

[查询2000495供应商](#)

[捷多邦，专业PCB打样工厂，24小时加急出货](#)

PRELIMINARY
S/UNI-16X155
DATASHEET
PMC-2000495

PMC-Sierra, Inc.

ISSUE 2

PM5382
S/UNI-16X155

SATURN USER NETWORK INTERFACE (16X155)

PM5382

S/UNI-16X155

SATURN USER NETWORK INTERFACE (16X155)

S/UNI-[®]
16X155

DATASHEET

PROPRIETARY AND CONFIDENTIAL

PRELIMINARY

ISSUE 2: NOVEMBER 2001

Legal Information

Copyright

Copyright 2001 PMC-Sierra, Inc. All rights reserved.

The information in this document is proprietary and confidential to PMC-Sierra, Inc., and for its customers' internal use. In any event, no part of this document may be reproduced or redistributed in any form without the express written consent of PMC-Sierra, Inc.

PMC-2000495 (Issue 2) ref PMC-2000464 (Issue 2) Issue date: November 2001

Disclaimer

None of the information contained in this document constitutes an express or implied warranty by PMC-Sierra, Inc. as to the sufficiency, fitness or suitability for a particular purpose of any such information or the fitness, or suitability for a particular purpose, merchantability, performance, compatibility with other parts or systems, of any of the products of PMC-Sierra, Inc., or any portion thereof, referred to in this document. PMC-Sierra, Inc. expressly disclaims all representations and warranties of any kind regarding the contents or use of the information, including, but not limited to, express and implied warranties of accuracy, completeness, merchantability, fitness for a particular use, or non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or consequential damages, including, but not limited to, lost profits, lost business or lost data resulting from any use of or reliance upon the information, whether or not PMC-Sierra, Inc. has been advised of the possibility of such damage.

Trademarks

SATURN and S/UNI are registered trademarks of PMC-Sierra, Inc. PMC-Sierra and POS-PHY Level 3™ are trademarks of PMC-Sierra, Inc. Other product and company names mentioned herein may be the trademarks of their respective owners.

Patents Granted

The technology discussed in this document is protected by one or more of the following patent grants:

US patents 5,835,602, 6,052,073, 6,150,965, 6,188,692 and 6,246,738.
Canadian patents 2,254,225 and 2,149,076. UK patent 2,290,438. Other relevant patent grants may also exist.

Contacting PMC-Sierra

PMC-Sierra
8555 Baxter Place
Burnaby, BC
Canada V5A 4V7

Tel: +1.604.415.6000
Fax: +1.604. 415.6200

Document Information: document@pmc-sierra.com
Corporate Information: info@pmc-sierra.com
Technical Support: apps@pmc-sierra.com
Web Site: <http://www.pmc-sierra.com>

CONTENTS

LEGAL INFORMATION.....	2
CONTACTING PMC-SIERRA.....	3
1 FEATURES.....	1
1.1 GENERAL	1
1.2 THE SONET RECEIVER	2
1.3 THE RECEIVE ATM PROCESSOR	2
1.4 THE RECEIVE POS PROCESSOR.....	3
1.5 THE SONET TRANSMITTER	3
1.6 THE TRANSMIT ATM PROCESSOR.....	4
1.7 THE TRANSMIT POS PROCESSOR	4
1.8 THE APS/CROSSBAR SUPPORT.....	5
1.9 DEVICE INTERWORKING.....	5
2 APPLICATIONS.....	6
3 REFERENCES.....	7
4 DEFINITIONS.....	9
5 APPLICATION EXAMPLES.....	12
6 BLOCK DIAGRAM.....	15
7 DESCRIPTION.....	16
8 PIN DIAGRAM.....	19
9 PIN DESCRIPTION	23
9.1 SERIAL LINE SIDE INTERFACE SIGNALS.....	23
9.2 SERIAL APS INTERFACE SIGNALS	28
9.3 CLOCKS AND ALARMS SIGNALS	29
9.4 SECTION AND LINE STATUS DCC SIGNALS	31
9.5 TRANSMIT ATM (UTOPIA) AND PACKET OVER SONET/SDH (POS) SYSTEM INTERFACE	33
9.6 RECEIVE ATM (UTOPIA) AND PACKET OVER SONET/SDH (POS) SYSTEM INTERFACE	42
9.7 MICROPROCESSOR INTERFACE SIGNALS.....	49
9.8 JTAG TEST ACCESS PORT (TAP) SIGNALS	52

9.9	ANALOG SIGNALS.....	53
9.10	POWER AND GROUND	54
9.11	NO CONNECTS.....	59
10	FUNCTIONAL DESCRIPTION	62
10.1	RECEIVE LINE INTERFACE (CRSI).....	62
10.2	RECEIVE SECTION OVERHEAD PROCESSOR (RSOP)	63
10.3	RECEIVE LINE OVERHEAD PROCESSOR (RLOP).....	65
10.4	THE RECEIVE APS, SYNCHRONIZATION EXTRACTOR AND BIT ERROR MONITOR (RASE).....	67
10.5	RECEIVE PATH OVERHEAD PROCESSOR (RPOP)	68
10.6	RECEIVE ATM CELL PROCESSOR (RXCP)	73
10.7	RECEIVE POS FRAME PROCESSOR (RXFP).....	75
10.8	TRANSMIT LINE INTERFACE (CSPI)	78
10.9	TRANSMIT SECTION OVERHEAD PROCESSOR (TSOP)	78
10.10	TRANSMIT LINE OVERHEAD PROCESSOR (TLOP)	80
10.11	TRANSMIT PATH OVERHEAD PROCESSOR (TPOP)	81
10.12	TRANSMIT ATM CELL PROCESSOR (TXCP)	82
10.13	TRANSMIT POS FRAME PROCESSOR (TXFP).....	83
10.14	SONET/SDH PATH TRACE BUFFER (SPTB)	85
10.15	SONET/SDH SECTION TRACE BUFFER (SSTB)	88
10.16	WAN SYNCHRONIZATION CONTROLLER (WANS)	89
10.17	ATM UTOPIA AND PACKET OVER SONET/SDH POS-PHY SYSTEM INTERFACES ..	92
10.18	TRANSMIT APS INTERFACE	94
10.19	TRANSMIT APS OVERHEAD PROCESSOR	95
10.20	SONET/SDH PATH ALIGNER	96
10.21	RECEIVE APS INTERFACE	96
10.22	RECEIVE APS OVERHEAD PROCESSOR	97
10.23	CHANNEL CROSS CONNECT	99
10.24	JTAG TEST ACCESS PORT	100
10.25	MICROPROCESSOR INTERFACE	100
11	NORMAL MODE REGISTER DESCRIPTION	118
12	TEST FEATURES DESCRIPTION	405

12.1	MASTER TEST AND TEST CONFIGURATION REGISTERS.....	405
12.2	JTAG TEST PORT	408
13	OPERATION.....	417
13.1	SONET/SDH FRAME MAPPINGS AND OVERHEAD BYTE USAGE.....	417
13.2	UTOPIA LEVEL 3 ATM CELL DATA STRUCTURE	423
13.3	POS-PHY LEVEL 3 DATA STRUCTURES	425
13.4	SETTING ATM MODE OF OPERATION	427
13.5	SETTING PACKET-OVER-SONET/SDH MODE OF OPERATION	427
13.6	SETTING SONET OR SDH MODE OF OPERATION	428
13.7	BIT ERROR RATE MONITOR.....	430
13.8	AUTO ALARM CONTROL CONFIGURATION	431
13.9	CLOCKING OPTIONS	432
13.10	WAN SYNCHRONIZATION (WANS BLOCK).....	434
13.11	LOOPBACK OPERATION.....	434
13.12	APS SUPPORT.....	438
13.13	JTAG SUPPORT	441
13.14	BOARD DESIGN RECOMMENDATIONS.....	446
13.15	POWER SUPPLIES	447
13.16	HIGH SPEED PECL INTERFACES	450
13.17	CLOCK SYNTHESIS AND RECOVERY	454
13.18	SYSTEM INTERFACE DLL OPERATION	454
14	FUNCTIONAL TIMING	456
14.1	TRANSMIT ATM UTOPIA LEVEL 3 SYSTEM INTERFACE	456
14.2	RECEIVE ATM UTOPIA LEVEL 3 SYSTEM INTERFACE.....	457
14.3	TRANSMIT PACKET OVER SONET/SDH (POS) LEVEL 3 SYSTEM INTERFACE	458
14.4	RECEIVE PACKET OVER SONET/SDH (POS) LEVEL 3 SYSTEM INTERFACE	459
14.5	TRANSMIT DATA COMMUNICATION CHANNELS	460
14.6	RECEIVE DATA COMMUNICATION CHANNELS.....	461
15	ABSOLUTE MAXIMUM RATINGS	463
16	D.C. CHARACTERISTICS.....	464
17	MICROPROCESSOR INTERFACE TIMING CHARACTERISTICS	467
18	A.C. TIMING CHARACTERISTICS	471

18.1	SYSTEM RESET TIMING	471
18.2	UTOPIA LEVEL 3 SYSTEM INTERFACE TIMING	472
18.3	POS LEVEL 3 SYSTEM INTERFACE TIMING	475
18.4	TRANSMIT DCC INTERFACE TIMING	479
18.5	RECEIVE DCC INTERFACE TIMING	480
18.6	CLOCK AND FRAME PULSE INTERFACE TIMING	481
18.7	JTAG TEST PORT TIMING	482
19	THERMAL INFORMATION	484
20	MECHANICAL INFORMATION	486
21	POWER CONSUMPTION DERIVATION	487

LIST OF TABLES

TABLE 1: POINTER INTERPRETER EVENT (INDICATIONS) DESCRIPTION	69
TABLE 2: POINTER INTERPRETER TRANSITION DESCRIPTION.....	71
TABLE 3: HDLC BYTE SEQUENCES	77
TABLE 4: HDLC BYTE SEQUENCES	85
TABLE 5: PATH SIGNAL LABEL MISMATCH MECHANISM	87
TABLE 6: PATH SIGNAL LABEL MISMATCH MECHANISM	87
TABLE 7: TOP LEVEL REGISTER MEMORY MAP	100
TABLE 8: PER CHANNEL REGISTER MEMORY MAP	102
TABLE 9: SYSTEM AND APS INTERFACE REGISTER MEMORY MAP	109
TABLE 10: APS CROSS CONNECT AND ALIGNER	112
TABLE 11: RECEIVE INITIATION LEVEL VALUES	273
TABLE 12: TRANSMIT INITIATION LEVEL VALUES	291
TABLE 13: INTER PACKET GAPPING VALUES	291
TABLE 14: TEST MODE REGISTER MEMORY MAP	405
TABLE 15: INSTRUCTION REGISTER (LENGTH - 3 BITS)	408
TABLE 16: S/UNI-16X155 IDENTIFICATION REGISTER	408
TABLE 17: S/UNI-16X155 BOUNDARY SCAN REGISTER	408
TABLE 18: SETTINGS FOR SONET OR SDH OPERATION	429
TABLE 19: RECOMMENDED BERM SETTINGS	431
TABLE 20: PATH RDI AND EXTENDED RDI REGISTER SETTINGS	431
TABLE 21: CHANNEL SWIZZLE CONFIGURATION.....	440
TABLE 22: 1+1 APS CONFIGURATION	441
TABLE 23: 1:8 APS CONFIGURATION	441
TABLE 24: ABSOLUTE MAXIMUM RATINGS	463
TABLE 25: D.C CHARACTERISTICS.....	464
TABLE 26: MICROPROCESSOR INTERFACE READ ACCESS (FIGURE 51).....	467
TABLE 27: MICROPROCESSOR INTERFACE WRITE ACCESS (FIGURE 52).....	469
TABLE 28: RSTB TIMING (FIGURE 53).....	471
TABLE 29: TRANSMIT UTOPIA LEVEL 3 SYSTEM INTERFACE TIMING (FIGURE 54).....	472
TABLE 30: RECEIVE UTOPIA LEVEL 3 SYSTEM INTERFACE TIMING (FIGURE 55).....	474

TABLE 31: TRANSMIT POS-PHY LEVEL 3 SYSTEM INTERFACE TIMING (FIGURE 56).....	475
TABLE 32: RECEIVE POS-PHY LEVEL 3 SYSTEM INTERFACE TIMING (FIGURE 57)	477
TABLE 33: TRANSMIT DCC INTERFACE TIMING (FIGURE 58).....	479
TABLE 34: RECEIVE DCC INTERFACE TIMING (FIGURE 59).....	480
TABLE 35: CLOCK AND FRAME PULSE INTERFACE TIMING (FIGURE 60).....	481
TABLE 36: JTAG PORT INTERFACE (FIGURE 61)	482
TABLE 37 INDUSTRIAL APPLICATION THERMAL INFORMATION.....	484
TABLE 38 INDUSTRIAL APPLICATION THERMAL INFORMATION.....	484
TABLE 39: DEVICE POWER CONSUMPTION	487

LIST OF FIGURES

FIGURE 1: TYPICAL STS-3C/STM-1 ATM SWITCH PORT APPLICATION	13
FIGURE 2: TYPICAL STS-3C/STM-1 PACKET OVER SONET/SDH APPLICATION	14
FIGURE 3: TYPICAL STS-3C/STM-1 S/UNI-16X155 JITTER TOLERANCE	63
FIGURE 4: POINTER INTERPRETATION STATE DIAGRAM	69
FIGURE 5: CELL DELINEATION STATE DIAGRAM	74
FIGURE 7: PACKET OVER SONET/SDH FRAME FORMAT	76
FIGURE 8: CRC DECODER.....	77
FIGURE 9: PACKET OVER SONET/SDH FRAME FORMAT	83
FIGURE 10: CRC GENERATOR	84
FIGURE 11. WANS PLL BLOCK DIAGRAM	90
FIGURE 12: TYPICAL APS DRU JITTER TOLERANCE	97
FIGURE 13: INPUT OBSERVATION CELL (IN_CELL).....	415
FIGURE 14: OUTPUT CELL (OUT_CELL).....	415
FIGURE 15: BIDIRECTIONAL CELL (IO_CELL).....	416
FIGURE 16: LAYOUT OF OUTPUT ENABLE AND BIDIRECTIONAL CELLS.....	416
FIGURE 17: ATM MAPPING INTO THE STS-3C/STM-1 SPE.....	417
FIGURE 18: POS MAPPING INTO THE STS-3C/STM-1 SPE	418
FIGURE 19: APS MAPPING INTO THE STS-12/STM-4 SPE	419
FIGURE 20: STS-3C/STM-1 OVERHEAD	419
FIGURE 21: 32-BIT WIDE, 52 BYTE ATM CELL STRUCTURE	424
FIGURE 22: 32-BIT WIDE, 56 BYTE ATM CELL STRUCTURE	425
FIGURE 23: 32-WIDE, 109 BYTE PACKET DATA STRUCTURE.....	426
FIGURE 24: CLOCKING STRUCTURE.....	433
FIGURE 25: LINE LOOPBACK MODE	435
FIGURE 26: SERIAL DIAGNOSTIC LOOPBACK MODE	436
FIGURE 27: PARALLEL DIAGNOSTIC LOOPBACK MODE	436
FIGURE 28: PATH DIAGNOSTIC LOOPBACK MODE.....	437
FIGURE 29: DATA DIAGNOSTIC LOOPBACK MODE	437
FIGURE 30: CHANNEL APS STRUCTURE	438
FIGURE 31: TRANSMIT APS LINK	439

FIGURE 32: RECEIVE APS LINK.....	440
FIGURE 33: BOUNDARY SCAN ARCHITECTURE	442
FIGURE 34: TAP CONTROLLER FINITE STATE MACHINE.....	443
FIGURE 35: POWER SUPPLY COMPONENT LAYOUT	448
FIGURE 36: POWER SUPPLY FILTERING AND DECOUPLING.....	449
FIGURE 37: INTERFACING S/UNI-16X155 LINE PECL PINS TO 3.3V DEVICES	451
FIGURE 38: INTERFACING S/UNI-16X155 LINE PECL PINS TO 5.0V DEVICES	451
FIGURE 39: ECL BIAS VOLTAGE GENERATOR NETWORKS	452
FIGURE 40: INTERFACING S/UNI-16X155 APS PECL PINS TO 5.0V DEVICES	453
FIGURE 41: INTERFACING S/UNI-16X155 APS PECL PINS TO 3.0V DEVICES	453
FIGURE 42: INTERFACING S/UNI-16X155 APS PECL PINS TO 5.0V ECL BUFFER.....	453
FIGURE 43: TRANSMIT UTOPIA LEVEL 3 SYSTEM INTERFACE TIMING	457
FIGURE 44: RECEIVE UTOPIA LEVEL 3 SYSTEM INTERFACE TIMING	457
FIGURE 45: TRANSMIT POS LEVEL 3 SYSTEM INTERFACE TIMING	458
FIGURE 46: RECEIVE POS LEVEL 3 SYSTEM INTERFACE TIMING	460
FIGURE 47: TRANSMIT LINE DATA LINK CLOCK AND DATA INSERTION.....	460
FIGURE 48: TRANSMIT SECTION DATA LINK CLOCK AND DATA INSERTION.....	461
FIGURE 49: RECEIVE LINE DATA LINK CLOCK AND DATA EXTRACTION	461
FIGURE 50: RECEIVE SECTION DATA LINK CLOCK AND DATA EXTRACTION.....	462
FIGURE 51: MICROPROCESSOR INTERFACE READ TIMING	467
FIGURE 52: MICROPROCESSOR INTERFACE WRITE TIMING.....	469
FIGURE 53: RSTB TIMING DIAGRAM.....	471
FIGURE 54: TRANSMIT UTOPIA LEVEL 3 SYSTEM INTERFACE TIMING DIAGRAM	473
FIGURE 55: RECEIVE UTOPIA LEVEL 3 SYSTEM INTERFACE TIMING DIAGRAM	474
FIGURE 56: TRANSMIT POS-PHY LEVEL 3 SYSTEM INTERFACE TIMING	476
FIGURE 57: RECEIVE POS-PHY LEVEL 3 SYSTEM INTERFACE TIMING	478
FIGURE 58: TRANSMIT DCC INTERFACE TIMING	479
FIGURE 59: RECEIVE DCC INTERFACE TIMING	480
FIGURE 60: CLOCK AND FRAME PULSE INTERFACE TIMING	481
FIGURE 61: JTAG PORT INTERFACE TIMING	482
FIGURE 62: MECHANICAL DRAWING 520 IN SUPER BALL GRID ARRAY (SBGA)	486

1 FEATURES

1.1 General

- Single chip ATM and Packet over SONET/SDH 16-channel Physical Layer Device operating at 155.52 Mbit/s.
- Implements the ATM Forum User Network Interface Specification and the ATM physical layer for Broadband ISDN according to CCITT Recommendation I.432.
- Implements the Point-to-Point Protocol (PPP) over SONET/SDH specification according to RFC 2615 and RFC 1662.
- Processes sixteen duplex bit-serial 155.52 Mbit/s STS-3c/STM-1 data streams with on-chip clock and data recovery and clock synthesis.
- Complies with Bellcore GR-253-CORE (1995 Issue) jitter tolerance, jitter transfer and intrinsic jitter criteria.
- Provides control circuitry required to comply with Bellcore GR-253-CORE WAN clocking requirements related to wander transfer, holdover and long term stability when using an external VCXO.
- Provides UTOPIA Level 3 compatible 32-bit wide System Interface (clocked up to 104 MHz) with parity support for ATM applications.
- Provides SATURN POS-PHY Level 3™ 32-bit System Interface (clocked up to 104 MHz) for Packet over SONET/SDH (POS) and ATM applications.
- Provides support functions for 1+1 APS and 1:N operation.
- Provides a standard 5 signal IEEE 1149.1 JTAG test port for boundary scan board test purposes.
- Provides a generic 8-bit microprocessor bus interface for configuration, control, and status monitoring.
- Low power 2.5/3.3 volt CMOS with 5 volt TTL compatible digital inputs outputs. PECL inputs and outputs are 3.3 volt and 5 volt compatible.
- Industrial temperature range (-40°C to +85°C).
- 520 pin Super BGA package.

