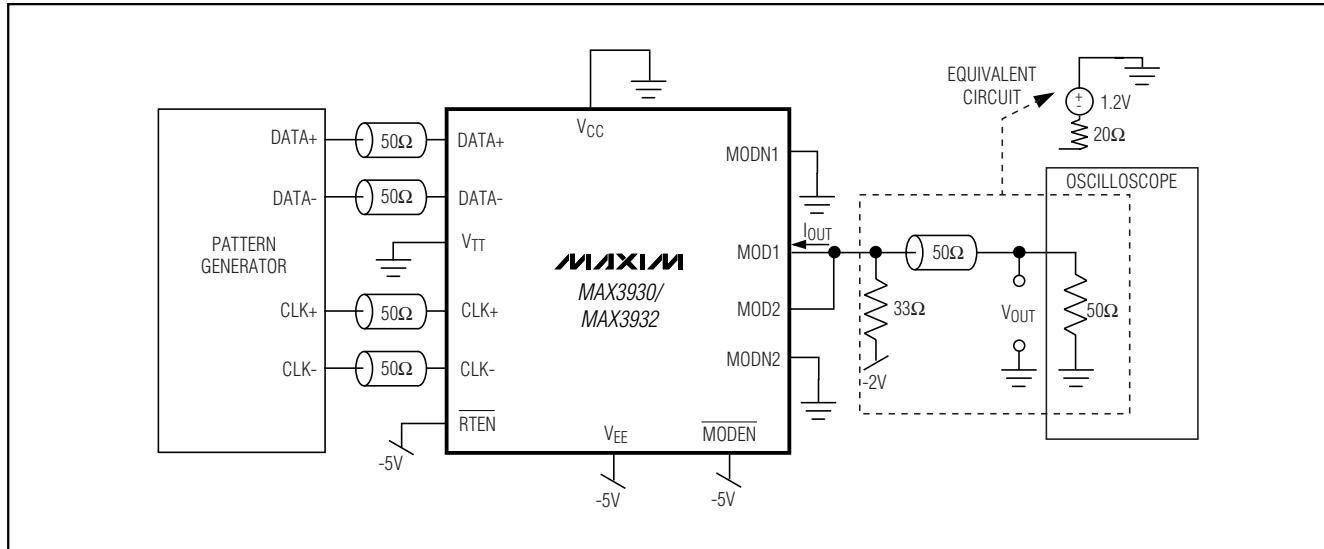



Figure 1. Test Circuit

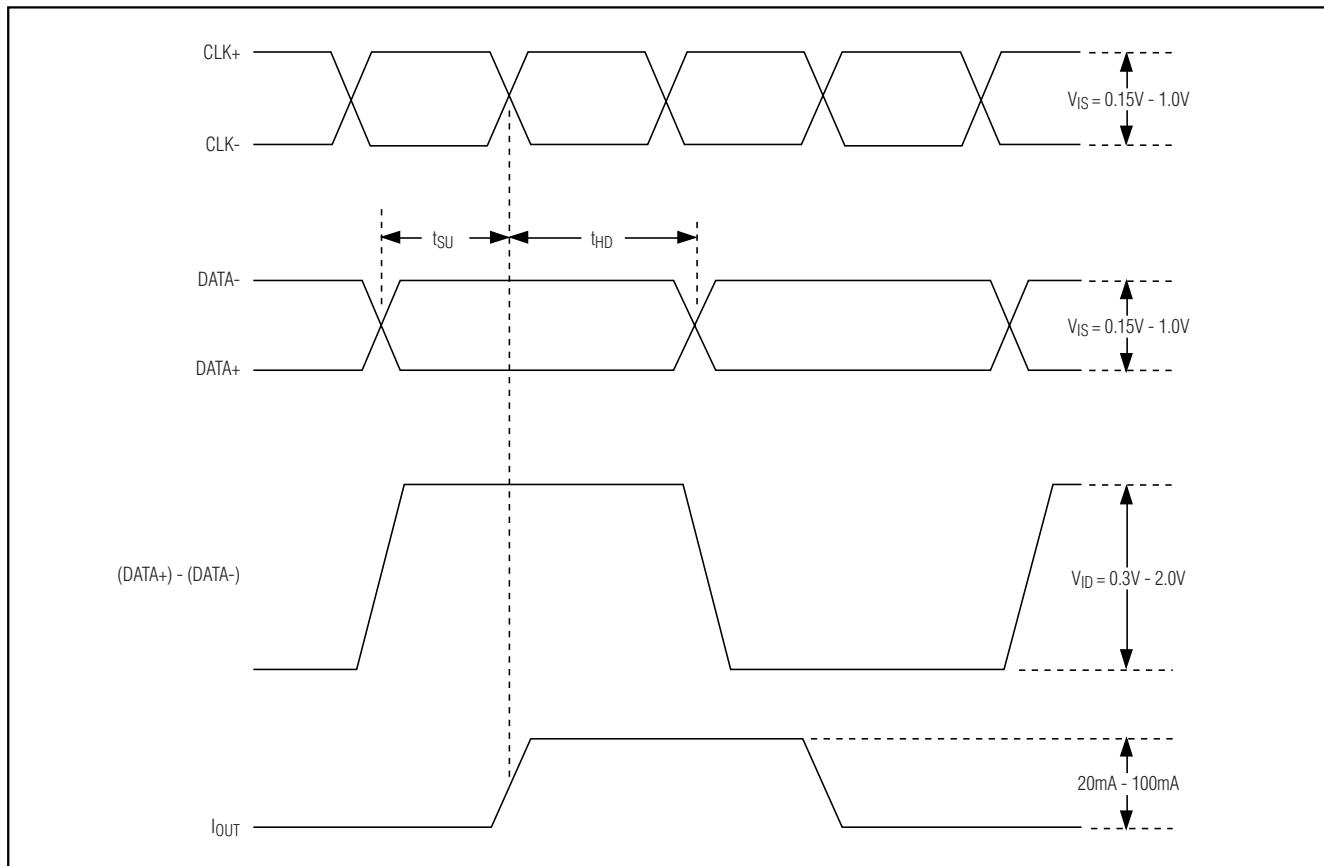



Figure 2. Required Input Signal, Setup/Hold Time Definition, and Output Polarity

# 10.7Gbps Laser Diode Drivers

## Detailed Description

The MAX3930 laser driver consists of two main parts, a high-speed modulation driver and a laser-biasing block. The circuit operates from a single 5V or -5.2V supply. When operating from a 5V supply, connect all Vcc pins to 5V and all VEE pins to ground. If operating from a -5.2V supply, connect all VEE pins to -5.2V and all VCC pins to ground. To eliminate pattern-dependent jitter on the input data signal, the device accepts a differential CML clock signal for data retiming. When  $\overline{RTEN}$  is tied to a low potential, the input data is synchronized by the clock signal. When  $\overline{RTEN}$  is tied high or left floating, the input data is transmitted directly to the output stage (retiming is disabled).

The output stage is composed of a high-speed differential pair and a programmable modulation current source with a maximum modulation current of 100mA. The rise and fall times are typically 25ps and 29ps, respectively.

The MAX3930/MAX3932 modulation output is optimized for driving a  $20\Omega$  load. The minimum voltage required at MOD is 1.55V. To interface with a laser diode, a series damping resistor ( $R_D$ ) is required for impedance matching ( $R_D = 15\Omega$ , assuming a laser resistance of  $5\Omega$ ; see *Typical Application Circuit*).

The MAX3931 output has an internal series damping resistor consisting of two parallel  $30\Omega$  resistors in series with the output. This simplifies interfacing with the laser diode. The MAX3931/MAX3932 have an alternate pad out with respect to MAX3930.

At the 10.7Gbps data rate, any capacitive load at the cathode of a laser diode will degrade the optical output performance. Since the BIAS output is directly connected to the laser cathode, minimize the parasitic capacitance associated with this pad by using a ferrite bead ( $L_B$ ) to isolate the BIAS pin from the laser cathode.

## Optional Input Data Retiming

To eliminate pattern-dependent jitter on the input data, a synchronous differential clock signal should be connected to the CLK+ and CLK- inputs, and the  $\overline{RTEN}$  control input should be tied low. The input data is retimed on the rising edge of CLK+. If  $\overline{RTEN}$  is tied high or left floating, the retiming function is disabled, and the input data is directly connected to the output stage. Leave CLK+ and CLK- open when retiming is disabled.