1.2 The SONET Receiver

- Provides sixteen serial interfaces at 155.52 Mbit/s with clock and data recovery.
- Frames to and de-scrambles the received STS-3c/STM-1 streams.
- Interprets the received payload pointers (H1, H2) and extracts the STS-3c/STM-1 synchronous payload envelopes and path overheads.
- Extracts the data communication channels (D1-D3, D4-D12) and serializes them at 192 kbit/s (D1-D3) and 576 kbit/s (D4-D12) for optional external processing.
- Filters and captures the automatic protection switch channel (APS) bytes in readable registers and detects APS byte failure.
- Captures and de-bounces each synchronization status (S1) nibble in a readable register.
- Detects signal degrade (SD) and signal fail (SF) threshold crossing alarms based on received B2 errors.
- Extracts the 16-byte or 64-byte section trace (J0/Z0) sequences and the 16-byte or 64-byte path trace (J1) sequences into internal register banks.
- Detects loss of signal (LOS), out of frame (OOF), loss of frame (LOF), line alarm indication signal (AIS-L), line remote defect indication (RDI-L), loss of pointer (LOP), path alarm indication signal (AIS-P), path remote defect indication (RDI-P), path extended remote defect indicator (extended RDI-P).
- Counts received section BIP-8 (B1) errors, received line BIP-24 (B2) errors, line remote error indicates (REI-L), received path BIP-8 (B3) errors and path remote error indications (REI-P) for performance monitoring purposes.

1.3 The Receive ATM Processor

- Extracts ATM cells from the received STS-3c/STM-1 payload using ATM cell delineation.
- Provides ATM cell payload de-scrambling.
- Performs header check sequence (HCS) error detection , and idle/unassigned cell filtering.
- Detects out of cell Delineation (OCD) and loss of cell delineation (LCD) alarms.

- Counts number of received cells, idle cells, errored cells and dropped cells.
- Provides a UTOPIA Level 3 compatible 32-bit wide datapath interface (clocked up to 104 MHz) with parity support to read extracted cells from an internal 64 ATM cell FIFO buffer (4 cells per channel).

1.4 The Receive POS Processor

- Supports packet based link layer protocols using byte synchronous HDLC framing like PPP, HDLC and Frame Relay.
- Performs self-synchronous POS data de-scrambling on the received STS-3c/STM-1 payload using the $x^{43}+1$ polynomial.
- Performs flag sequence detection and terminates the received POS frames.
- Performs frame check sequence (FCS) validation for CRC-CCITT and CRC-32 polynomials.
- Performs control escape de-stuffing of the HDLC stream.
- Detects for packet abort sequence.
- Checks for minimum and maximum packet lengths. Optionally deletes short packets and marks those exceeding the maximum length as errored.
- Provides a SATURN POS-PHY Level 3 compliant 32-bit datapath interface (clocked up to 104 MHz) with parity support to read packet data from a 4Kbyte FIFO buffer (256 bytes per channel).

1.5 The SONET Transmitter

- Synthesizes the 155.52 MHz transmit clock from a 77.76 MHz reference.
- Provides sixteen differential PECL bit-serial interfaces at 155.52 Mbit/s.
- Inserts register programmable path signal labels (C2).
- Generates the transmit payload pointers (H1, H2) and inserts path overhead.
- Optionally inserts the 16-byte or 64-byte section trace (J0/Z0) sequence and the 16-byte or 64-byte path trace (J1) sequence from internal register banks.

- Optionally inserts externally generated data communication channels (D1-D3, D4-D12) via a 192 kbit/s (D1-D3) serial stream and a 576 kbit/s (D4-D12) serial stream.
- Scrambles the transmitted STS-3c/STM-1 streams and inserts the framing bytes (A1, A2).
- Optionally inserts register programmable APS bytes.
- Provides support allowing two devices to implement 1+1 and 1:N APS.
- Inserts path BIP-8 codes (B3), path remote error indications (REI-P), line BIP-24 codes (B2), line remote error indications (REI-L), and section BIP-8 codes (B1) to allow performance monitoring at the far end.
- Allows forced insertion of all-zeros data (after scrambling) and the corruption of the section, line, or path BIP-8 codes for diagnostic purposes.
- Inserts ATM cells or POS frames into the transmitted STS-3c/STM-1 payload.

1.6 The Transmit ATM Processor

- Provides idle/unassigned cell insertion.
- Provides HCS generation/insertion, and ATM cell payload scrambling.
- Counts number of transmitted and idle cells.
- Provides a UTOPIA Level 3 compatible 32-bit wide datapath interface (clocked up to 104 MHz) with parity support for writing cells into an internal 64 ATM cell FIFO buffer (4 cells per channel).

1.7 The Transmit POS Processor

- Supports any packet based link layer protocol using byte synchronous HDLC framing like PPP, HDLC and Frame Relay.
- Performs self-synchronous POS data scrambling using the $x^{43}+1$ polynomial.
- Encapsulates packets within a POS frame.
- Performs flag sequence insertion.
- Performs byte stuffing for transparency processing.

- Performs frame check sequence generation using the CRC-CCITT and CRC-32 polynomials.
- Aborts packets under the direction of the host or when the FIFO underflows.
- Provides a SATURN POS-PHY Level 3 compliant 32-bit wide datapath (clocked up to 104 MHz) with parity support to an internal 4Kbyte FIFO buffer (256 bytes per channel).

1.8 The APS/Crossbar Support

- Allows the four channels to be switched (crossbar) and/or bridged channels on the transmit direction at the SONET/SDH path level.
- With one S/UNI-16x155 device, supports up to eight 1+1 APS interface or a single 1:8 APS interface. Supports channel aliasing at the path level.
- With two S/UNI-16x155 devices, supports up to sixteen 1+1 APS interfaces or a various 1:N APS interfaces up to a single 1:16 APS interface.
- Allows the sixteen channels to be switched (crossbar) on the receive direction at the SONET/SDH path level.
- Provides four transmit differential PECL bit-serial interfaces at 622.08 Mbit/s to switched receive channels (crossbar) or source transmit channels (bridge) with a second S/UNI-16x155 device at the SONET/SDH path level.
- Provides four receive differential PECL bit-serial interface at 622.08 Mbit/s to switch receive channels (crossbar) or source transmit channels (bridge) with a second S/UNI-16x155 device at the SONET/SDH path level.
- Provides performance monitoring of bit errors across the four receive streams.

1.9 Device Interworking

Other PMC-Sierra devices that implement the POS-PHY Level 3 interface include:

- PM5381 S/UNI 2488
- PM5358 S/UNI 4x622
- PM3386 S/UNI 2xGE
- PM7390 S/UNI MACH48
- PM7325 S/UNI ATLAS-3200

2 APPLICATIONS

- WAN and Edge ATM switches.
- LAN switches and hubs.
- Packet switches and hubs.
- Routers and Layer 3 Switches
- Network Interface Cards and Uplinks

3 REFERENCES

- ATM Forum - ATM User-Network Interface Specification, V3.1, October, 1995.
- ATM Forum - "UTOPIA, An ATM PHY Interface Specification, Level 2, Version 1", June, 1995.
- Bell Communications Research - GR-253-CORE "SONET Transport Systems: Common Generic Criteria", Issue 2, December 1995.
- Bell Communications Research - GR-436-CORE "Digital Network Synchronization Plan", Issue 1 Revision 1, June 1996..
- ETS 300 417-1-1, "Generic Functional Requirements for Synchronous Digital Hierarchy (SDH) Equipment", January, 1996.
- IETF Network Working Group - RFC-2615 "Point to Point Protocol (PPP) over SONET/SDH Specification", May 1994.
- IETF Network Working Group - RFC-1661 "The Point to Point Protocol (PPP)", July 1994.
- IETF Network Working Group - RFC-1662 "PPP in HDLC like framing", July 1994.
- ITU-T Recommendation G.703 - "Physical/Electrical Characteristics of Hierarchical Digital Interfaces", 1991.
- ITU-T Recommendation G.704 - "General Aspects of Digital Transmission Systems; Terminal Equipment - Synchronous Frame Structures Used At 1544, 6312, 2048, 8488 and 44 736 kbit/s Hierarchical Levels", July, 1995.
- ITU, Recommendation G.707 - "Network Node Interface For The Synchronous Digital Hierarchy", 1996.
- ITU Recommendation G781, "Structure of Recommendations on Equipment for the Synchronous Design Hierarchy (SDH)", January 1994.
- ITU, Recommendation G.783 - "Characteristics of Synchronous Digital Hierarchy (SDH) Equipment Functional Blocks", 1996.
- ITU Recommendation I.432, "ISDN User Network Interfaces", March 93.

PRELIMINARY
S/UNI-16X155
DATASHEET
PMC-2000495

ISSUE 2

SATURN USER NETWORK INTERFACE (16X155)

PM5382
S/UNI-16X155

- PMC-971147 "Saturn Compliant Interface for Packet over SONET Physical Layer and Link Layer Devices, Level 2", January 1998.
- PMC-980495 "Saturn Compliant Interface for Packet over SONET Physical Layer and Link Layer Devices, Level 3", December 1998.

4 DEFINITIONS

The following table defines the abbreviations for the S/UNI-16x155.

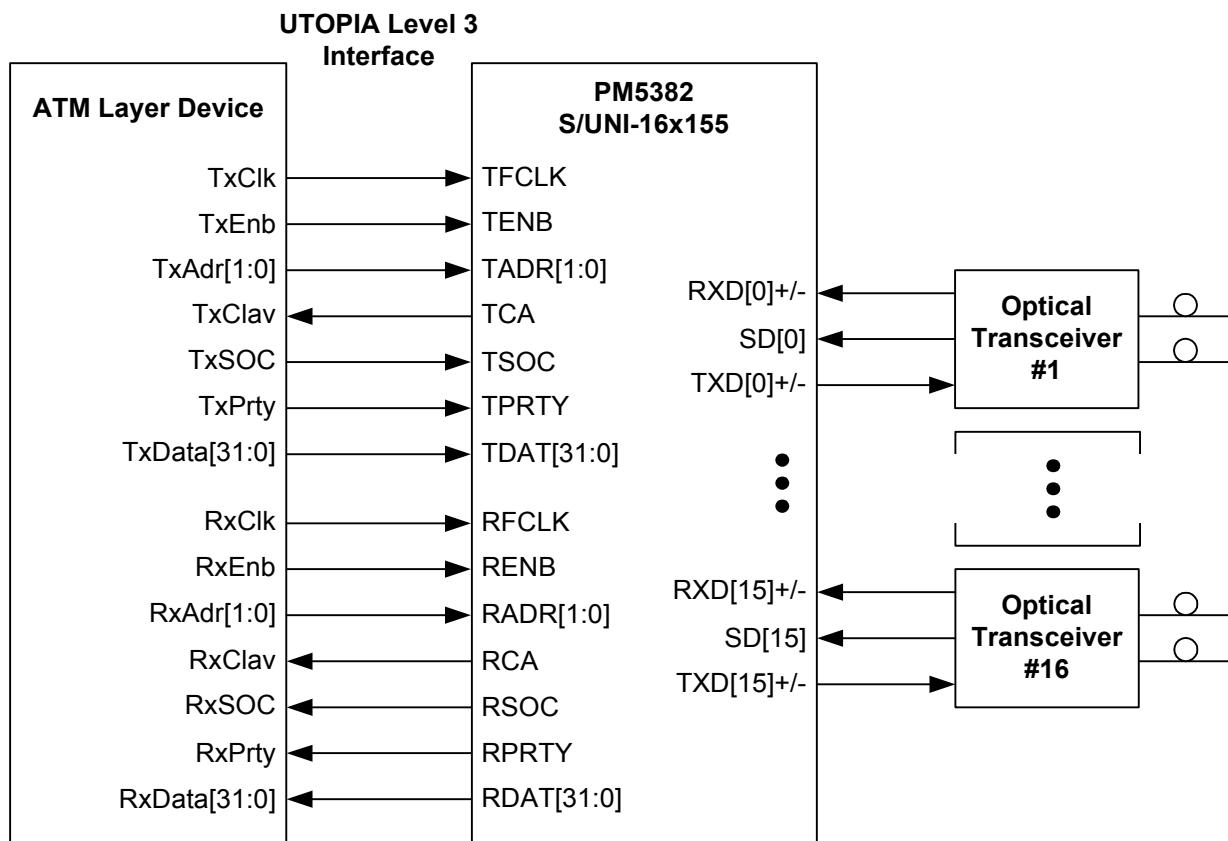
AIS	Alarm Indication Signal
APS	Automatic Protection Switching
ASSP	Application Specific Standard Product
ATM	Asynchronous Transfer Mode
BER	Bit Error Rate
BIP	Byte Interleaved Parity
CBI	Common Bus Interface
CMOS	Complementary Metal Oxide Semiconductor
CRC	Cyclic Redundancy Check
CRSI	CRU and Serial-In Parallel-Out
CRU	Clock Recovery Unit
CSPI	CSU and Parallel-In Serial-Out
CSU	Clock Synthesis Unit
DCC	Data Communication Channel
DRU	Data Recovery Unit
ECL	Emitter Controlled Logic
ERDI	Enhanced Remote Defect Indication
ESD	Electrostatic Discharge
FCS	Frame Check Sequence
FEBE	Far-End Block Error
FIFO	First-In First-Out
GFC	Generic Flow Control
HCS	Header Check Sequence
HDLC	High-level Data Link Layer
LAN	Local Area Network
LCD	Loss of Cell Delineation

LOF	Loss of Frame
LOH	Line Overhead
LOP	Loss of Pointer
LOS	Loss of Signal
LOT	Loss of Transition
NC	No Connect, indicates an unused pin
NDF	New Data Flag
NNI	Network-Network Interface
ODL	Optical Data Link
OOF	Out of Frame
PECL	Pseudo-ECL
PLL	Phase-Locked Loop
POS	Packet Over SONET
PPP	Point-to-Point Protocol
PSL	Path Signal Label
PSLM	Path Signal Label Mismatch
RAPS	Receive APS Interface
RAOP	Receive APS Overhead Processor
RASE	Receive APS, Synchronization Extractor and Bit Error Monitor
RDI	Remote Defect Indication
RLOP	Receive Line Overhead Processor
RPOP	Receive Path Overhead Processor
RSOP	Receive Section Overhead Processor
RXCP	Receive ATM Cell Processor
RXFP	Receive POS Frame Processor
SBGA	Super Ball Grid Array
SD	Signal Degrade (alarm), Signal Detect (pin)
SDH	Synchronous Digital Hierarchy
SF	Signal Fail

SOH	Section Overhead
SONET	Synchronous Optical Network
SPE	Synchronous Payload Envelope
SPTB	SONET/SDH Path Trace Buffer
SSTB	SONET/SDH Section Trace Buffer
TAPS	Transmit APS Interface
TIM	Trace Identifier Mismatch
TIU	Trace Identifier Unstable
TAOP	Transmit APS Overhead Processor
TLOP	Transmit Line Overhead Processor
TOH	Transport Overhead
TPOP	Transmit Path Overhead Processor
TSOP	Transmit Section Overhead Processor
TXCP	Transmit ATM Cell Processor
TXFP	Transmit POS Frame Processor
UI	Unit Interval
UNI	User-Network Interface
VCI	Virtual Connection Indicator
VCXO	Voltage Controlled Oscillator
VPI	Virtual Path Indicator
WAN	Wide Area Network
XOR	Exclusive OR logic operator

5 APPLICATION EXAMPLES

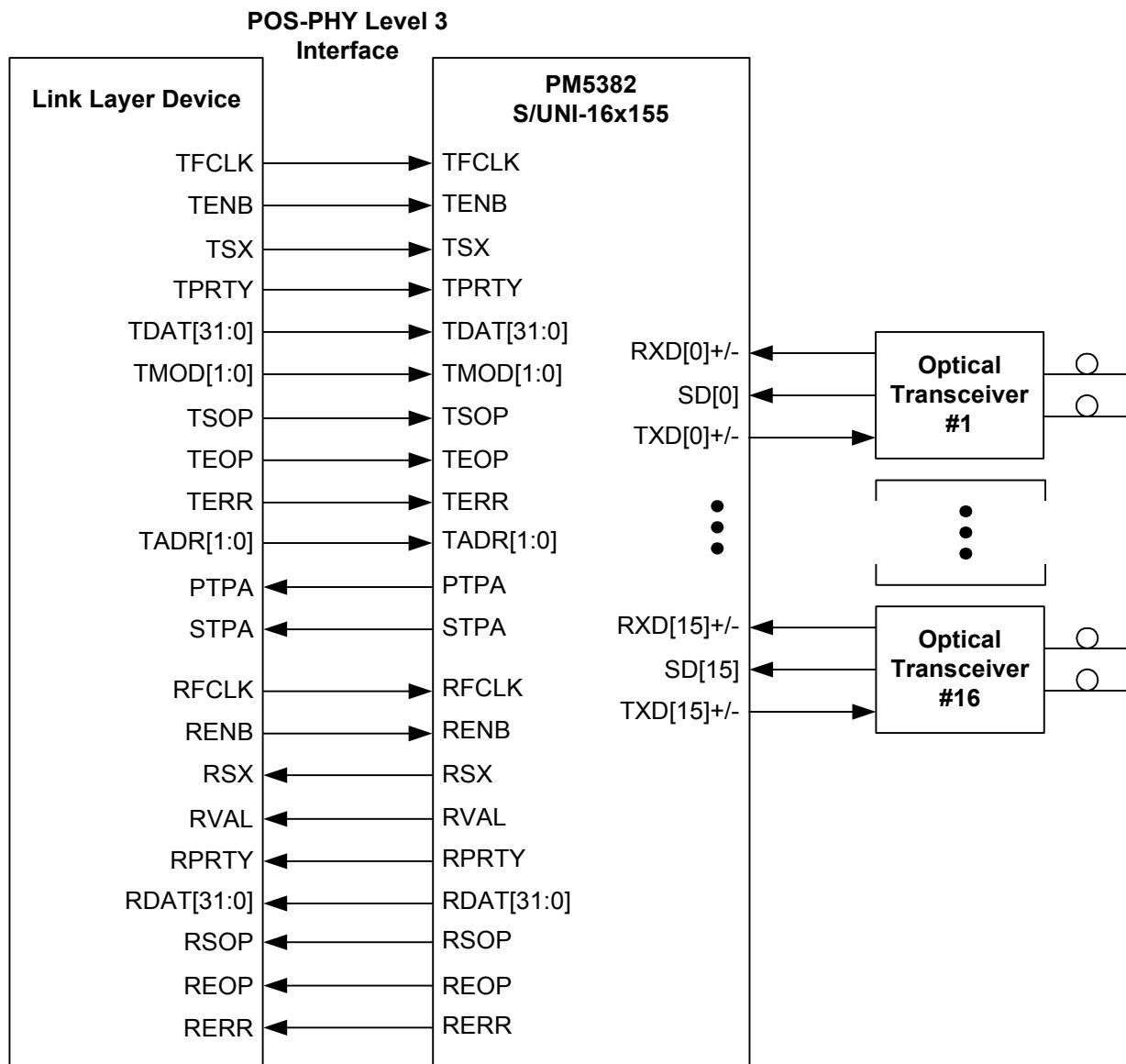
The PM5382 S/UNI-16x155 is applicable to equipment implementing Asynchronous Transfer Mode (ATM) User-Network Interfaces (UNI), ATM Network-Network Interfaces (NNI), as well as Packet over SONET/SDH (POS) interfaces. The POS interface can support several packet based protocols, including the Point-to-Point Protocol (PPP).

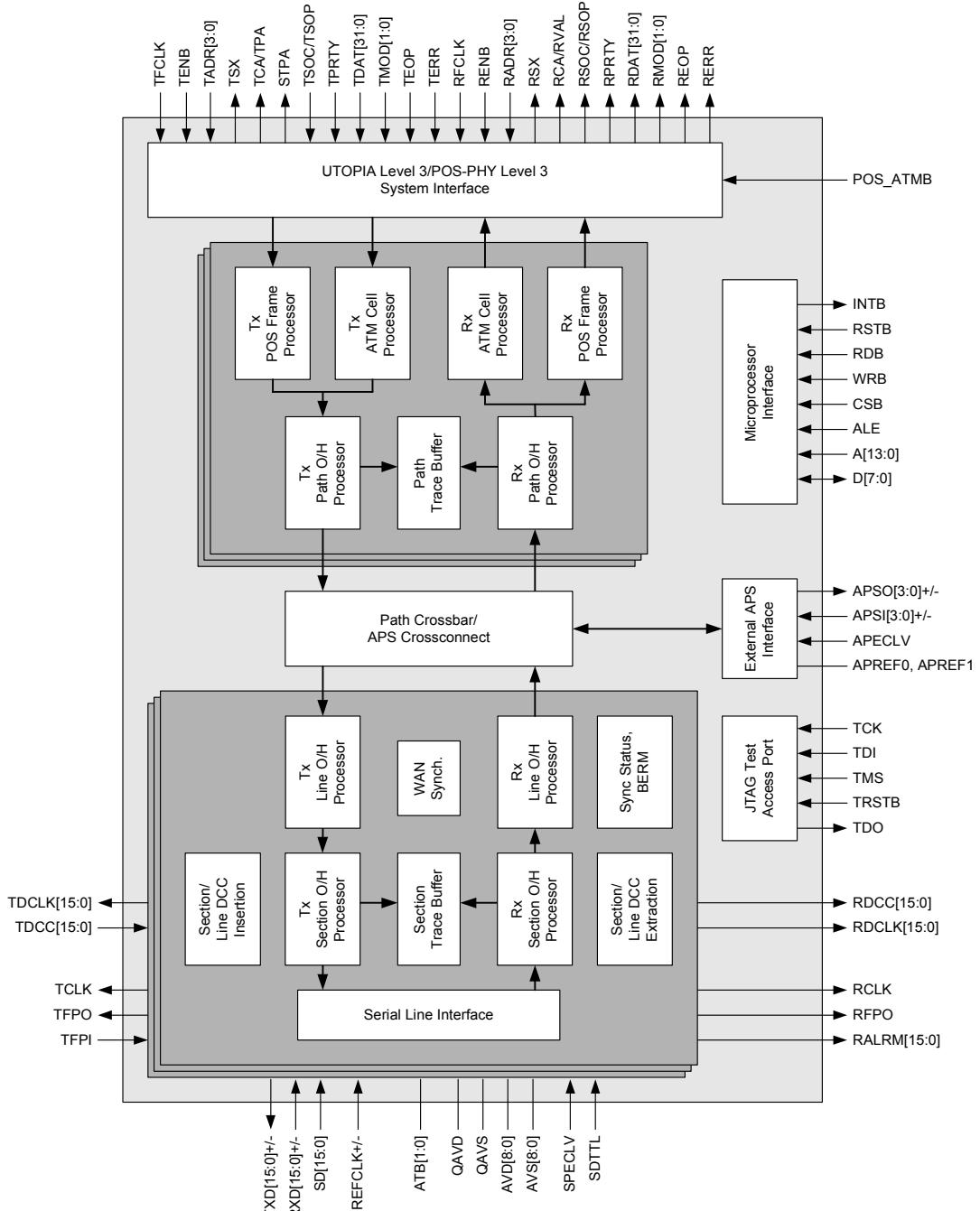

The S/UNI-16x155 may find application at either end of switch-to-switch links or switch-to-terminal links, both in public network (WAN) and private network (LAN) situations. The S/UNI-16x155 provides a comprehensive feature set. The S/UNI-16x155 performs the mapping of either ATM cells or POS frames into the SONET/SDH STS-3c/STM-1 synchronous payload envelope (SPE) and processes applicable SONET/SDH section, line and path overheads for sixteen channels.

In a typical STS-3c/STM-1 ATM application, the S/UNI-16x155 performs clock and data recovery in the receive direction and clock synthesis in the transmit direction of the line interface.

On the system side, the S/UNI-16x155 interfaces directly with ATM layer processors and switching or adaptation functions using an UTOPIA Level 3 32-bit (clocked up to 104 MHz) synchronous FIFO style interface.

An application with a UTOPIA Level 3 system side is shown in Figure 1. The initial configuration and ongoing control and monitoring of the S/UNI-16x155 are normally provided via a generic microprocessor interface.


Figure 1: Typical STS-3c/STM-1 ATM Switch Port Application


In a typical Packet over SONET/SDH application (i.e. using the PPP protocol) the S/UNI-16x155 performs clock and data recovery in the receive direction and clock synthesis in the transmit direction of the line interface. On the system side, the S/UNI-16x155 interfaces directly with a data link layer processor using a SATURN POS-PHY Level 3 32-bit (clocked up to 104 MHz) synchronous FIFO interface over which packets are transferred.

An application with a POS-PHY Level 3 interface is shown in Figure 2. The initial configuration and ongoing control and monitoring of the S/UNI-16x155 are normally provided via a generic microprocessor interface.

Figure 2: Typical STS-3c/STM-1 Packet over SONET/SDH Application

6 BLOCK DIAGRAM

7 DESCRIPTION

The PM5382 S/UNI-16x155 SATURN User Network Interface is a monolithic integrated circuit that implements SONET/SDH processing, ATM mapping and Packet over SONET/SDH mapping functions at the STS-3c/STM-1 155.52 Mbit/s rate for sixteen channels.

The S/UNI-16x155 receives SONET/SDH streams using a bit serial interface, recovers the clock and data and processes section, line, and path overhead. The S/UNI-16x155 performs framing (A1, A2), de-scrambling, detects alarm conditions, and monitors section, line, and path bit interleaved parity (B1, B2, B3), accumulating error counts at each level for performance monitoring purposes. Line and path remote error indications (M1, G1) are also accumulated. The S/UNI-16x155 interprets the received payload pointers (H1, H2) and extracts the synchronous payload envelope which carries the received ATM cell or POS frame payload.

When used to implement an ATM UNI or NNI, the S/UNI-16x155 frames to the ATM payload using cell delineation. . The ATM cell payloads are descrambled and are written to a 64 cell (4 cells per channel) FIFO buffer. The received cells are read from the FIFO using a 32-bit wide UTOPIA Level 3 (clocked up to 104 MHz) or 32-bit wide POS-PHY Level 3 (clocked up to 104 MHz) system side interface. Counts of received ATM cell headers that are erred are accumulated for performance monitoring purposes.

When used to implement packet transmission over a SONET/SDH link, the S/UNI-16x155 extracts Packet over SONET/SDH (POS) frames from the SONET/SDH synchronous payload envelope. Frames are verified for correct construction and size. The control escape characters are removed. The frame check sequence is optionally verified for correctness and the extracted packets are placed in a 4 Kbyte (256 bytes per channel) receive FIFO. The received packets are read from the FIFO through a 32-bit POS-PHY Level 3 (clocked up to 104 MHz) system side interface. Valid and FCS errored packet counts are provided for performance monitoring. The S/UNI-16x155 Packet over SONET/SDH implementation is flexible enough to support several link layer protocols, including HDLC, PPP and Frame Relay.

The S/UNI-16x155 synthesizes the transmit clock from a 77.76MHz frequency reference and performs framing pattern insertion (A1, A2), scrambling, alarm signal insertion, and creates section, line, and path bit interleaved parity codes (B1, B2, B3) as required to allow performance monitoring at the far end. Line and path remote error indications (M1, G1) are also inserted. The S/UNI-16x155 generates the payload pointer (H1, H2) and inserts the synchronous payload

envelope that carries the ATM cell or POS frame payload. The S/UNI-16x155 also supports the insertion of a large variety of errors into the transmit stream, such as framing pattern errors, bit interleaved parity errors, and illegal pointers, which are useful for system diagnostics and tester applications.

When used to implement an ATM UNI or NNI, ATM cells are written to an internal 64 cell FIFO (4 cells per channel) using a 32-bit wide UTOPIA Level 3 (clocked up to 104 MHz) or 32-bit width POS-PHY Level 3 (clocked up to 104 MHz) system side interface. Idle/unassigned cells are automatically inserted when the internal FIFO contains less than one complete cell. The S/UNI-16x155 provides generation of the header check sequence and scrambles the payload of the ATM cells. Each of these transmit ATM cell processing functions can be enabled or bypassed.

When used to implement a Packet over SONET/SDH link, the S/UNI-16x155 inserts POS frames into the SONET/SDH synchronous payload envelope. Packets to be transmitted are written into a 4 Kbyte (256 bytes per channel) FIFO through a 32-bit SATURN POS-PHY Level 3 (clocked up to 104 MHz) system side interface. POS frames are built by inserting the flags, control escape characters and the FCS fields. Either the CRC-CCITT or CRC-32 can be computed and added to the frame. Several counters are provided for performance monitoring.

No line rate clocks are required directly by the S/UNI-16x155 as it synthesizes the transmit clock and recovers the receive clock using a 77.76 MHz reference clock. The S/UNI-16x155 also provides WAN Synchronization controllers that can be used to control an external VCXO in order to fully meet Bellcore GR-253-CORE jitter, wander, holdover and stability requirements.

The S/UNI-16x155 also contains internal crossbar logic that allows the transmit streams to be switched (crossbar) and/or bridged between channels at the SONET/SDH path level. As well, the receive streams may be switched (crossbar) between channels at the SONET/SDH path level. Two S/UNI-16x155 devices may exchange SONET/SDH path streams using the four duplex 622.08 MHz serial APS links. Error detection and performance monitoring features are provided for these serial APS links.

The S/UNI-16x155 is configured, controlled and monitored via a generic 8-bit microprocessor bus interface. The S/UNI-16x155 also provides a standard 5 signal IEEE 1149.1 JTAG test port for boundary scan board test purposes.

The S/UNI-16x155 is implemented in low power, 2.5/3.3 volt CMOS technology. It has 5.0 volt TTL compatible digital inputs and outputs. High speed inputs and

PRELIMINARY
S/UNI-16X155
DATASHEET
PMC-2000495

ISSUE 2

SATURN USER NETWORK INTERFACE (16X155)

PM5382
S/UNI-16X155

outputs support 3.3 volt and 5.0 volt compatible pseudo-ECL (PECL). The S/UNI-16x155 is packaged in a 520 pin SBGA package.

8 PIN DIAGRAM

The S/UNI-16x155 is available in a 520 pin SBGA package having a body size of 40 mm by 40 mm and a ball pitch of 1.27 mm.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
A	VDD	VSS	VSS	VSS	A[3]	VSS	A[11]	ALE	D[3]	INTB	VSS	APSI[3]+	APSI[2]+	APSI[1]+	APSI[0]+	VSS
B	VSS	VDD	VSS	A[0]	A[2]	A[7]	A[10]	RDB	D[2]	D[7]	TCLK	APSI[3]-	APSI[2]-	APSI[1]-	APSI[0]-	VSS
C	VSS	VSS	VDD	VDD	A[1]	A[6]	A[9]	CSB	D[1]	D[6]	RCLK	TMS	TDO	RSTB	TRSTB	VDD
D	VSS	TDAT[30]	VDD	VDD	TDAT[31]	A[5]	A[8]	A[13]	D[0]	D[5]	RFPO	TFPO	TFPI	TCK	RALRM[0]	VDD
E	TDAT[26]	TDAT[27]	TDAT[28]	TDAT[29]	VDD	A[4]	VDDI	A[12]	WRB	D[4]	VDD	VDDI	TDI	VDDI	VDDI	VDD
F	VSS	TDAT[22]	TDAT[23]	TDAT[24]	TDAT[25]	SUNI-16x155										
G	TDAT[17]	TDAT[18]	TDAT[19]	TDAT[20]	TDAT[21]											
H	TDAT[13]	TDAT[14]	TDAT[15]	TDAT[16]	VDDI											
J	TDAT[8]	TDAT[9]	TDAT[10]	TDAT[11]	TDAT[12]											
K	TDAT[3]	TDAT[4]	TDAT[5]	TDAT[6]	TDAT[7]											
L	VSS	TDAT[0]	TDAT[1]	TDAT[2]	VDD											
M	TEOP	TSOC/TSOP	TSX	TERR	TPRTY											
N	TMOD[1]	TMOD[0]	TCA/TPA	STPA	VDDI											
P	TADR[0]	TADR[1]	TADR[2]	TADR[3]	TENB											
R	RDAT[28]	RDAT[29]	RDAT[30]	RDAT[31]	TFCLK											
T	VSS	VSS	VDD	VDD	VDD											
U	RDAT[27]	RDAT[26]	RDAT[25]	RDAT[24]	RDAT[23]											

BOTTOM VIEW

(TOP LEFT)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

RALRM [1]	RALRM [6]	RALRM [11]	TXD [12] -	VSS	TXD [13] +	RXD [13] -	TXD [14] +	RXD [14] -	VSS	TXD [15] -	VSS	VSS	VSS	VDD	A	
RALRM [2]	RALRM [7]	RALRM [12]	TXD [12] +	RXD [12] -	TXD [13] -	RXD [13] +	TXD [14] -	RXD [14] +	TXD [15] +	RXD [15] -	TXD [15] +	VSS	VDD	VSS	B	
RALRM [3]	RALRM [8]	RALRM [13]	SD [12]	RXD [12] +	NC	SD [13]	NC	SD [14]	NC	SD [15]	VDD	VDD	VSS	VSS	C	
RALRM [4]	RALRM [9]	RALRM [14]	RALRM [15]	NC	VDD	VDD	TXD [0] +	VSS	D							
RALRM [5]	RALRM [10]	VDDI	NC	VDD	NC	VDDI	NC	VDDI	NC	VDD	NC	NC	TXD [0] -	RXD [0] -	E	
SUNI-16x155												NC	NC	NC	TXD [0] +	VSS
BOTTOM VIEW												VDDI	NC	SD [0]	TXD [1] +	TXD [1] -
(TOP RIGHT)												NC	NC	NC	RXD [1] -	RXD [1] +
												SD [1]	NC	NC	TXD [2] +	TXD [2] -
												VDDI	NC	SD [2]	RXD [2] -	RXD [2] +
												VDD	NC	TXD [3] -	TXD [3] +	VSS
												VDDI	TDCLK [15]	SD [3]	RXD [3] +	RXD [3] -
												NC	RDCLK [15]	RDCC [15]	AVD [0]	AVS [0]
												ATB [0]	AVS [1]	AVD [1]	AVS [2]	AVD [2]
												ATB [1]	AVS [3]	AVS [4]	AVD [3]	AVD [4]
												VDD	VDD	VDD	VSS	VSS
												QAVD	AVD [6]	AVS [6]	AVS [5]	AVD [5]