## Modulation Output Enable

The MAX3930/MAX3931/MAX3932 incorporate a modulation current enable input. When  $\overline{MODEN}$  is low, the modulation outputs (MOD1, MOD2) are enabled. When  $\overline{MODEN}$  is high, the modulation outputs (MOD1, MOD2)

are disabled. The typical laser enable time is 2ns, and the typical disable time is 5ns.

## Pulse-Width Control

The pulse-width control circuit can be used to precompensate for laser pulse-width distortion. The differential voltage between PWC+ and PWC- adjusts the pulse-width compensation.

When PWC+ and PWC- are left open, the pulse-width control circuit is automatically disabled.

## Current Monitors

The MAX3930/MAX3931/MAX3932 feature a bias current monitor output (BIASMON) and a modulation current monitor output (MODMON). The voltage at BIASMON is equal to  $(I_{BIAS} \times R_{BIAS}) + V_{EE}$ , and the voltage at MODMON is equal to  $(I_{MOD} \times R_{MOD}) + V_{EE}$ , where  $I_{BIAS}$  represents the laser bias current,  $I_{MOD}$  represents the modulation current, and  $R_{BIAS}$  and  $R_{MOD}$  are internal  $3\Omega$  ( $\pm 10\%$ ) resistors. BIASMON and MODMON should be connected to the inverting input of an operational amplifier to program the bias and modulation current (see *Design Procedure*).

## Design Procedure

When designing a laser transmitter, the optical output is usually expressed in terms of average power and extinction ratio. Table 1 gives relationships that are helpful in converting between the optical average power and the modulation current. These relationships are valid if the mark density and duty cycle of the optical waveform are 50%.

## Programming the Modulation Current

For a desired laser average optical power,  $P_{AVG}$ , and optical extinction ratio,  $r_E$ , the required modulation current can be calculated based on the laser slope efficiency,  $\eta$ , using the equations in Table 1.

To program the desired modulation current, connect the inverting input of an operational amplifier (such as the MAX480) to MODMON and connect the output to MODSET. Connect the positive op amp voltage supply to Vcc and the negative supply to VEE (for 5V operation,  $V_{CC} = 5V$  and  $V_{EE} = \text{ground}$ ; for -5.2V operation,  $V_{CC} = \text{ground}$  and  $V_{EE} = -5.2V$ ). The modulation current is set by connecting a reference voltage,  $V_{MOD}$ , to the noninverting input of the operational amplifier. Refer to the  $I_{MOD}$  vs.  $V_{MOD}$  graph in the *Typical Operating Characteristics* to select the value of  $V_{MOD}$  that corresponds to the required modulation current.

# 10.7Gbps Laser Diode Drivers

**Table 1. Optical Power Relations**

| PARAMETER              | SYMBOL     | RELATION                                               |
|------------------------|------------|--------------------------------------------------------|
| Average Power          | $P_{AVG}$  | $P_{AVG} = (P_0 + P_1) / 2$                            |
| Extinction Ratio       | $r_e$      | $r_e = P_1 / P_0$                                      |
| Optical Power of a "1" | $P_1$      | $P_1 = 2P_{AVG} r_e / (r_e + 1)$                       |
| Optical Power of a "0" | $P_0$      | $P_0 = 2P_{AVG} / (r_e + 1)$                           |
| Optical Amplitude      | $P_{PP-P}$ | $P_{PP-P} = P_1 - P_0 = 2P_{AVG}(r_e - 1) / (r_e + 1)$ |
| Laser Slope Efficiency | $\eta$     | $\eta = P_{PP-P} / I_{MOD}$                            |
| Modulation Current     | $I_{MOD}$  | $I_{MOD} = P_{PP-P} / \eta$                            |