V	RDAT [22]	RDAT [21]	RDAT [20]	RDAT [19]	RDAT [18]													
	RDAT [17]	RDAT [16]	RDAT [15]	RDAT [14]	VDDI													
Y	RDAT [13]	RDAT [12]	RDAT [11]	RDAT [10]	RDAT [9]													
	VSS	RDAT [8]	RDAT [7]	RDAT [6]	VDD													
AA	RDAT [5]	RDAT [4]	RDAT [3]	RDAT [2]	RDAT [1]													
	RDAT [0]	RPRTY	REOP	RSOC/ RSOP	RERR													
AB	RSX	RMOD [1]	RMOD [0]	RCA/ RVAL	VDDI													
	RENB	RADR [3]	RADR [2]	RADR [1]	RADR [0]													
AC	VSS	RFCLK	RDCC [0]	TDCLK [0]	TDCC [1]													
	RDCLK [0]	TDCC [0]	TDCLK [1]	RDCC [1]	VDD	TDCC [2]	RDCC [4]	TDCLK [5]	TDCLK [6]	RDCC [7]	VDD	TDCLK [10]	VDDI	VDDI	VDDI	VDD	VDD	
AD	VSS	RDCLK [1]	VDD	VDD	RDCC [2]	TDCLK [3]	TDCLK [4]	RDCC [5]	TDCC [7]	RDCLK [8]	RDCLK [9]	TDCC [10]	RDCLK [10]	APREF1	APREF0	VDD	VDD	
	VSS	VSS	VDD	VDD	TDCLK [2]	RDCC [3]	TDCC [4]	RDCC [6]	TDCLK [7]	TDCLK [8]	RDCC [9]	POS_ATMB	SPECLV	APECLV	SDTTL	VDD	VDD	
AE	VSS	VSS	VDD	VDD	TDCLK [2]	RDCC [3]	TDCC [4]	RDCC [6]	TDCLK [7]	TDCLK [8]	RDCC [9]	APSO [3] +	APSO [2] +	APSO [1] +	APSO [0] +	VSS	VSS	
	VSS	VSS	VSS	VSS	RDCLK [2]	TDCC [3]	RDCLK [4]	TDCC [5]	RDCLK [6]	RDCLK [7]	TDCC [8]	TDCC [9]	APSO [3] -	APSO [2] -	APSO [1] -	APSO [0] -	VSS	VSS
AF	RDCLK [0]	TDCC [0]	TDCLK [1]	RDCC [1]	VDD	TDCC [2]	RDCC [4]	TDCLK [5]	TDCLK [6]	RDCC [7]	VDD	TDCLK [10]	VDDI	VDDI	VDDI	VDD	VDD	
	RDCLK [1]	TDCC [1]	TDCLK [2]	RDCC [2]	TDCLK [3]	TDCLK [4]	RDCC [5]	TDCC [7]	RDCLK [8]	RDCLK [9]	TDCC [10]	RDCLK [10]	APREF1	APREF0	VDD	VDD	VDD	
AG	VSS	VSS	VDD	VDD	TDCLK [2]	RDCC [3]	TDCC [4]	RDCC [6]	TDCLK [7]	TDCLK [8]	RDCC [9]	POS_ATMB	SPECLV	APECLV	SDTTL	VDD	VDD	
	VSS	VSS	VDD	VDD	TDCLK [2]	RDCC [3]	TDCC [4]	RDCC [6]	TDCLK [7]	TDCLK [8]	RDCC [9]	APSO [3] +	APSO [2] +	APSO [1] +	APSO [0] +	VSS	VSS	
AH	VSS	VSS	VDD	VDD	TDCLK [2]	RDCC [3]	TDCC [4]	RDCC [6]	TDCLK [7]	TDCLK [8]	RDCC [9]	APSO [3] -	APSO [2] -	APSO [1] -	APSO [0] -	VSS	VSS	
	VSS	VSS	VDD	VDD	TDCLK [2]	RDCC [3]	TDCC [4]	RDCC [6]	TDCLK [7]	TDCLK [8]	RDCC [9]	APSO [3] +	APSO [2] +	APSO [1] +	APSO [0] +	VSS	VSS	
AJ	VSS	VSS	VDD	VDD	TDCLK [2]	RDCC [3]	TDCC [4]	RDCC [6]	TDCLK [7]	TDCLK [8]	RDCC [9]	POS_ATMB	SPECLV	APECLV	SDTTL	VDD	VDD	
	VSS	VSS	VDD	VDD	TDCLK [2]	RDCC [3]	TDCC [4]	RDCC [6]	TDCLK [7]	TDCLK [8]	RDCC [9]	APSO [3] +	APSO [2] +	APSO [1] +	APSO [0] +	VSS	VSS	
AK	VSS	VSS	VSS	VSS	RDCLK [2]	TDCC [3]	RDCLK [4]	TDCC [5]	RDCLK [6]	RDCLK [7]	TDCC [8]	TDCC [9]	APSO [3] -	APSO [2] -	APSO [1] -	APSO [0] -	VSS	VSS
	VSS	VSS	VSS	VSS	RDCLK [2]	TDCC [3]	RDCLK [4]	TDCC [5]	RDCLK [6]	RDCLK [7]	TDCC [8]	TDCC [9]	APSO [3] -	APSO [2] -	APSO [1] -	APSO [0] -	VSS	VSS
AL	VDD	VSS	VSS	VSS	RDCLK [3]	VSS	RDCLK [5]	TDCC [6]	RDCC [8]	TDCLK [9]	VSS	APSO [3] -	APSO [2] -	APSO [1] -	APSO [0] -	VSS	VSS	
	VDD	VSS	VSS	VSS	RDCLK [3]	VSS	RDCLK [5]	TDCC [6]	RDCC [8]	TDCLK [9]	VSS	APSO [3] -	APSO [2] -	APSO [1] -	APSO [0] -	VSS	VSS	

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SUNI-16x155

BOTTOM VIEW

(BOTTOM LEFT)

SUNI-16x155

BOTTOM VIEW

(BOTTOM RIGHT)

AVS [7]	AVD [7]	QAVS	REFCLK-	REFCLK+	V
NC	TDCC [14]	TDCC [15]	AVS [8]	AVD [8]	W
NC	TDCLK [14]	SD [4]	TXD [4] +	TXD [4] -	Y
VDD	NC	RXD [4] -	RXD [4] +	VSS	AA
VDDI	NC	NC	TXD [5] -	TXD [5] +	AB
NC	NC	SD [5]	RXD [5] +	RXD [5] -	AC
NC	NC	NC	TXD [6] -	TXD [6] +	AD
VDDI	NC	SD [6]	RXD [6] +	RXD [6] -	AE
VDDI	NC	NC	TXD [7] +	VSS	AF

TDCC [11]	TDCC [13]	VDDI	VDDI	VDD	NC	VDDI	NC	NC	NC	VDD	NC	SD [7]	RXD [7] -	TXD [7] -	AG
RDCC [11]	RDCC [12]	RDCLK [14]	RDCC [14]	NC	NC	NC	NC	NC	NC	NC	VDD	VDD	RXD [7] +	VSS	AH
RDCLK [11]	TDCLK [12]	RDCLK [13]	SD [11]	TXD [11] +	SD [10]	NC	SD [9]	NC	SD [8]	NC	VDD	VDD	VSS	VSS	AJ
TDCLK [11]	RDCLK [12]	RDCC [13]	RXD [11] +	TXD [11] -	RXD [10] -	TXD [10] +	RXD [9] -	TXD [9] +	RXD [8] +	TXD [8] -	TXD [8] +	VSS	VDD	VSS	AK
RDCC [10]	RDCC [12]	TDCLK [13]	RXD [11] -	VSS	RXD [10] +	TXD [10] -	RXD [9] +	TXD [9] -	VSS	RXD [8] -	VSS	VSS	VSS	VDD	AL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

9 PIN DESCRIPTION

9.1 Serial Line Side Interface Signals

Pin Name	Type	Pin No.	Function
SPECLV	Input	AJ19	<p>The serial line PECL signal voltage select (SPECLV) selects between 3.3V PECL signaling and 5V PECL signaling for the serial line interface PECL inputs (RXD[15:0]+/- and SD[15:0]). When SPECLV is low, the PECL inputs expect a 5V PECL signal. When SPECLV is high, the PECL inputs expect a 3.3V PECL signal.</p> <p>Please refer to the Operation section for a discussion of PECL interfacing issues.</p>
SDTTL	Input	AJ17	<p>The signal detect voltage select (SDTTL) selects between PECL signaling and TTL signal for the signal detector inputs (SD[15:0]). When SDTTL is low, the signal detect inputs expect PECL signal levels. When SDTTL is high, the signal detect inputs expect TTL signal level.</p> <p>Please refer to the Operation section for a discussion of PECL interfacing issues.</p>

Pin Name	Type	Pin No.	Function
RXD[0]+	Differential	F2	The receive differential data PECL inputs (RXD[15:0]+/-) contain the NRZ bit serial receive stream for each channel. The receive clock is recovered from the RXD+/- bit stream.
RXD[0]-	PECL	E1	
RXD[1]+	Input	H1	
RXD[1]-		H2	
RXD[2]+		K1	
RXD[2]-		K2	Each differential input is terminated with an internal 100 ohm resistor. Please refer to the Operation section for a discussion of PECL interfacing issues.
RXD[3]+		M2	
RXD[3]-		M1	
RXD[4]+		AA2	
RXD[4]-		AA3	
RXD[5]+		AC2	
RXD[5]-		AC1	
RXD[6]+		AE2	
RXD[6]-		AE1	
RXD[7]+		AH2	
RXD[7]-		AG2	
RXD[8]+		AK6	
RXD[8]-		AL5	
RXD[9]+		AL8	
RXD[9]-		AK8	
RXD[10]+		AL10	
RXD[10]-		AK10	
RXD[11]+		AK12	
RXD[11]-		AL12	
RXD[12]+		C11	
RXD[12]-		B11	
RXD[13]+		B9	
RXD[13]-		A9	
RXD[14]+		B7	
RXD[14]-		A7	
RXD[15]+		B4	
RXD[15]-		B5	

Pin Name	Type	Pin No.	Function
SD[0]	PECL Input	G3	The receive signal detect PECL inputs (SD[15:0]) indicates the presence of valid receive signal power from the Optical Physical Medium Dependent Device for each channel.
SD[1]		J5	
SD[2]		K3	
SD[3]		M3	
SD[4]		Y3	
SD[5]		AC3	When SDTTL is low, a PECL logic high indicates the presence of valid data. A PECL logic low indicates a loss of signal.
SD[6]		AE3	
SD[7]		AG3	
SD[8]		AJ6	When SDTTL is high, a TTL logic high indicates the presence of valid data. A TTL logic low indicates a loss of signal.
SD[9]		AJ8	
SD[10]		AJ10	
SD[11]		AJ12	Please refer to the Operation section for a discussion of PECL interfacing issues
SD[12]		C12	
SD[13]		C9	
SD[14]		C7	
SD[15]		C5	

Pin Name	Type	Pin No.	Function
TXD[0]+	Differential	D2	The transmit differential data PECL outputs
TXD[0]-	Output	E2	(TXD[15:0]+/-) contain the 155.52 Mbit/s transmit
TXD[1]+		G2	stream. The TXD+/- outputs are driven using the
TXD[1]-		G1	synthesized clock from the CSU-622.
TXD[2]+		J2	
TXD[2]-		J1	The TXD[15:0]+/- are differential TLL outputs which
TXD[3]+		L2	are converted to PECL levels using external
TXD[3]-		L3	passitive networks. Please refer to the Operation
TXD[4]+		Y2	section for a discussion of PECL interfacing issues.
TXD[4]-		Y1	
TXD[5]+		AB1	
TXD[5]-		AB2	
TXD[6]+		AD1	
TXD[6]-		AD2	
TXD[7]+		AF2	
TXD[7]-		AG1	
TXD[8]+		AK4	
TXD[8]-		AK5	
TXD[9]+		AK7	
TXD[9]-		AL7	
TXD[10]+		AK9	
TXD[10]-		AL9	
TXD[11]+		AJ11	
TXD[11]-		AK11	
TXD[12]+		B12	
TXD[12]-		A12	
TXD[13]+		A10	
TXD[13]-		B10	
TXD[14]+		A8	
TXD[14]-		B8	
TXD[15]+		B6	
TXD[15]-		A5	

Pin Name	Type	Pin No.	Function
REFCLK+ REFCLK-	Differential PECL Input	V1 V2	<p>The differential reference clock inputs (REFCLK+/-) provides a jitter-free 77.76 MHz reference clock for both the clock recovery and the clock synthesis circuits.</p> <p>When the WAN Synchronization controller is used, REFCLK+/- is supplied using a VCXO. In that application, the serial transmit direction can be externally looped timed to the line receiver in order to meet wander transfer and holdover requirements.</p> <p>Please refer to the Operation section for a discussion of PECL interfacing issues and reference clocks.</p>

9.2 Serial APS Interface Signals

Pin Name	Type	Pin No.	Function
APECLV	Input	AJ18	<p>The APS PECL signal voltage select (APECLV) selects between 3.3V PECL signaling and 5V PECL signaling for the APS (APS[3:0]+/-) and REFCLK+/- PECL inputs. When APECLV is low, the APS[3:0]+/- and REFCLK+/- PECL inputs expect a 5V PECL signal. When APECLV is high, these PECL inputs expect a 3.3V PECL signal.</p> <p>Please refer to the Operation section for a discussion of PECL interfacing issues.</p>
APS[0]+ APS[0]- APS[1]+ APS[1]- APS[2]+ APS[2]- APS[3]+ APS[3]-	Differential PECL Input	A17 B17 A18 B18 A19 B19 A20 B20	<p>The receive APS differential data PECL inputs (APS[3:0]+/-) contain the NRZ bit serial APS stream for each channel. The receive clock is recovered from the APS+/- bit stream.</p> <p>Please refer to the Operation section for a discussion of PECL interfacing issues and APS functionality.</p>
APSO[0]+ APSO[0]- APSO[1]+ APSO[1]- APSO[2]+ APSO[2]- APSO[3]+ APSO[3]-	Differential PECL Output	AK17 AL17 AK18 AL18 AK19 AL19 AK20 AL20	<p>The transmit APS differential data PECL outputs (APSO[3:0]+/-) contain the 622.08 Mbit/s transmit APS stream. The APSO+/- outputs are driven using the synthesized clock from the clock synthesis unit.</p> <p>Please refer to the Operation section for a discussion of PECL interfacing issues and APS functionality.</p>

9.3 Clocks and Alarms Signals

Pin Name	Type	Pin No.	Function
RALRM[0] RALRM[1] RALRM[2] RALRM[3] RALRM[4] RALRM[5] RALRM[6] RALRM[7] RALRM[8] RALRM[9] RALRM[10] RALRM[11] RALRM[12] RALRM[13] RALRM[14] RALRM[15]	Output	D17 A15 B15 C15 D15 E15 A14 B14 C14 D14 E14 A13 B13 C13 D13 D12	The receive alarm (RALRM[15:0]) outputs indicates the state of the receive framing for each channel. RALRM is low if no receive alarms are active. RALRM is optionally high if line AIS (LAIS), path AIS (PAIS), line RDI (LRDI), path RDI (PRDI), enhanced path RDI (PERDI), loss of signal (LOS), loss of frame (LOF), out of frame (OOF), loss of pointer (LOP), loss of pointer concatenation (LOPC/AISC), loss of cell delineation (LCD), signal fail BER (SFBER), signal degrade BER (SDBER), path trace identification mismatch (TIM) or path signal label mismatch (PSLM) is detected . RALRM[15:0] are asynchronous outputs with a minimum period of one RCLK clock.
RCLK	Output	C21	The receive clock (RCLK) provides a timing reference for the S/UNI-16x155 receive function outputs. RCLK is a 19.44 MHz, 50% duty cycle clock.
RFPO	Output	D21	The receive frame pulse output (RFPO), when the framing alignment has been found (the OOF register bit is low), is an 8 kHz signal derived from the receive clock RCLK. RFPO pulses high for one RCLK cycle every 2430 RCLK cycles. RFPO is updated on the rising edge of RCLK.
TCLK	Output	B21	The transmit clock (TCLK) provides timing for the S/UNI-16x155 transmit function operation for a channel. TCLK is a 19.44 MHz, 50% duty cycle clock.
TFPO	Output	D20	The active-high framing position output (TFPO) signal is an 8 kHz signal derived from the transmit clock TCLK. TFPO pulses high for one TCLK cycle every 2430 TCLK cycles. TFPO is updated on the rising edge of TCLK.

Pin Name	Type	Pin No.	Function
TFPI	Input	D19	<p>The active high framing position (TFPI) signal is an 8 kHz timing marker for the transmitter. TFPI is used to align the SONET/SDH transport frame generated by the S/UNI-16x155 device to a system reference. TFPI should be brought high for a single TCLK period every 2430 TCLK cycles or a multiple thereof. TFPI must be tied low if such synchronization is not required.</p> <p>TFPI is sampled on the rising edge of TCLK.</p>

9.4 Section and Line Status DCC Signals

Pin Name	Type	Pin No.	Function
RDCLK[0]	Output	AG31	The receive DCC clocks (RDCLK[15:0]) are the clocks used to update the associated RDCC outputs.
RDCLK[1]		AH30	
RDCLK[2]		AK28	
RDCLK[3]		AL27	
RDCLK[4]		AK26	
RDCLK[5]		AL25	
RDCLK[6]		AK24	
RDCLK[7]		AK23	
RDCLK[8]		AH22	
RDCLK[9]		AH21	
RDCLK[10]		AH19	
RDCLK[11]		AJ15	
RDCLK[12]		AK14	
RDCLK[13]		AJ13	
RDCLK[14]		AH13	
RDCLK[15]		N4	
RDCC[0]	Output	AF29	The receive DCC (RDCC[15:0]) signals contain the serial data communication channels extracted from the incoming stream of each channel.
RDCC[1]		AG28	
RDCC[2]		AH27	
RDCC[3]		AJ26	
RDCC[4]		AG25	
RDCC[5]		AH24	
RDCC[6]		AJ24	
RDCC[7]		AG22	
RDCC[8]		AL23	
RDCC[9]		AJ21	
RDCC[10]		AL15	
RDCC[11]		AH15	
RDCC[12]		AL14	
RDCC[13]		AK13	
RDCC[14]		AH12	
RDCC[15]		N3	

Pin Name	Type	Pin No.	Function
TDCLK[0]	Output	AF28	The transmit DCC clocks (TDCLK[15:0]) are the clocks used to sample the associated TDCC inputs.
TDCLK[1]		AG29	
TDCLK[2]		AJ27	
TDCLK[3]		AH26	
TDCLK[4]		AH25	
TDCLK[5]		AG24	
TDCLK[6]		AG23	
TDCLK[7]		AJ23	
TDCLK[8]		AJ22	
TDCLK[9]		AL22	
TDCLK[10]		AG20	
TDCLK[11]		AK15	
TDCLK[12]		AJ14	
TDCLK[13]		AL13	
TDCLK[14]		Y4	
TDCLK[15]		M4	
TDCC[0]	Input	AG30	The transmit DCC (TDCC[15:0]) signals contain the serial data communication channels of each channel. When not used, these inputs should be connected to logic zero.
TDCC[1]		AF27	
TDCC[2]		AG26	
TDCC[3]		AK27	
TDCC[4]		AJ25	
TDCC[5]		AK25	
TDCC[6]		AL24	
TDCC[7]		AH23	
TDCC[8]		AJ22	
TDCC[9]		AK21	
TDCC[10]		AH20	
TDCC[11]		AG15	
TDCC[12]		AH14	
TDCC[13]		AG14	
TDCC[14]		W4	
TDCC[15]		W3	