**Note:** Assuming a 50% average input duty cycle and mark density.

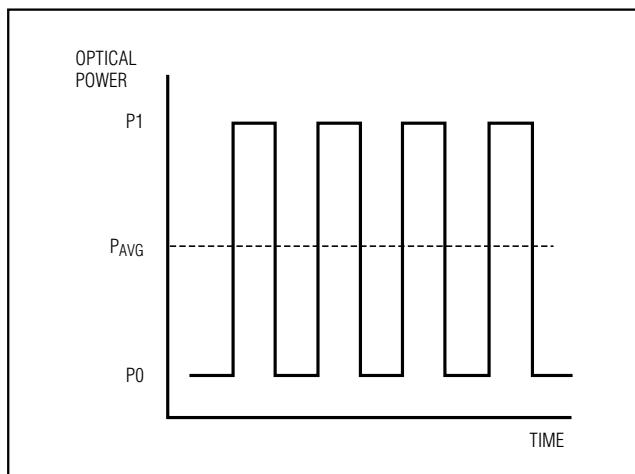



Figure 3. Optical Power Relations

## Programming the Bias Current

To program the desired laser bias current, connect the inverting input of an operational amplifier (such as the MAX480) to BIASMON, and connect the output to BIASSET. Connect the positive op amp voltage supply to V<sub>CC</sub> and the negative supply to V<sub>EE</sub> (for 5V operation, V<sub>CC</sub> = 5V and V<sub>EE</sub> = ground; and for -5.2V operation, V<sub>CC</sub> = ground and V<sub>EE</sub> = -5.2V). The laser bias current is set by connecting a reference voltage, V<sub>BIAS</sub>, to the noninverting input of the operational amplifier. Refer to the I<sub>BIAS</sub> vs. V<sub>BIAS</sub> graph in the *Typical Operating Characteristics* to select the value of V<sub>BIAS</sub> that corresponds to the required laser bias current.

## Interfacing with Laser Diodes

Refer to Maxim Application Note HFAN-2.0, *Interfacing Maxim Laser Drivers with Laser Diodes*, for detailed information.

To minimize optical output aberrations caused by signal reflections at the electrical interface to the laser diode, a series damping resistor (R<sub>D</sub>) is required (Figure 4). The MAX3930/MAX3932 modulation outputs are optimized for a 20Ω load; therefore, the series combination of R<sub>D</sub> and R<sub>L</sub> (where R<sub>L</sub> represents the laser diode resistance) should equal 20Ω. Typical values for R<sub>D</sub> are 13Ω to 17Ω. The MAX3931 includes an on-chip series damping resistor R<sub>D</sub> at 15Ω (Figure 5).

For best performance, a bypass capacitor (C), typically 0.01μF, should be placed as close as possible to the anode of the laser diode.

In some applications (depending on the laser diode parasitic inductance), an RF matching network at the laser cathode will improve the optical output.

## Applications Information

### Wire Bonding Die

For high current density and reliable operation, the MAX3930/MAX3931/MAX3932 use gold metalization. Make connections to the die with gold wire only, using ball-bonding techniques. Do not use wedge bonding. Die-pad size is 3.0mil (76μm) and 4.5mil (114μm). Die thickness is 8mil (203μm). Die size is 46mil x 82mil (1.168mm x 2.083mm).

### Layout Considerations

To minimize inductance, keep the connections between the driver output and the laser diode as short as possible. Optimize the laser diode performance by placing a bypass capacitor as close as possible to the laser anode. Use good high-frequency layout techniques and multilayer boards with an uninterrupted ground plane to minimize EMI and crosstalk. Use controlled impedance lines for the clock and data inputs.

### Laser Safety and IEC 825

Using the MAX3930/MAX3931/MAX3932 laser driver alone does not ensure that a transmitter design is compliant with IEC 825. The entire transmitter circuit and component selections must be considered. Customers must determine the level of fault tolerance required by their application, recognizing that Maxim products are not designed or authorized for use as components in systems intended for surgical implant into the body, for applications intended to support or sustain life, or for any other application where the failure of a Maxim product could create a situation where personal injury or death may occur.

## 10.7Gbps Laser Diode Drivers

**MAX3930/MAX3931/MAX3932**

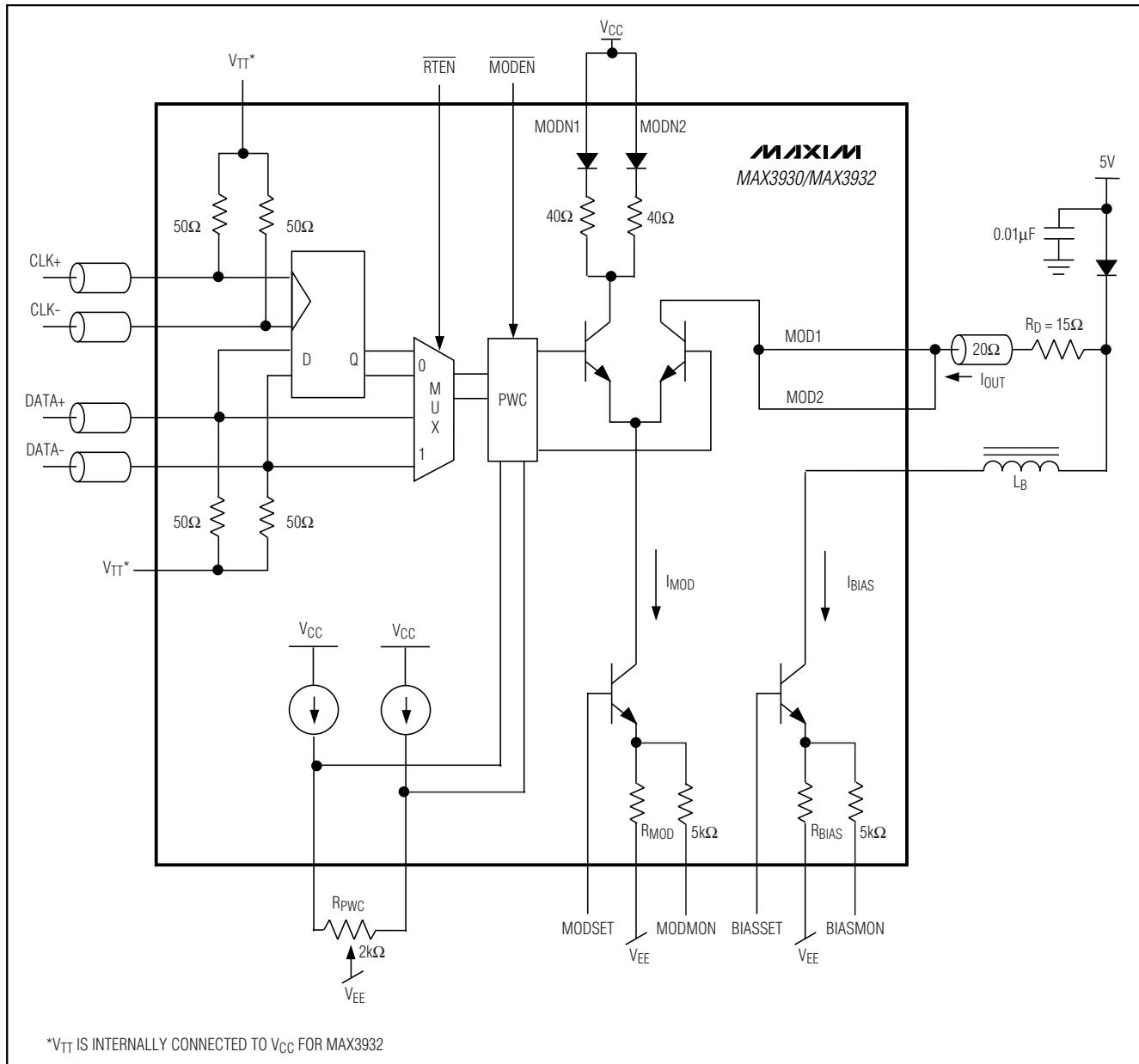



Figure 4. MAX3930/MAX3932 Functional Diagram

## 10.7Gbps Laser Diode Drivers

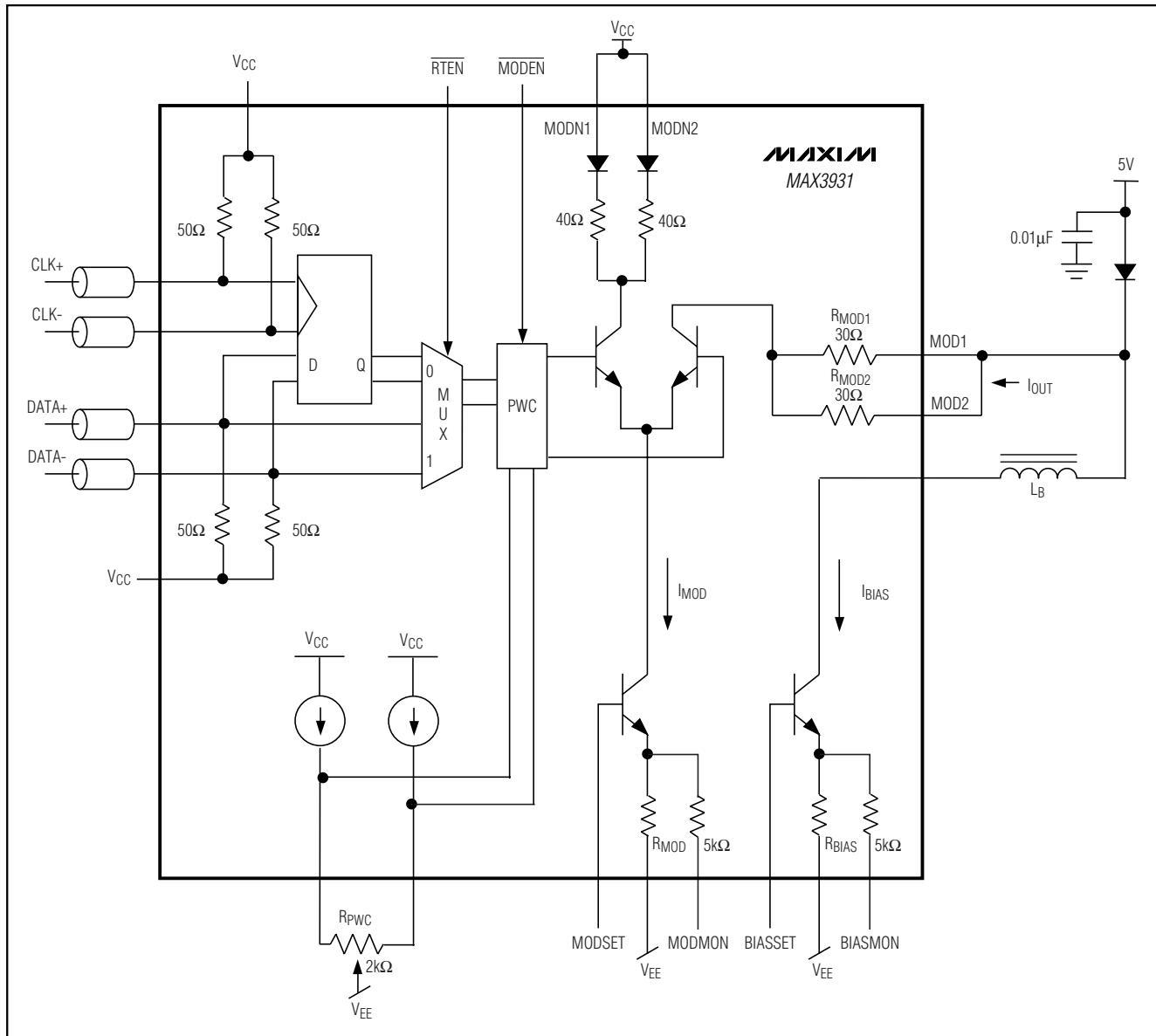



Figure 5. MAX3931 Functional Diagram