9.5 Transmit ATM (UTOPIA) and Packet over SONET/SDH (POS) System Interface

Pin Name	Type	Pin No.	Function
POS_ATMB	Input	AJ20	<p>The physical layer select (POS_ATMB) pin selects between the ATM and Packet over SONET/SDH modes of operation.</p> <p>When tied low, the device implements an UTOPIA Level 3 interface. When tied high, the device implements a POS-PHY Level 3 interface.</p> <p>This pin affects SONET/SDH mapping as well as the pin definitions of the system interface bus.</p>
TFCLK	Input	R27	<p>The UTOPIA transmit FIFO write clock (TFCLK) is used to write ATM cells to the cell transmit FIFO.</p> <p>In UTOPIA operation, TFCLK must cycle at a 104 MHz to 60 MHz instantaneous rate, and must be a free running clock (cannot be gapped).</p>
			<p>The POS-PHY transmit FIFO write clock (TFCLK) is used to write packet data into the packet FIFO.</p> <p>In POS-PHY operation, TFCLK must cycle at a 104 MHz to 60 MHz instantaneous rate, and must be a free running clock (cannot be gapped).</p>

Pin Name	Type	Pin No.	Function
TDAT[0]	Input	L30	The UTOPIA transmit cell data (TDAT[31:0]) bus carries the ATM cell octets that are written to the transmit FIFO.
TDAT[1]		L29	In UTOPIA operation, the TDAT[31:0] bus is considered valid only when TENB is simultaneously asserted.
TDAT[2]		L28	TDAT[31:0] is sampled on the rising edge of TFCLK.
TDAT[3]		K31	The POS-PHY transmit packet data (TDAT[31:0]) bus carries the POS packet octets that are written to the transmit FIFO.
TDAT[4]		K30	In POS-PHY operation, the packet data sample on TDAT[31:0] is considered valid when TENB is sampled low. The value sampled on TDAT[7:0] is also used to select a PHY channel when TENB and TSX are sampled high. TDAT[31] is the first bit transmitted and TDAT[0] is the last bit transmitted.
TDAT[5]		K29	TDAT[31:0] is sampled on the rising edge of TFCLK.
TDAT[6]		K28	
TDAT[7]		K27	
TDAT[8]		J31	
TDAT[9]		J30	
TDAT[10]		J29	
TDAT[11]		J28	
TDAT[12]		J27	
TDAT[13]		H31	
TDAT[14]		H30	
TDAT[15]		H29	
TDAT[16]		H28	
TDAT[17]		G31	
TDAT[18]		G30	
TDAT[19]		G29	
TDAT[20]		G28	
TDAT[21]		G27	
TDAT[22]		F30	
TDAT[23]		F29	
TDAT[24]		F28	
TDAT[25]		F27	
TDAT[26]		E31	
TDAT[27]		E30	
TDAT[28]		E29	
TDAT[29]		E28	
TDAT[30]		D30	
TDAT[31]		D27	

Pin Name	Type	Pin No.	Function
TPRTY	Input	M27	<p>The UTOPIA transmit bus parity (TPRTY) signal indicates the parity on the TDAT[31:0] bus. A parity error is indicated by a status bit and a maskable interrupt. Cells with parity errors are inserted in the transmit stream, so the TPRTY input may be unused.</p> <p>TPRTY is considered valid only when TENB is simultaneously asserted. TPRTY is sampled on the rising edge of TFCLK.</p>
			<p>The POS-PHY transmit bus parity (TPRTY) signal indicates the parity on the TDAT[31:0] bus. A parity error is indicated by a status bit and a maskable interrupt. Packets with parity errors are inserted in the transmit stream, so the TPRTY input may be unused.</p> <p>TPRTY is considered valid only when TENB is simultaneously asserted. TPRTY is sampled on the rising edge of TFCLK.</p>

Pin Name	Type	Pin No.	Function
TENB	Input	P27	<p>The UTOPIA transmit write enable (TENB) signal is an active low input which is used to initiate writes to the transmit FIFO's.</p> <p>When TENB is sampled high, the data sampled on TDAT[31:0], TRPTY and TSOC is invalid. When TENB is sampled low, the information sampled on TDAT[31:0], TPRTY and TSOC is valid and is written into the FIFO. A high to low transition on TENB is needed in conjunction with TADR[3:0] to select the transmit PHY.</p> <p>TENB is sampled on the rising edge of TFCLK.</p>
			<p>The POS-PHY transmit write enable (TENB) signal is an active low input which is used to initiate writes to the transmit FIFO's.</p> <p>When TENB is sampled high, the information sampled on TDAT[31:0], TPRTY, TSOP, TEOP, TMOD[1:0] and TERR is invalid. When TENB is sampled low, the information sampled on TDAT[31:0], TPRTY, TSOP, TEOP, TMOD[1:0] and TERR is valid and is written into the FIFO. TSX is ignored when TENB is low.</p> <p>TENB is sampled on the rising edge of TFCLK.</p>

Pin Name	Type	Pin No.	Function
TSOC	Input	M30	<p>The UTOPIA transmit start of cell (TSOC) signal marks the start of a cell structure on the TDAT[31:0] bus.</p> <p>When TSOC is sampled high, the first word of the ATM cell structure is sampled on the TDAT[31:0] bus. TSOC should be present for each cell structure.</p> <p>TSOC is considered valid only when TENB is simultaneously asserted. TSOC is sampled on the rising edge of TFCLK.</p>
TSOP			<p>The POS-PHY transmit start of packet (TSOP) signal. indicates the start of a packet on the TDAT[31:0] bus.</p> <p>When TSOP is sampled high, the first word of the packet is sampled on TDAT[31:0] bus. TSOP is required to be present at all instances for proper operation.</p> <p>TSOP is considered valid only when TENB is simultaneously asserted. TSOP is sampled on the rising edge of TFCLK.</p>
TEOP	Input	M31	<p>The POS-PHY transmit end of packet (TEOP) marks the end of packet on the TDAT[31:0] bus when configured for packet data.</p> <p>TEOP sampled high indicates the last word of the packet is sampled on the TDAT[31:0] bus. The TMOD[1:0] bus indicates how many valid bytes of packet data are in the last word. It is legal to set TSOC_TSOP high at the same time as TEOP is high in order to support one, two, three and four byte packets.</p> <p>TEOP is only valid when TENB is simultaneously asserted. TEOP is only used for POS-PHY operation and is sampled on the rising edge of TFCLK.</p>

Pin Name	Type	Pin No.	Function								
TERR	Input	M28	<p>The POS-PHY transmit error (TERR) is used to indicate that the current packet must be aborted. Packets marked with TERR will be appended the HDLC abort sequence (0x7D-0x7E) when transmitted.</p> <p>TERR sampled high when TEOP is sampled high marks the current packet to be aborted. TERR is only considered valid when TENB and TEOP are simultaneously asserted.</p> <p>TERR is only used for POS-PHY operation and is sampled on the rising edge of TFCLK.</p>								
TMOD[0] TMOD[1]	Input	N30 N31	<p>The POS-PHY transmit word modulo (TMOD) signal indicates the number of valid bytes of data on TDAT[31:0] during POS-PHY operation.</p> <p>The value sampled on the TMOD[1:0] bus when TEOP is sampled high specifies the number of valid byte of packet data on TDAT[31:0].</p> <table> <tbody> <tr> <td>TMOD[1:0] = "00"</td> <td>TDAT[31:0] valid</td> </tr> <tr> <td>TMOD[1:0] = "01"</td> <td>TDAT[31:8] valid</td> </tr> <tr> <td>TMOD[1:0] = "10"</td> <td>TDAT[31:16] valid</td> </tr> <tr> <td>TMOD[1:0] = "11"</td> <td>TDAT[31:24] valid</td> </tr> </tbody> </table> <p>TMOD[1:0] is considered valid only when TENB and TEOP are simultaneously asserted.</p> <p>TMOD is only used for POS-PHY operation and is ignored for channels carrying ATM traffic when TEOP is high.</p> <p>TMOD is sampled on the rising edge of TFCLK.</p>	TMOD[1:0] = "00"	TDAT[31:0] valid	TMOD[1:0] = "01"	TDAT[31:8] valid	TMOD[1:0] = "10"	TDAT[31:16] valid	TMOD[1:0] = "11"	TDAT[31:24] valid
TMOD[1:0] = "00"	TDAT[31:0] valid										
TMOD[1:0] = "01"	TDAT[31:8] valid										
TMOD[1:0] = "10"	TDAT[31:16] valid										
TMOD[1:0] = "11"	TDAT[31:24] valid										

Pin Name	Type	Pin No.	Function
TSX	Input	M29	<p>The POS-PHY transmit start of transfer (TSX) indicates when the in-band port address is present on the TDAT[31:0] bus during POS-PHY Level 3 operation.</p> <p>When TSX and TENB are sampled high, the value sampled on TDAT[7:0] is the address of the transmit PHY channel to be selected. Subsequent data transfers on the TDAT[31:0] bus will fill the channel FIFO buffer specified by this in-band address.</p> <p>The value sampled on TSX is considered valid only when TENB is sampled high. TSX is only used for POS-PHY operation. TSX must be tied low in UTOPIA Level 3 operation.</p> <p>TSX is sampled on the rising edge of TFCLK.</p>
TADR[0] TADR[1] TADR[2] TADR[3]	Input	P31 P30 P29 P28	<p>The UTOPIA transmit port address select (TADR[3:0]) is used to select the channel whose FIFO fill status is to be polled or the channel for which a UTOPIA cell transfer is desired.</p> <p>When TENB transitions from high to low, the value sampled on TADR[3:0] selects the channel FIFO which the ATM cell is written to. During all other conditions, the fill status of the channel FIFO with the address sampled on TADR[3:0] is reported on TCA on the following clock cycle.</p> <p>TADR[3:0] is sampled on the rising edge of TFCLK.</p> <p>The POS-PHY transmit port address select (TADR[3:0]) is used to select the channel whose FIFO fill status is to be polled.</p> <p>The address sampled on TADR[3:0] specifies the channel FIFO being polled. The PTPA output is updated on the following clock cycle with the channel's fill level based on the programmable thresholds.</p> <p>TADR[3:0] is sampled on the rising edge of TFCLK.</p>

Pin Name	Type	Pin No.	Function
TCA	Output	N29	<p>The UTOPIA transmit cell available (TCA) signal provides status indication of when cell space is available in the transmit FIFO.</p> <p>TCA is used to poll the channel FIFOs to determine the number of free ATM cell buffers that are in the FIFO. The address sampled on TADR[3:0] will cause TCA to be updated with the channel information on the following clock cycle.</p> <p>When TCA is high, the channel FIFO can accept at least one more ATM cell. When TCA is low, the channel FIFO fill level exceeds the threshold specified by the FIFODP[1:0] register. Note that regardless of the threshold, a channel FIFO can store 16 ATM cells.</p> <p>TCA is updated on the rising edge of TFCLK.</p>
PTPA			<p>The POS-PHY polled transmit packet available (PTPA) signal provides status indication of when cell space is available in the transmit FIFO. The TADR[3:0] address is used to determine which channel to report on PTPA.</p> <p>When PTPA transitions high, it indicates that the transmit FIFO has enough room to store a configurable number of data bytes. When PTPA transitions low, it indicates that the transmit FIFO is either full or near full. These thresholds are specified in the TUL3 registers.</p> <p>PTPA is updated on the rising edge of TFCLK.</p>

Pin Name	Type	Pin No.	Function
STPA	Output	N28	<p>The POS-PHY selected transmit packet available (STPA) signal provides status indication of when cell space is available in the transmit FIFO. The channel selected using TSX is reported on STPA. When STPA transitions high, it indicates that the transmit FIFO has enough room to store a configurable number of data bytes. When STPA transitions low, it indicates that the transmit FIFO is either full or near full. These thresholds are specified in the TUL3 registers.</p> <p>STPA is updated on the rising edge of TFCLK.</p>

9.6 Receive ATM (UTOPIA) and Packet over SONET/SDH (POS) System Interface

Pin Name	Type	Pin No.	Function
RFCLK	Input	AF30	The UTOPIA receive FIFO read clock (RFCLK) is used to read ATM cells from the cell receive FIFO. In UTOPIA operation, RFCLK must cycle at a 104 MHz to 60 MHz instantaneous rate, and must be a free running clock (cannot be gapped).
			The POS-PHY receive FIFO read clock (RFCLK) is used to read packet data from the packet FIFO. In POS-PHY operation, RFCLK must cycle at a 104 MHz to 60 MHz instantaneous rate, and must be a free running clock (cannot be gapped).
RPRTY	Output	AC30	The UTOPIA receive parity (RPRTY) signal indicates the parity of the RDAT[31:0] bus. Odd or even parity may be selected using software control. In UTOPIA operation, the value on RPRTY is updated on the following clock cycle when RENB is sampled low. RPRTY is updated on the rising edge of RFCLK.
			The POS-PHY receive parity (RPRTY) indicates the parity of the RDAT[31:0] bus. Odd or even parity may be selected using software control. In POS-PHY operation, the value on RPRTY is updated on the next clock cycle when RENB is sampled low. RPRTY is updated on the rising edge of RFCLK.

Pin Name	Type	Pin No.	Function
RDAT[0]	Output	AC31	The UTOPIA receive cell data (RDAT[31:0]) bus carries the ATM cell octets that are read from the receive FIFO.
RDAT[1]		AB27	
RDAT[2]		AB28	
RDAT[3]		AB29	
RDAT[4]		AB30	In UTOPIA operation, RDAT[31:0] is updated on the following clock cycle after RENB is sampled low.
RDAT[5]		AB31	
RDAT[6]		AA28	RDAT[31:0] is updated on the rising edge of RFCLK.
RDAT[7]		AA29	
RDAT[8]		AA30	
RDAT[9]		Y27	
RDAT[10]		Y28	
RDAT[11]		Y29	
RDAT[12]		Y30	
RDAT[13]		Y31	
RDAT[14]		W28	
RDAT[15]		W29	
RDAT[16]		W30	
RDAT[17]		W31	
RDAT[18]		V27	
RDAT[19]		V28	RDAT[31:0] is updated on the rising edge of RFCLK.
RDAT[20]		V29	
RDAT[21]		V30	
RDAT[22]		V31	
RDAT[23]		U27	
RDAT[24]		U28	
RDAT[25]		U29	
RDAT[26]		U30	
RDAT[27]		U31	
RDAT[28]		R31	
RDAT[29]		R30	
RDAT[30]		R29	
RDAT[31]		R28	

Pin Name	Type	Pin No.	Function
RENB	Input	AE31	<p>The UTOPIA receive read enable (RENB) is used to initiate reads from the receive FIFO. The system may de-assert RENB if it is unable to accept more cells.</p> <p>In UTOPIA operation, when RENB is sampled low, RDAT[31:0], RRPTY and RSOC are updated on the following RFCLK cycle. When RENB is sampled high, the information on RDAT[31:0], RPRTY and RSOC_RSOP is held on the next clock cycle.</p> <p>RENB is also used for selected the channel to read data. When RENB transitions from high to low, the channel address on RADR[3:0] selects the channel to read from.</p> <p>RENB is sampled on the rising edge of RFCLK.</p> <p>The POS-PHY receive read enable (RENB) is used to initiate reads from the receive FIFO. During a data transfer, RVAL must be monitored since it will indicate if the data is valid. The system may deassert RENB at any time if it is unable to accept more data.</p> <p>In POS-PHY operation, the information on RDAT[31:0], RPRTY, RSOP, REOP, RMOD[1:0], RERR, RVAL and RSX is held on the following clock cycle when RENB is sampled high.</p> <p>When RENB is sampled low, the values on RDAT[31:0], RPRTY, RSOP, REOP, RMOD[1:0], RERR, RVAL and RSX are valid and are updated on the following clock cycle.</p> <p>RENB is sampled on the rising edge of RFCLK.</p>

Pin Name	Type	Pin No.	Function
RSOC	Output	AC28	<p>The UTOPIA receive start of cell (RSOC) signal marks the start of a cell structure on the RDAT[31:0] bus.</p> <p>In UTOPIA operation, the first word of the cell structure is present on the RDAT[31:0] bus when RSOC is high.</p> <p>RSOC is updated on the following clock cycle when RENB is sampled low. RSOC is updated on the rising edge of RFCLK.</p>
RSOP			<p>The POS-PHY receive start of packet (RSOP) indicates the start of a packet on the RDAT[31:0] bus.</p> <p>In POS-PHY operation, the first word of the packet is on the RDAT[31:0] bus when RSOP is high.</p> <p>RSOP is updated on the following clock cycle when RENB is sampled low. RSOP is updated on the rising edge of RFCLK</p>
REOP	Output	AC29	<p>The POS-PHY receive end of packet (REOP) marks the end of packet on the RDAT[15:0] bus. It is legal for RSOP to be high at the same time REOP is high.</p> <p>REOP set high indicates the last word of the packet is on the RDAT[31:0] bus. The RMOD[1:0] bus indicates how many valid bytes of packet data are in the last word. It is legal for RSOP to be high at the same time as REOP is high in order to support one, two, three and four byte packets.</p> <p>The value on REOP is updated on the next clock cycle when RENB is sampled low. REOP is only used for POS-PHY operation and is updated on the rising edge of RFCLK.</p>

Pin Name	Type	Pin No.	Function								
RERR	Output	AC27	<p>The POS-PHY receive error (RERR) indicates that the current packet is invalid due to an error such as invalid FCS, excessive length or received HDLC abort sequence (0x7D-0x7E).</p> <p>RERR is high when REOP is high marking the current packet as erred. RERR is low when REOP is low.</p> <p>The value on RERR is updated on the next clock rising edge when RENB is sampled low. RERR is only used for POS-PHY operation and is updated on the rising edge of RFCLK.</p>								
RMOD[0] RMOD[1]	Output	AD29 AD30	<p>The POS-PHY receive modulo (RMOD) indicates the number of valid bytes of data on RDAT[31:0] during POS-PHY operation.</p> <p>The value on the RMOD[1:0] bus when REOP is high specifies the number of valid bytes of packet data on RDAT[31:0]. RMOD is set to "00" when REOP is low.</p> <table><tr><td>RMOD[1:0] = "00"</td><td>RDAT[31:0] valid</td></tr><tr><td>RMOD[1:0] = "01"</td><td>RDAT[31:8] valid</td></tr><tr><td>RMOD[1:0] = "10"</td><td>RDAT[31:16] valid</td></tr><tr><td>RMOD[1:0] = "11"</td><td>RDAT[31:24] valid</td></tr></table> <p>The value on RMOD[1:0] is updated on the next clock rising edge when RENB is sampled low. RMOD[1:0] is only used for POS-PHY operation and is updated on the rising edge of RFCLK.</p>	RMOD[1:0] = "00"	RDAT[31:0] valid	RMOD[1:0] = "01"	RDAT[31:8] valid	RMOD[1:0] = "10"	RDAT[31:16] valid	RMOD[1:0] = "11"	RDAT[31:24] valid
RMOD[1:0] = "00"	RDAT[31:0] valid										
RMOD[1:0] = "01"	RDAT[31:8] valid										
RMOD[1:0] = "10"	RDAT[31:16] valid										
RMOD[1:0] = "11"	RDAT[31:24] valid										