# 10.7Gbps Laser Diode Drivers

**MAX3930/MAX3931/MAX3932**

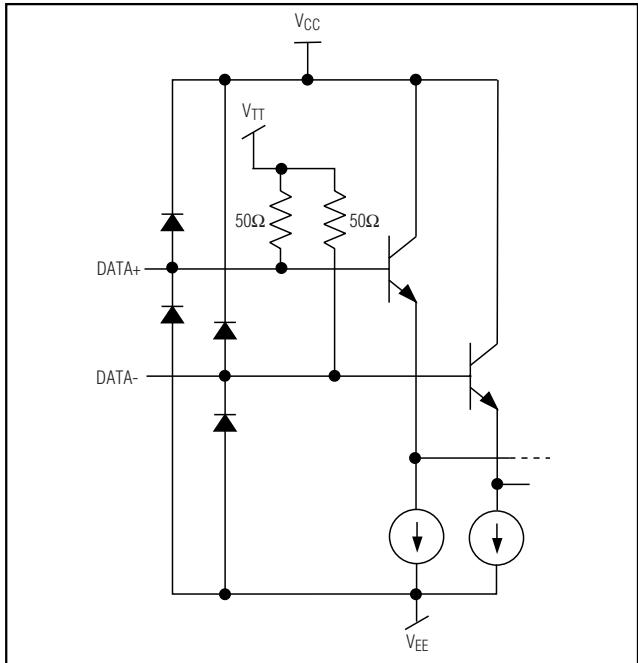



Figure 6. MAX3930 Equivalent Input Circuit

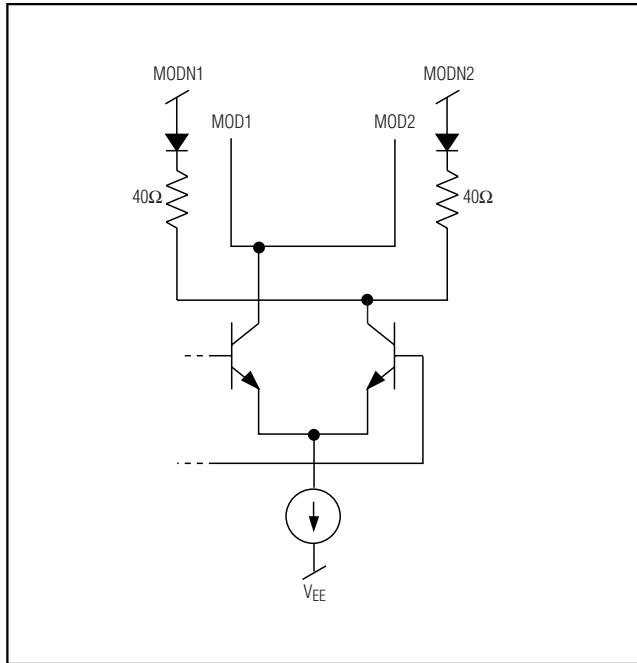



Figure 7. MAX3930/MAX3932 Equivalent Output Circuit