Pin Name	Type	Pin No.	Function
RSX	Output	AD31	<p>The POS-PHY receive start of transfer (RSX) indicates when the in-band port address is present on the RDAT[31:0] bus during POS-PHY Level 3 operation.</p> <p>When RSX is high, the value on RDAT[7:0] is the address of the receive PHY channel being selected. Subsequent data transfers on the RDAT[31:0] bus will read the channel FIFO buffer specified by this in-band address.</p> <p>The value on RSX is updated on the next clock rising edge when RENB is sampled low. RSX is only used for POS-PHY operation and is updated on the rising edge of RFCLK.</p>
RADR[0] RADR[1] RADR[2] RADR[3]	Input	AE27 AE28 AE29 AE30	<p>The UTOPIA receive port address select (RADR[3:0]) is used to select the channel whose FIFO fill status is to be polled or the channel for which a UTOPIA cell transfer is desired.</p> <p>When RENB transitions from high to low, the value sampled on RADR[3:0] selects the channel FIFO which the ATM cell is read from. During all other conditions, the fill status of the channel FIFO with the address sampled on RADR[3:0] is reported on RCA.</p> <p>RADR[3:0] is sampled on the rising edge of RFCLK.</p>

Pin Name	Type	Pin No.	Function
RCA	Output	AD28	<p>The UTOPIA receive cell available (RCA) is used to determine the fill status of each channel FIFO during UTOPIA operation.</p> <p>RCA is used to poll the channel FIFOs to determine the number of ATM cells that are in the FIFO. The address sampled on RADDR[3:0] will cause RCA to be updated with the channel information on the following clock cycle.</p> <p>When RCA is set high, the channel FIFO has at least one complete ATM cell. When RCA is set low, the channel FIFO does not contain a complete ATM cell.</p> <p>RCA is updated on the rising edge of RFCLK.</p>
RVAL			<p>The POS-PHY receive data valid (RVAL) signal indicates when the POS-PHY bus is valid during POS-PHY.</p> <p>When RVAL is high and RENB is low, the values on RDAT[31:0], RPRTY, RSOP, REOP, RERR and RMOD[1:0] are valid. When RVAL is low, the values on RDAT[31:0], RPRTY, RSOP, REOP, RERR and RMOD[1:0] are invalid and must be ignored.</p> <p>The value on RVAL is updated on the next clock rising edge when RENB is sampled low. RVAL is updated on the rising edge of RFCLK.</p>

9.7 Microprocessor Interface Signals

Pin Name	Type	Pin No.	Function
CSB	Input	C24	<p>The active-low chip select (CSB) signal is low during S/UNI-16x155 register accesses.</p> <p>When CSB is high, the RDB and WRB inputs are ignored. When CSB is low, the RDB and WRB are valid. CSB must be high when RSTB is low to properly reset the chip.</p> <p>If CSB is not required (i.e., registers accesses are controlled using the RDB and WRB signals only), CSB must be connected to an inverted version of the RSTB input.</p>
RDB	Input	B24	The active-low read enable (RDB) signal is low during S/UNI-16x155 register read accesses. The S/UNI-16x155 drives the D[7:0] bus with the contents of the addressed register while RDB and CSB are low.
WRB	Input	E23	The active-low write strobe (WRB) signal is low during a S/UNI-16x155 register write accesses. The D[7:0] bus contents are clocked into the addressed register on the rising WRB edge while CSB is low.
D[0] D[1] D[2] D[3] D[4] D[5] D[6] D[7]	I/O	D23 C23 B23 A23 E22 D22 C22 B22	The bi-directional data bus D[7:0] is used during S/UNI-16x155 register read and write accesses.

Pin Name	Type	Pin No.	Function
A[0]	Input	B28	
A[1]		C27	
A[2]		B27	
A[3]		A27	
A[4]		E26	
A[5]		D26	
A[6]		C26	
A[7]		B26	
A[8]		D25	
A[9]		C25	
A[10]		B25	
A[11]		A25	
A[12]		E24	
A[13]	Input	D24	The test register select (A[13]) signal selects between normal and test mode register accesses. A[13] is high during test mode register accesses, and is low during normal mode register accesses. A[13] may be tied low.
RSTB	Input	C18	The active-low reset (RSTB) signal provides an asynchronous S/UNI-16x155 reset. RSTB is a Schmitt triggered input with an integral pull-up resistor. CSB must be held high when RSTB is low in order to properly reset this chip.
ALE	Input	A24	The address latch enable (ALE) is active-high and latches the address bus A[11:0] when low. When ALE is high, the internal address latches are transparent. It allows the S/UNI-16x155 to interface to a multiplexed address/data bus. ALE has an integral pull-up resistor.

Pin Name	Type	Pin No.	Function
INTB	Output	A22	<p>The active-low interrupt (INTB) signal is set low when a S/UNI-16x155 interrupt source is active and that source is unmasked. The S/UNI-16x155 may be enabled to report many alarms or events via interrupts.</p> <p>Examples of interrupt sources are loss of signal (LOS), loss of frame (LOF), line AIS, line remote defect indication (LRDI) detect, loss of pointer (LOP), path AIS, path remote defect indication and others.</p> <p>INTB is tri-stated when the all enabled interrupt sources are acknowledged via an appropriate register access. INTB is an open drain output.</p>

9.8 JTAG Test Access Port (TAP) Signals

Pin Name	Type	Pin No.	Function
TCK	Input	D18	The test clock (TCK) signal provides clock timing for test operations that are carried out using the IEEE P1149.1 test access port.
TMS	Input	C20	The test mode select (TMS) signal controls the test operations that are carried out using the IEEE P1149.1 test access port. TMS is sampled on the rising edge of TCK. TMS has an integral pull-up resistor.
TDI	Input	E19	The test data input (TDI) signal carries test data into the S/UNI-16x155 via the IEEE P1149.1 test access port. TDI is sampled on the rising edge of TCK. TDI has an integral pull-up resistor.
TDO	Output	C19	The test data output (TDO) signal carries test data out of the S/UNI-16x155 via the IEEE P1149.1 test access port. TDO is updated on the falling edge of TCK. TDO is a tristate output which is inactive except when shifting boundary scan data is in progress.
TRSTB	Input	C17	The active-low test reset (TRSTB) signal provides an asynchronous S/UNI-16x155 test access port reset via the IEEE P1149.1 test access port. TRSTB is a Schmitt triggered input with an integral pull-up resistor. Note that when not being used, TRSTB may be tied low or connected to the RSTB input.

9.9 Analog Signals

Pin Name	Type	Pin No.	Function
APREF0 APREF1	Analog	AH17 AH18	<p>The APSO transmit reference (APREF0 and APREF1) analog pins are provided to create calibrated currents for the PECL output transceivers APS[3:0]+/-.</p> <p>See the High Speed PECL Interfaces and APS sections for more details.</p> <p>A 1.00 Kohm resistor is connected across the APREF0 and APREF1 pins when the APSI[3:0]+/- and APSO[3:0]+/- are terminated with one termination network.</p> <p>A 2.00 Kohm resistor is connected across the APREF0 and APREF1 pins when the APSO[3:0]+/- terminated using two termination networks.</p>
ATB[0] ATB[1]	Analog	P5 R5	The receive and transmit analog test ports (ATB[1:0]). These pins are used for manufacturing testing only and should be tied to the analog ground plane (AVS).

9.10 Power and Ground

Pin Name	Type	Pin No.	Function
QAVD	Analog Power	U5	<p>The quiet power (QAVD) pin for the analog core. QAVD should be connected to well-decoupled analog +3.3V supply.</p> <p>Please see the Operation section for detailed information.</p>
QAVS	Analog Ground	V3	<p>The quiet ground (QAVS) pin for the analog core. QAVS should be connected to analog ground of the QAVD supply.</p> <p>Please see the Operation section for detailed information.</p>
AVD[0] AVD[1] AVD[2] AVD[3] AVD[4] AVD[5] AVD[6] AVD[7] AVD[8]	Analog Power	N2 P3 P1 R2 R1 U1 U4 V4 W1	<p>The analog power (AVD[8:0]) pins for the analog core. The AVD pins should be connected through passive filtering networks to a well-decoupled +3.3V analog power supply.</p> <p>Please see the Operation section for detailed information.</p>
AVS[0] AVS[1] AVS[2] AVS[3] AVS[4] AVS[5] AVS[6] AVS[7] AVS[8]	Analog Ground	N1 P4 P2 R4 R3 U2 U3 V5 W2	<p>The analog ground (AVS[8:0]) pins for the analog core. The AVS pins should be connected to the analog ground of the analog power supply.</p> <p>Please see the Operation section for detailed information.</p>

Pin Name	Type	Pin No.	Function	
VDDI	Digital Power	AB5 AD27 AE5 AF5 AG12 AG13 AG17 AG18 AG19 AG9 E13 E17 E18 E20 E25 E7 E9 G5 H27 K5 M5 N27 W27		The core digital power (VDDI) pins should be connected to a well-decoupled +2.5 V digital power supply.
VDD	Digital Power	A1 A31 B2 B30 C3 C4 C16 C28 C29 D3 D4 D16 D28 D29 E5 E11 E16	The I/O digital power (VDD) pins should be connected to a well-decoupled +3.3 V digital power supply.	

Pin Name	Type	Pin No.	Function
		E21 E27 L5 L27 T3 T4 T5 T27 T28 T29 AA5 AA27 AG5 AG11 AG16 AG21 AG27 AH3 AH4 AH16 AH28 AH29 AJ3 AJ4 AJ16 AJ28 AJ29 AK2 AK30 AL1 AL31	
VSS	Digital Ground	A2 A3 A4 A6 A11 A16 A21 A26 A28	The I/O digital ground (VSS) pins should be connected to the digital ground of the digital power supply.

Pin Name	Type	Pin No.	Function
		A29 A30 B1 B3 B16 B29 B31 C1 C2 C30 C31 D1 D31 F1 F31 L1 L31 T1 T2 T30 T31 AA1 AA31 AF1 AF31 AH1 AH31 AJ1 AJ2 AJ30 AJ31 AK1 AK3 AK16 AK29 AK31 AL2 AL3 AL4 AL6	

PRELIMINARY
S/UNI-16X155
DATASHEET
PMC-2000495

ISSUE 2

PM5382
S/UNI-16X155

SATURN USER NETWORK INTERFACE (16X155)

Pin Name	Type	Pin No.	Function
		AL11 AL16 AL21 AL26 AL28 AL29 AL30	

9.11 No Connects

Pin Name	Type	Pin No.	Function	
NC	No Connect	AA4 AB3 AB4 AC4 AC5 AD3 AD4 AD5 AE4 AF3 AF4 AG10 AG4 AG6 AG7 AG8 AH10 AH11 AH5 AH6 AH7 AH8 AH9 AJ5 AJ7 AJ9 C10 C6 C8 D10 D11 D5 D6 D7 D8 D9 E10 E12		No internal connection.

Pin Name	Type	Pin No.	Function
		E3 E4 E6 E8 F3 F4 F5 G4 H3 H4 H5 J3 J4 K4 L4 N5 W5 Y5	

Notes on Pin Description:

1. All digital inputs and bi-directional signals present minimum capacitive loading and operate at TTL logic levels except the inputs marked as Analog or differential pseudo-ECL (PECL).
2. All digital outputs and bi-directional signals have 8mA drive strength.
4. The differential pseudo-ECL inputs and outputs should be terminated in a passive network and interface at PECL levels as described in the Operations section.
5. It is mandatory that every digital ground pin (VSS) be connected to the printed circuit board ground plane to ensure reliable device operation.
6. It is mandatory that every digital power pin (VDDI and VDD sets) be connected to printed circuit board power planes to ensure reliable device operation.
7. All analog power and ground pins can be sensitive to noise. They must be isolated from the digital power and ground. Care must be taken to correctly

decouple these pins. Please refer to the Operation section and the S/UNI-16x155 reference design (PMC-200-0506) for more information.

8. Due to ESD protection structures in the pads it is necessary to exercise caution when powering a device up or down. ESD protection devices behave as diodes between power supply pins and from I/O pins to power supply pins. Under extreme conditions it is possible to damage these ESD protection devices or trigger latch up. Please adhere to the recommended power supply sequencing as described in the Operation section of this document.

10 FUNCTIONAL DESCRIPTION

10.1 Receive Line Interface (CRSI)

The Receive Line Interface allows direct interface of the S/UNI-16x155 to optical modules (ODLs) or other medium interfaces. This block performs clock and data recovery on the incoming 155.52 Mbit/s data stream and SONET/SDH A1/A2 pattern framing.

Clock Recovery

The clock recovery units recovers the clock from each incoming bit serial data stream and is compliant with SONET and SDH jitter tolerance requirements. The clock recovery units utilize a low frequency reference clock to train and monitor its clock recovery PLL. Under loss of transition conditions, the clock recovery unit continues to output a line rate clock that is locked to this reference for keep alive purposes. The clock recovery unit utilizes a 77.76 MHz reference clock. The clock recovery unit provides status bits that indicate whether it is locked to data or the reference and also supports diagnostic loopback and a loss of signal input that squelches normal input data.

Initially upon start-up, the PLL locks to the reference clock, REFCLK. When the frequency of the recovered clock is within 488 ppm of the reference clock, the PLL attempts to lock to the data. Once in data lock, the PLL reverts to the reference clock if no data transitions occur in 96 bit periods or if the recovered clock drifts beyond 488 ppm of the reference clock.

When the transmit clock is derived from the recovered clock (loop timing), the accuracy of the transmit clock is directly related to the REFCLK reference accuracy in the case of a loss of transition condition. To meet the Bellcore GR-253-CORE SONET Network Element free-run accuracy specification, the reference must be within +/-20 ppm. For LAN applications, the REFCLK accuracy may be relaxed to +/-50 ppm.

The loop filter transfer function is optimized to enable the PLL to track the jitter, yet tolerate the minimum transition density expected in a received SONET/SDH data signal. The total loop dynamics of the clock recovery PLL yield a jitter tolerance that exceeds the minimum tolerance specified for SONET/SDH equipment by GR-253-CORE (1995). Jitter transfer is measured using 100% of the jitter tolerance template as an input amplitude.

The typical jitter tolerance performance of a S/UNI-16x155 channel is shown in Figure 3 with the GR-253-CORE jitter tolerance specification limits. The jitter

tolerance setup used an AGILENT HFBR-5905 multi-mode fiber optic transceiver with approximately -10 dBm input power.

Note that for frequencies below 300Hz, the jitter tolerance is greater than 22 UIpp; 22 UIpp is the maximum jitter tolerance of the test equipment. The dip in the jitter tolerance curve between 10 kHz and 30 kHz is due to the clock difference detector.

Figure 3: Typical STS-3c/STM-1 S/UNI-16x155 Jitter Tolerance

TBD

Serial to Parallel Converter

The Serial to Parallel Converters (SIPO) convert each received bit serial stream to a byte serial stream. The SIPO searches for the initial SONET/SDH framing pattern in the receive stream, and performs serial to parallel conversion on octet boundaries.

While out of frame, the CRSI block monitors the bit-serial STS-3c/STM-1 data stream for an occurrence of a A1 byte. The CRSI adjusts its byte alignment of the serial-to-parallel converter when three consecutive A1 bytes followed by three consecutive A2 bytes occur in the data stream. The CRSI informs the RSOP Framer block when this framing pattern has been detected to reinitializes the RSOP to the new frame alignment.

While in frame, the CRSI maintains the byte alignment of the serial-to-parallel converter until RSOP declares out of frame.

10.2 Receive Section Overhead Processor (RSOP)

The Receive Section Overhead Processor (RSOP) provides frame synchronization, descrambling, section level alarm and performance monitoring. In addition, it may extract the section data communication channel from the section overhead and provide it serially on the receive DCC outputs.

Framer

The Framer Block determines the in-frame/out-of-frame status of the receive stream. While in-frame, the framing bytes (A1, A2) in each frame are compared against the expected pattern. Out-of-frame is declared when four consecutive frames containing one or more framing pattern errors have been received.

While out of frame, the CRSI block monitors the bit-serial STS-3c/STM-1 data stream for an occurrence of the framing pattern (A1, A2). The CRSI informs the RSOP Framer block when three A1 bytes followed by three A2 bytes has been detected to reinitializes the frame byte counter to the new alignment. The Framer block declares frame alignment on the next SONET/SDH frame when either all A1 and A2 bytes are seen error-free or when only the first A1 byte and the first four bits of the last A2 byte are seen error-free depending upon the selected framing algorithm.

Once in frame, the Framer block monitors the framing pattern sequence and declares out of frame (OOF) when one or more bits errors in each framing pattern are detected for four consecutive frames. Again, depending upon the algorithm either all framing bytes are examined for bit errors each frame, or only the first A1 byte and the first four bits of the last A2 byte are examined for bit errors each frame.

Descramble

The Descramble Block utilizes a frame synchronous descrambler to process the receive stream. The generating polynomial is $x^7 + x^6 + 1$ and the sequence length is 127. Details of the descrambling operation are provided in the references. Note that the framing bytes (A1 and A2) and the trace/growth bytes (J0/Z0) are not descrambled. A register bit is provided to disable the descrambling operation.

Data Link Extract

The Data Link Extract Block extracts the section data communication channel (bytes D1, D2, and D3) from an STS-3c/STM-1 stream. The extracted bytes are serialized and is output on the associated RDCC signal at a nominal 192 kbit/s rate. Timing for downstream processing of the data communication channel is provided by the RDCLK signal that is also output by the Data Link Extract Block. RDCLK is derived from a 216 kHz clock that is gapped to yield an average frequency of 192 kHz. RDCC is updated with timing aligned to RDCLK.

Error Monitor

The Error Monitor Block calculates the received section BIP-8 error detection code (B1) based on the scrambled data of the complete STS-3c/STM-1 frame. The section BIP-8 code is based on a bit interleaved parity calculation using even parity. The calculated BIP-8 code is compared with the BIP-8 code extracted from the B1 byte of the following frame. Differences indicate that a section level bit error has occurred. Up to 64000 (8 x 8000) bit errors can be detected per second. The Error Monitor Block accumulates these section level bit errors in a

16-bit saturating counter that can be read via the microprocessor interface. Circuitry is provided to latch this counter so that its value can be read while simultaneously resetting the internal counter to 0 or 1, if appropriate, so that a new period of accumulation can begin without loss of any events. It is intended that this counter be polled at least once per second so as not to miss bit error events.

Loss of Signal

The Loss of Signal Block monitors the scrambled data of the receive stream for the absence of 1's or 0's. When $20 \pm 3 \mu s$ of all zeros patterns or all ones patterns are detected, a loss of signal (LOS) is declared. Loss of signal is cleared when two valid framing words are detected and during the intervening time, no loss of signal condition is detected. The LOS signal is optionally reported on the RALRM output pin when enabled by the LOSEN Receive Alarm Control Register bit.

Loss of Frame

The Loss of Frame Block monitors the in-frame / out-of-frame status of the Framer Block. A loss of frame (LOF) is declared when an out-of-frame (OOF) condition persists for 3 ms. The LOF is cleared when an in-frame condition persists for a period of 3 ms. To provide for intermittent out-of-frame (or in-frame) conditions, the 3 ms timer is not reset to zero until an in-frame (or out-of-frame) condition persists for 3 ms. The LOF and OOF signals are optionally reported on the RALRM output pin when enabled by the LOFEB and OOFEN Receive Alarm Control Register bits.

10.3 Receive Line Overhead Processor (RLOP)

The Receive Line Overhead Processor (RLOP) provides line level alarm and performance monitoring. In addition, it may extract the line data communication channel from the line overhead and provides it serially on the receive DCC outputs.

Line RDI Detect

The Line RDI Detect Block detects the presence of Line Remote Defect Indication (LRDI) in the receive stream. Line RDI is declared when a 110 binary pattern is detected in bits 6, 7, and 8 of the K2 byte, for three or five consecutive frames. Line RDI is removed when any pattern other than 110 is detected in bits 6, 7, and 8 of the K2 byte for three or five consecutive frames. The LRDI signal is optionally reported on the RALRM output pin when enabled by the LRDien Receive Alarm Control Register bit.

Line AIS Detect

The Line AIS Block detects the presence of a Line Alarm Indication Signal (LAIS) in the receive stream. Line AIS is declared when a 111 binary pattern is detected in bits 6, 7, and 8 of the K2 byte, for three or five consecutive frames. Line AIS is removed when any pattern other than 111 is detected in bits 6, 7, and 8 of the K2 byte for three or five consecutive frames. The LAIS signal is optionally reported on the RALRM output pin when enabled by the LAISEN Receive Alarm Control Register bit.

Data Link Extract Block

The Data Link Extract Block extracts the line data communication channel (bytes D4 to D12) from the STS-3c/STM-1 stream. The extracted bytes are serialized and output on the associated RDCC output at a nominal 576 kbit/s rate. Timing for downstream processing of the data communication channel is provided by the RDCLK output. RDCLK is derived from a 2.16 MHzclock that is gapped to yield an average frequency of 576 kHz.

Error Monitor Block

The Error Monitor Block calculates the received line BIP-8 error detection codes based on the Line Overhead bytes and synchronous payload envelopes of the STS-3c/STM-1 stream. The line BIP-8 code is a bit interleaved parity calculation using even parity. Details are provided in the references. The calculated BIP-8 codes are compared with the BIP-8 codes extracted from the following frame. Any differences indicate that a line layer bit error has occurred. Optionally the RLOP can be configured to count a maximum of only one BIP error per frame.

This block also extracts the line FEBE code from the M1 byte. The FEBE code is contained in bits 2 to 8 of the M1 byte, and represents the number of line BIP-8 errors that were detected in the last frame by the far end. The FEBE code value has 25 legal values (0 to 24) for an STS-3c/STM-1 stream. Illegal values are interpreted as zero errors.

The Error Monitor Block accumulates B2 error events and FEBE events in two 20-bit saturating counters that can be read via the CBI. The contents of these counters may be transferred to internal holding registers by writing to any one of the counter addresses, or by using the TIP register bit feature. During a transfer, the counter value is latched and the counter is reset to 0 (or 1, if there is an outstanding event). Note, these counters should be polled at least once per second to avoid saturation.

The B2 error event counters optionally can be configured to accumulate only "word" errors. A B2 word error is defined as the occurrence of one or more B2 bit error events during a frame. The B2 error counter is incremented by one for each frame in which a B2 word error occurs.

In addition the FEBE events counters optionally can be configured to accumulate only "word" events. A FEBE word event is defined as the occurrence of one or more FEBE bit events during a frame. The FEBE event counter is incremented by one for each frame in which a FEBE event occurs. If the extracted FEBE value is in the range 1 to 4 the FEBE event counter will be incremented for each and every FEBE bit. If the extracted FEBE value is greater than 4 the FEBE event counter will be incremented by 4.

10.4 The Receive APS, Synchronization Extractor and Bit Error Monitor (RASE)

Automatic Protection Switch Control

The Automatic Protection Switch (APS) control block filters and captures the receive automatic protection switch channel bytes (K1 and K2) allowing them to be read via the RASE APS K1 Register and the RASE APS K2 Register. The bytes are filtered for three frames before being written to these registers. A protection switching byte failure alarm is declared when twelve successive frames have been received, where no three consecutive frames contain identical K1 bytes. The protection switching byte failure alarm is removed upon detection of three consecutive frames containing identical K1 bytes. The detection of invalid APS codes is done in software by polling the RASE APS K1 Register and the RASE APS K2 Register.

Bit Error Rate Monitor

The Bit Error Monitor Block (BERM) calculates the received line BIP-24 error detection code (B2) based on the line overhead and synchronous payload envelope of the receive data stream. The line BIP-24 code is a bit interleaved parity calculation using even parity. Details are provided in the references. The calculated BIP code is compared with the BIP-24 code extracted from the B2 bytes of the following frame. Any differences indicate that a line layer bit error has occurred. Up to 192,000 (24 BIP/frame x 8000 frames/second) bit errors can be detected per second for STS-3c/STM-1 rate.

The BERM accumulates these line layer bit errors in a 20 bit saturating counter that can be read via the microprocessor interface. During a read, the counter value is latched and the counter is reset to 0 (or 1, if there is an outstanding event). Note, this counter should be polled at least once per second to avoid saturation that in turn may result in missed bit error events.

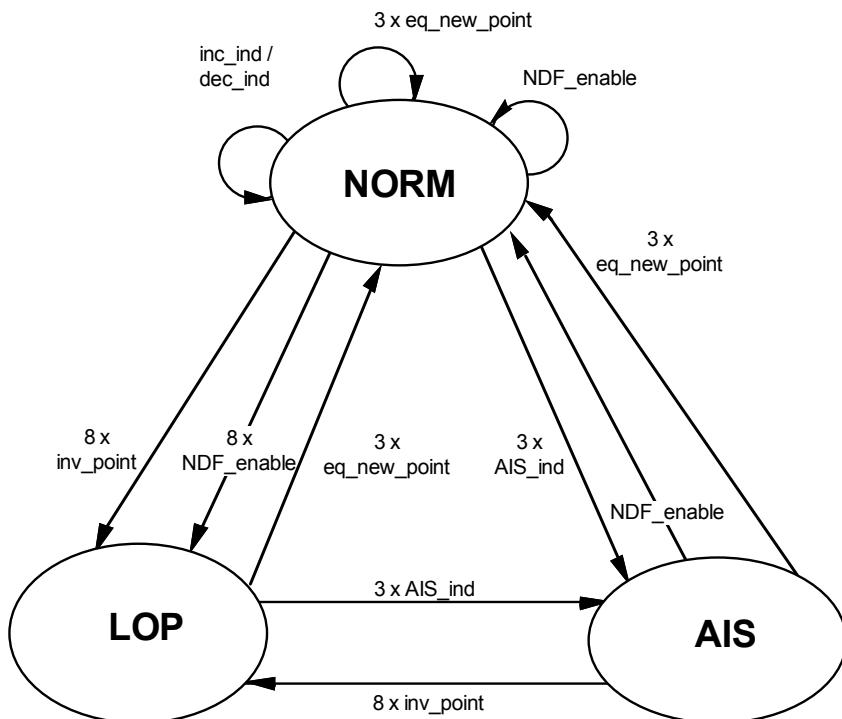
The BERM block is able to simultaneously monitor for signal fail (SF) or signal degrade (SD) threshold crossing and provide alarms through software interrupts. The bit error rates associated with the SF or SD alarms are programmable over a range of 10^{-3} to 10^{-9} . Details are provided in the Operations section.

Synchronization Status Extraction

The Synchronization Status Extraction (SSE) Block extracts the synchronization status (S1) byte from the line overhead. The SSE block can be configured to capture the S1 nibble after three or after eight frames with the same value (filtering turned on) or after any change in the value (filtering turned off). The S1 nibble can be read via the CBI interface.

10.5 Receive Path Overhead Processor (RPOP)

The Receive Path Overhead Processor (RPOP) provides pointer interpretation, extraction of path overhead, extraction of the synchronous payload envelope, and path level alarm indication and performance monitoring.


Pointer Interpreter

The Pointer Interpreter interprets the incoming pointer (H1, H2) as specified in the references. The pointer value is used to determine the location of the path overhead (the J1 byte) in the incoming STS-3c/STM-1 stream. The algorithm can be modeled by a finite state machine. Within the pointer interpretation algorithm three states are defined as shown below:

NORM_state (NORM)
AIS_state (AIS)
LOP_state (LOP)

The transition between states will be consecutive events (indications), e.g., three consecutive AIS indications to go from the NORM_state to the AIS_state. The kind and number of consecutive indications activating a transition is chosen such that the behavior is stable and insensitive to low BER. The only transition on a single event is the one from the AIS_state to the NORM_state after receiving a NDF enabled with a valid pointer value. It should be noted that, since the algorithm only contains transitions based on consecutive indications, this implies that, for example, non-consecutively received invalid indications do not activate the transitions to the LOP_state.

Figure 4: Pointer Interpretation State Diagram

The following table defines the events (indications) shown in the state diagram.

Table 1: Pointer Interpreter Event (Indications) Description

Event (Indication)	Description
norm_point	disabled NDF + ss + offset value equal to active offset
NDF_enable	enabled NDF + ss + offset value in range of 0 to 782 or enabled NDF + ss, if NDFPOR bit is set (Note that the current pointer is not updated by an enabled NDF if the pointer is out of range).
AIS_ind	H1 = 'hFF, H2 = 'hFF
inc_ind	disabled NDF + ss + majority of I bits inverted + no majority of D bits inverted + previous NDF_enable, inc_ind or dec_ind more than 3 frames ago
dec_ind	disabled NDF + ss + majority of D bits inverted + no majority of I bits inverted + previous NDF_enable, inc_ind or dec_ind more than 3 frames ago

Event (Indication)	Description
inv_point	not any of above (i.e., not norm_point, and not NDF_enable, and not AIS_ind, and not inc_ind and not dec_ind)
new_point	disabled_NDF + ss + offset value in range of 0 to 782 but not equal to active offset
inc_req	majority of I bits inverted + no majority of D bits inverted
dec_req	majority of D bits inverted + no majority of I bits inverted

Note 1.- active offset is defined as the accepted current phase of the SPE (VC) in the NORM_state and is undefined in the other states.

Note 2 - enabled NDF is defined as the following bit patterns: 1001, 0001, 1101, 1011, 1000.

Note 3 - disabled NDF is defined as the following bit patterns: 0110, 1110, 0010, 0100, 0111.

Note 4 - the remaining six NDF codes (0000, 0011, 0101, 1010, 1100, 1111) result in an inv_point indication.

Note 5 - ss bits are unspecified in SONET and has bit pattern 10 in SDH

Note 6 - the use of ss bits in definition of indications may be optionally disabled.

Note 7 - the requirement for previous NDF_enable, inc_ind or dec_ind be more than 3 frames ago may be optionally disabled.

Note 8 - new_point is also an inv_point.

Note 9 - LOP is not declared if all the following conditions exist:

- the received pointer is out of range (>782),
- the received pointer is static,
- the received pointer can be interpreted, according to majority voting on the I and D bits, as a positive or negative justification indication,
- after making the requested justification, the received pointer continues to be interpretable as a pointer justification.

When the received pointer returns to an in-range value, the S/UNI-16x155 will interpret it correctly.

Note 10 - LOP will exit at the third frame of a three frame sequence consisting of one frame with NDF enabled followed by two frames with NDF disabled, if all three pointers have the same legal value.

The transitions indicated in the state diagram are defined in the following table.

Table 2: Pointer Interpreter Transition Description

Transition	Description
inc_ind/dec_ind	offset adjustment (increment or decrement indication)
3 x eq_new_point	three consecutive equal new_point indications
NDF_enable	single NDF_enable indication
3 x AIS_ind	three consecutive AIS indications
8 x inv_point	eight consecutive inv_point indications
8 x NDF_enable	eight consecutive NDF_enable indications

Note 1 - the transitions from NORM_state to NORM_state do not represent state changes but imply offset changes.

Note 2 - 3 x new_point takes precedence over other events and if the IINVCNT bit is set resets the inv_point count.

Note 3 - all three offset values received in 3 x eq_new_point must be identical.

Note 4 - "consecutive event counters" are reset to zero on a change of state except for consecutive NDF count.

The Pointer Interpreter detects loss of pointer (LOP) in the incoming STS-3c/STM-1 stream. LOP is declared on entry to the LOP_state as a result of eight consecutive invalid pointers or eight consecutive NDF enabled indications. The alarm condition is reported in the receive alarm port and is optionally returned to the source node by signaling the corresponding Transmit Path Overhead Processor in the local S/UNI-16x155 to insert a path RDI indication.

The Pointer Interpreter detects path AIS in the incoming STS-3c/STM-1 stream. PAIS is declared on entry to the AIS_state after three consecutive AIS indications. The alarm condition reported in the receive alarm port and is optionally returned to the source node by signaling the corresponding Transmit Path Overhead Processor in the local SONET/SDH equipment to insert a path RDI indication.

Invalid pointer indications (inv_point), invalid NDF codes, new pointer indications (new_point), discontinuous change of pointer alignment, and illegal pointer changes are also detected and reported by the Pointer Interpreter block via register bits. An invalid NDF code is any NDF code that does not match the NDF enabled or NDF disabled definitions. The third occurrence of equal new_point indications ($3 \times \text{eq_new_point}$) is reported as a discontinuous change of pointer alignment event (DISCOPA) instead of a new pointer event and the active offset is updated with the receive pointer value. An illegal pointer change is defined as a inc_ind or dec_ind indication that occurs within three frames of the previous inc_ind, dec_ind or NDF_enable indications. Illegal pointer changes may be optionally disabled via register bits.

The active offset value is used to extract the path overhead from the incoming stream and can be read from an internal register.

SPE Timing

The SPE Timing Block provides SPE timing information to the Error Monitor and the Extract blocks. The block contains a free running timeslot counter that is initialized by a J1 byte identifier (which identifies the first byte of the SPE). Control signals are provided to the Error Monitor and the Extract blocks to identify the Path Overhead bytes and to downstream circuitry to extract the ATM cell or POS payload.

Error Monitor

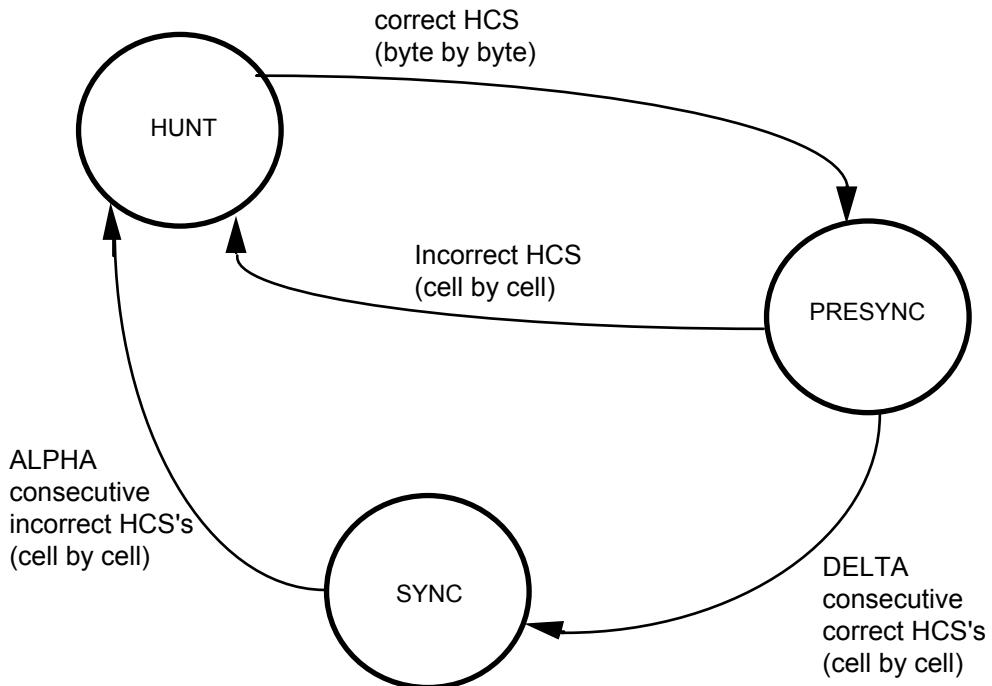
The Error Monitor Block contains two 16-bit counters that are used to accumulate path BIP-8 errors (B3), and far end block errors (FEBEs). The contents of the two counters may be transferred to holding registers, and the counters reset under microprocessor control.

Path BIP-8 errors are detected by comparing the path BIP-8 byte (B3) extracted from the current frame, to the path BIP-8 computed for the previous frame.

FEBEs are detected by extracting the 4-bit FEBE field from the path status byte (G1). The legal range for the 4-bit field is between 0000 and 1000, representing zero to eight errors. Any other value is interpreted as zero errors.