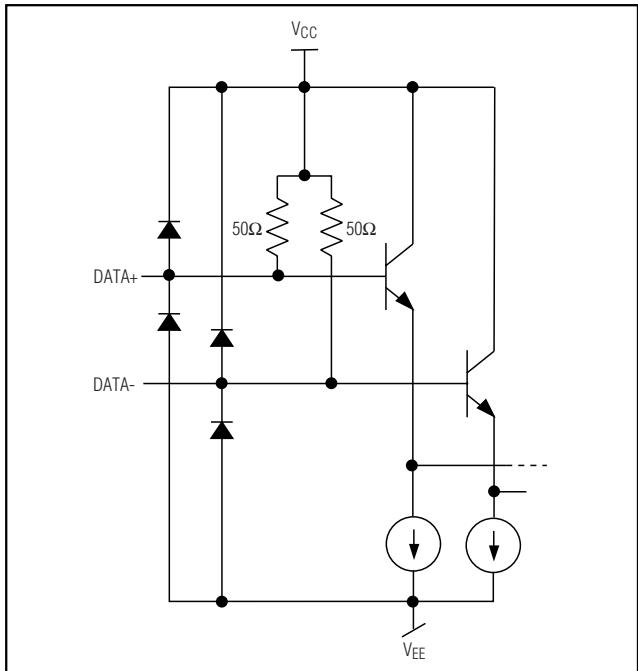



Figure 8. MAX3931/MAX3932 Equivalent Input Circuit

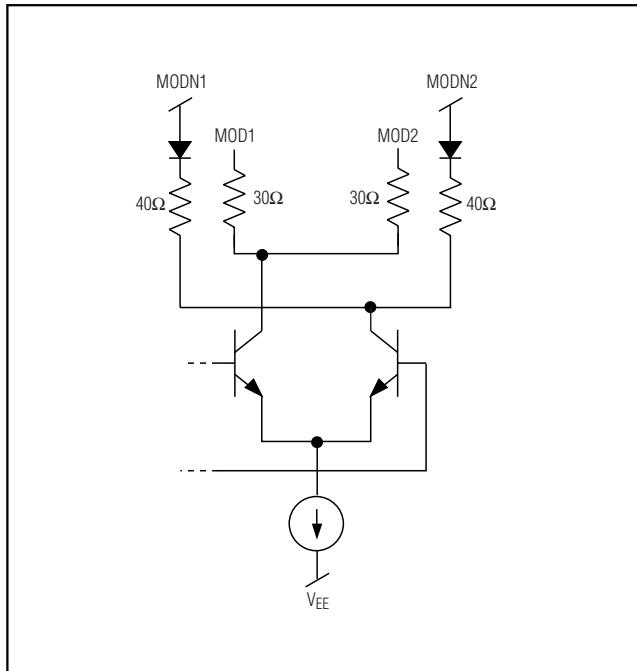
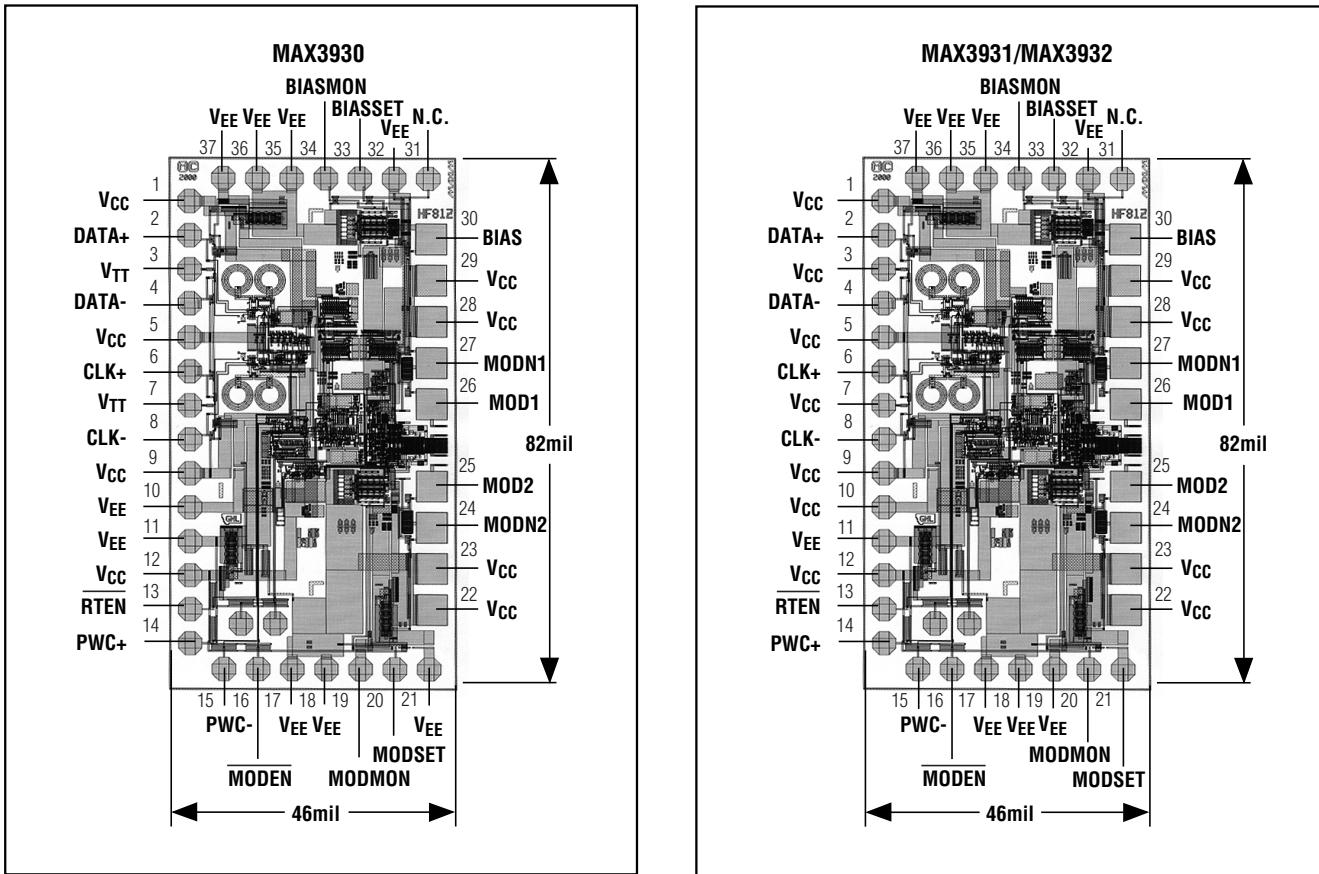




Figure 9. MAX3931 Equivalent Output Circuit

## 10.7Gbps Laser Diode Drivers

### Chip Topography



### Chip Information

TRANSISTOR COUNT: 1555

SUBSTRATE: SOI

PROCESS: BiPOLAR SILICON GERMANIUM

DIE THICKNESS: 8mil

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

14 **Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600**