Path RDI alarm is detected by extracting bit 5 of the path status byte. The PRDI signal is set high when bit 5 is set high for five/ten consecutive frames. PRDI is set low when bit 5 is low for five/ten consecutive frames. Auxiliary RDI alarm is detected by extracting bit 6 of the path status byte. The Auxiliary RDI alarm is indicated when bit 6 is set high for five/ten consecutive frames. The Auxiliary RDI alarm is removed when bit 6 is low for five/ten consecutive frames. The

Enhanced RDI alarm is detected when the enhanced RDI code in bits 5,6,7 of the path status byte indicates the same error codepoint for five/ten consecutive frames. The Enhanced RDI alarm is removed when the enhanced RDI code in bits 5,6,7 of the path status byte indicates the same non error codepoint for five/ten consecutive frames. The ERDII maskable interrupt is set high when bits 5, 6 & 7 of the path status byte (G1) byte are set to a new codepoint for five or ten consecutive frames. The ERDIV[2:0] signal reflects the state of the filtered ERDI value (G1 byte bits 5, 6, & 7).


10.6 Receive ATM Cell Processor (RXCP)

The Receive ATM Cell Processor (RXCP) performs ATM cell delineation, provides cell filtering based on idle/unassigned cell detection and HCS error detection, and performs ATM cell payload descrambling.

Cell Delineation

Cell Delineation is the process of framing to ATM cell boundaries using the header check sequence (HCS) field found in the cell header. The HCS is a CRC-8 calculation over the first 4 octets of the ATM cell header. When performing delineation, correct HCS calculations are assumed to indicate cell boundaries. Cells are assumed to be byte-aligned to the synchronous payload envelope. The cell delineation algorithm searches the 53 possible cell boundary candidates individually to determine the valid cell boundary location. While searching for the cell boundary location, the cell delineation circuit is in the HUNT state. When a correct HCS is found, the cell delineation state machine locks on the particular cell boundary, corresponding to the correct HCS, and enters the PRESYNC state. The PRESYNC state validates the cell boundary location. If the cell boundary is invalid, an incorrect HCS will be received within the next DELTA cells, at which time a transition back to the HUNT state is executed. If no HCS errors are detected in this PRESYNC period, the SYNC state is entered. While in the SYNC state, synchronization is maintained until ALPHA consecutive incorrect HCS patterns are detected. In such an event a transition is made back to the HUNT state. The state diagram of the delineation process is shown in Figure 5.

Figure 5: Cell Delineation State Diagram

The values of ALPHA and DELTA determine the robustness of the delineation process. ALPHA determines the robustness against false misalignments due to bit errors. DELTA determines the robustness against false delineation in the synchronization process. ALPHA is chosen to be 7 and DELTA is chosen to be 6. These values result in an average time to delineation of 32 μ s for the STS-3c/STM-1 rate.

Descrambler

The self-synchronous descrambler operates on the 48 byte cell payload only. The circuitry descrambles the information field using the $x^{43} + 1$ polynomial. The descrambler is disabled for the duration of the header and HCS fields and may optionally be disabled for the payload.

Cell Filter and HCS Verification

Cells are filtered (or dropped) based on HCS errors and/or a cell header pattern. Cell filtering is optional and is enabled through the RXCP registers. Cells are passed to the receive FIFO while the cell delineation state machine is in the SYNC state as described above. When both filtering and HCS checking are enabled, cells are dropped if HCS errors are detected, or if the header contents

match the pattern contained in the RXCP Match Header Pattern and RXCP Match Header Mask registers. Idle or unassigned cell filtering is accomplished by writing the appropriate cell header pattern into the RXCP Match Header Pattern and RXCP Match Header Mask registers. Idle/Unassigned cells are assumed to contain the all zeros pattern in the VCI and VPI fields. The RXCP Match Header Pattern and RXCP Match Header Mask registers allow filtering control over the contents of the GFC, PTI, and CLP fields of the header.

The HCS is a CRC-8 calculation over the first 4 octets of the ATM cell header. The RXCP block verifies the received HCS using the polynomial, $x^8 + x^2 + x + 1$. The coset polynomial, $x^6 + x^4 + x^2 + 1$, is added (modulo 2) to the received HCS octet before comparison with the calculated result. .

Performance Monitor

The Performance Monitor consists of 8-bit saturating HCS error event counter and a 24-bit saturating receive cell counter. The error counter accumulates HCS errors. The 24-bit receive cell counter counts all cells written into the receive FIFO. Filtered cells are not counted.

Each counter may be read through the microprocessor interface. Circuitry is provided to latch these counters so that their values can be read while simultaneously resetting the internal counters to 0 or 1, if appropriate, so that a new period of accumulation can begin without loss of any events. It is intended that the counter be polled at least once per second so as not to miss any counted events.

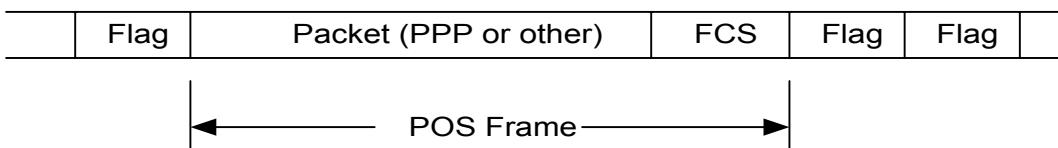
10.7 Receive POS Frame Processor (RXFP)

The Receive POS Frame Processor (RXFP) performs packet extraction, provides FCS error correction, performs packet payload descrambling, and provides performance monitoring functions.

Overhead Removal

The overhead removal consists of stripping SONET/SDH overhead bytes from the data stream. Once overhead bytes are removed, the data stream consists of POS frame octets that can be fed directly to the descrambler or the POS Frame Delineation block.

Descrambler


When enabled, the self-synchronous descrambler operates on the POS Frame data, descrambling the data with the polynomial $x^{43} + 1$. Descrambling is performed on the raw data stream, before any POS frame delineation or byte destuffing is performed. Data scrambling can provide for a more robust system preventing the injection of hostile patterns into the data stream.

POS Frame Delineation

This block accepts data one byte at a time and arranges it as POS framed octets. Frame boundaries are found by searching for the Flag Character (0x7E). Flags are also used to fill inter-packet spacing. This block removes the Flag Sequence and passes the data onto the Byte Destuffing block.

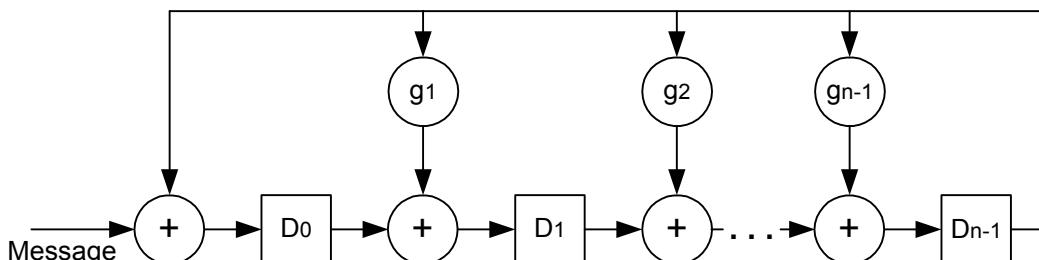
The POS Frame Delineation is performed on the descrambled data and consists of arranging the POS framed octets. Frame boundaries are found by searching for the Flag Character (0x7E). Flags are also used to fill inter-packet spacing. This block removes the Flag Sequence and passes the data onto the Byte Destuffing block. The POS Frame format is shown on Figure 7.

Figure 7: Packet Over SONET/SDH Frame Format

In the event of a FIFO overflow caused by the FIFO being full while a packet is being received, the packet is marked with an error so it can be discarded by the system. Subsequent bytes associated with this now aborted frame are discarded. Reception of POS data resumes when a Start of Packet is encountered and the FIFO level is below the programmable Reception Initialization Level (RIL[7:0]).

Byte Destuffing

The byte destuffing algorithm searches the Control Escape character (0x7D). These characters, listed in Table 3, are added for transparency in the transmit direction and must be removed to recover the user data. When the Control Escape character is encountered, it is removed and the following data byte is XORed with 0x20. Therefore, any escaped data byte will be processed properly by the S/UNI-16x155.


Table 3: HDLC Byte Sequences

Data Value	Sequence
0x7E (Flag Sequence)	0x7D 0x5E
0x7D (Control Escape)	0x7D 0x5D
HDLC Aborted Packet	0x7D 0x7E

FCS Check

The FCS Generator performs a CRC-CCITT or CRC-32 calculation on the whole POS frame, after byte destuffing and data descrambling scrambling. A parallel implementation of the CRC polynomial is used. The CRC algorithm for the frame checking sequence (FCS) field is either a CRC-CCITT or CRC-32 function. The CRC-CCITT is two bytes in size and has a generating polynomial $g(x) = 1 + x^5 + x^{12} + x^{16}$. The CRC-32 is four bytes in size and has a generating polynomial $g(x) = 1 + x + x^2 + x^4 + x^5 + x^7 + x^8 + x^{10} + x^{11} + x^{12} + x^{16} + x^{22} + x^{23} + x^{26} + x^{32}$. The first FCS bit transmitted is the coefficient of the highest term. . Packets with FCS errors are marked as such and should be discarded by the system.

Figure 8: CRC Decoder

Performance Monitor

The Performance Monitor consists of four 16-bit saturating error event counters and one 24-bit saturating received good packet counter. One of the error event counters accumulates FCS errors. The second error event counter accumulates minimum length violation packets. The third error event counter accumulates maximum length violation packets. The fourth error event counter accumulates aborted packets. The 24-bit receive good packet counter counts all error free packets.

Each counter may be read through the microprocessor interface. Circuitry is provided to latch these counters so that their values can be read while simultaneously resetting the internal counters to 0 or 1, whichever is appropriate,

so that a new period of accumulation can begin without loss of any events. The counters should be polled at least once per second so error events will not be missed.

The RXFP monitors the packets for both minimum and maximum length errors. When a packet size is smaller than MINPL[7:0], the packet is marked with an error but still written into the FIFO. Malformed packets, that is packets that do not at least contain the FCS field plus one byte, are treated differently. If a malformed packet is received and FCS stripping is enabled, the packet is discarded, not written in the FIFO, and counted as a minimum packet size violation. If a malformed packet is received and FCS stripping is disabled, it is written into the FIFO since, in this case, the misformed packet criteria is reduced to one byte, but will still count as a minimum packet size violation. When the packet size exceeds MAXPL[15:0] the packet is marked with an error and the bytes beyond the maximum count are discarded.

10.8 Transmit Line Interface (CSPI)

The Transmit Line Interface allows to directly interface the S/UNI-16x155 with optical modules (ODLs) or other medium interfaces. This block performs clock synthesis and performs parallel to serial conversion on each outgoing 155.52 Mbit/s data stream.

Clock Synthesis

The transmit clock is synthesized from a 77.76 MHz reference by the clock synthesis unit (CSU). The transfer function yields a typical low pass corner of 1 MHz, above which reference jitter is attenuated at least 20 dB per octave. The design of the loop filter and PLL is optimized for minimum intrinsic jitter. With a jitter free 77.76 MHz reference, the intrinsic jitter is typically less than TBD UI RMS when measured using a high pass filter with a 12 kHz cutoff frequency. The REFCLK reference should be within ± 20 ppm to meet the SONET/SDH free-run accuracy requirements specified in GR-253-CORE.

Parallel to Serial Converter

The Parallel to Serial Converter (PISO) converts each transmit byte serial stream to a bit serial stream. The transmit bit serial streams appear on the TXD[15:0]+/- PECL outputs.

10.9 Transmit Section Overhead Processor (TSOP)

The Transmit Section Overhead Processor (TSOP) provides frame pattern insertion (A1, A2), scrambling, section level alarm signal insertion, and section

BIP-8 (B1) insertion. In addition, it may insert the section data communication channel provided serially on the transmit DCC inputs.

Line AIS Insert

Line AIS insertion results in all bits of the SONET/SDH frame being set to 1 before scrambling except for the section overhead. The Line AIS Insert Block substitutes all ones as described when enabled by the TLAIS input or through an internal register accessed through the microprocessor interface. Activation or deactivation of line AIS insertion is synchronized to frame boundaries.

Data Link Insert

The Data Link Insert Block inserts the section data communication channel (bytes D1, D2, and D3) into the STS-3c/STM-1 stream when enabled by an internal register accessed via the common bus interface. The bytes to be inserted are serially input on the associated TDCC signal at a nominal 192 kbit/s rate. Timing for upstream processing of the data communication channel is provided by the TDCLK signal. TDCLK is derived from a 216 kHz clock that is gapped to yield an average frequency of 192 kHz.

BIP-8 Insert

The BIP-8 Insert Block calculates and inserts the BIP-8 error detection code (B1) into the transmit stream.

The BIP-8 calculation is based on the scrambled data of the complete STS-3c/STM-1 frame. The section BIP-8 code is based on a bit interleaved parity calculation using even parity. Details are provided in the references. The calculated BIP-8 code is then inserted into the B1 byte of the following frame before scrambling. BIP-8 errors may be continuously inserted under register control for diagnostic purposes.

Framing and Identity Insert

The Framing and Identity Insert Block inserts the framing bytes (A1, A2) and trace/growth bytes (J0/Z0) into the STS-3c/STM-1 frame. Framing bit errors may be continuously inserted under register control for diagnostic purposes.

Scrambler

The Scrambler Block utilizes a frame synchronous scrambler to process the transmit stream when enabled through an internal register accessed via the microprocessor interface. The generating polynomial is $x^7 + x^6 + 1$. Precise details of the scrambling operation are provided in the references. Note that the

framing bytes and the identity bytes are not scrambled. All zeros may be continuously inserted (after scrambling) under register control for diagnostic purposes.

10.10 Transmit Line Overhead Processor (TLOP)

The Transmit Line Overhead Processor (TLOP) provides line level alarm signal insertion, and line BIP-24 insertion (B2). In addition, it inserts the line data communication provided serially on the transmit DCC inputs.

APS Insert

The APS Insert Block inserts the two automatic protection switch (APS) channel bytes in the Line Overhead (K1 and K2) into the transmit stream when enabled by an internal register.

Data Link Insert

The Data Link Insert Block inserts the line data communication channel (DCC) (bytes D4 to D12) into the STS-3c/STM-1 stream when enabled by an internal register. The D4 to D12 bytes are input serially using the associated TDCC signal at a nominal 576 kbit/s rate. Timing for upstream processing of the line DCC is provided by the TDCLK output. TDCLK is derived from a 2.16 MHz clock that is gapped to yield an average frequency of 576 kHz.

Line BIP Calculate

The Line BIP Calculate Block calculates the line BIP-24 error detection code (B2) based on the line overhead and synchronous payload envelope of the transmit stream. The line BIP-24 code is a bit interleaved parity calculation using even parity. Details are provided in the references. The calculated BIP-24 code is inserted into the B2 byte positions of the following frame. BIP-24 errors may be continuously inserted under register control for diagnostic purposes.

Line RDI Insert

The Line RDI Insert Block controls the insertion of line remote defect indication. Line RDI insertion is enabled through register control. Line RDI is inserted by transmitting the code 110 (binary) in bit positions 6, 7, and 8 of the K2 byte contained in the transmit stream.

Line FEBE Insert

The Line FEBE Insert Block accumulates line BIP-24 errors (B2) detected by the Receive Line Overhead Processor and encodes far end block error indications in the transmit Z2 byte.

10.11 Transmit Path Overhead Processor (TPOP)

The Transmit Path Overhead Processor (TPOP) provides transport frame alignment generation, pointer generation (H1, H2), path overhead insertion and the insertion of path level alarm signals.

Pointer Generator

The Pointer Generator Block generates the outgoing payload pointer (H1, H2) as specified in the references. The concatenation indication (the NDF field set to 1001, I-bits and D-bits set to all ones, and unused bits set to all zeros) is inserted in the second and third pointer byte locations in the transmit stream.

- (1) A "normal pointer value" locates the start of the SPE. Note: $0 \leq \text{"normal pointer value"} \leq 782$, and the new data flag (NDF) field is set to 0110. Note that values greater than 782 may be inserted, using internal registers, to generate a loss of pointer alarm in downstream circuitry.
- (2) Arbitrary "pointer values" may be generated using internal registers. These new values may optionally be accompanied by a programmable new data flag. New data flags may also be generated independently using internal registers.
- (3) Positive pointer movements may be generated using a bit in an internal register. A positive pointer movement is generated by inverting the five I-bits of the pointer word. The SPE is not inserted during the positive stuff opportunity byte position, and the pointer value is incremented by one. Positive pointer movements may be inserted once per frame for diagnostic purposes.
- (4) Negative pointer movements may be generated using a bit in an internal register. A negative pointer movement is generated by inverting the five D-bits of the pointer word. The SPE is inserted during the negative stuff opportunity byte position, the H3 byte, and the pointer value is decremented by one. Negative pointer movements may be inserted once per frame for diagnostic purposes.

The pointer value is used to insert the path overhead into the transmit stream. The current pointer value may be read via internal registers.

BIP-8 Calculate

The BIP-8 Calculate Block performs a path bit interleaved parity calculation on the SPE of the transmit stream. Details are provided in the references. The resulting parity byte is inserted in the path BIP-8 (B3) byte position of the subsequent frame. BIP-8 errors may be continuously inserted under register control for diagnostic purposes.

FEBE Calculate

The FEBE Calculate Block accumulates far end block errors on a per frame basis, and inserts the accumulated value (up to maximum value of eight) in the FEBE bit positions of the path status (G1) byte. The FEBE information is derived from path BIP-8 errors detected by the receive path overhead processor, RPOP. Far end block errors may be inserted under register control for diagnostic purposes.

10.12 Transmit ATM Cell Processor (TXCP)

The Transmit ATM Cell Processor (TXCP) provides rate adaptation via idle/unassigned cell insertion, provides HCS generation and insertion, and performs ATM cell scrambling. An idle or unassigned cell is transmitted if a complete ATM cell has not been written into the transmit FIFO.

Idle/Unassigned Cell Generator

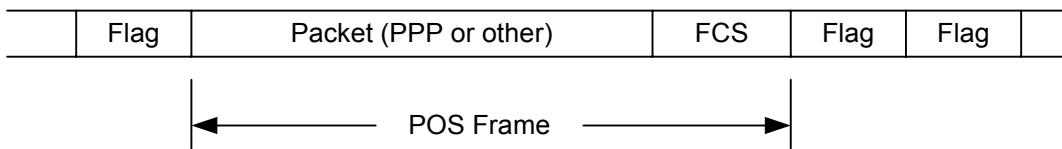
The Idle/Unassigned Cell Generator inserts idle or unassigned cells into the cell stream when enabled. Registers are provided to program the GFC, PTI, and CLP fields of the idle cell header and the idle cell payload. The idle cell HCS is automatically calculated and inserted.

Scrambler

The Scrambler scrambles the 48 octet information field. Scrambling is performed using a parallel implementation of the self-synchronous scrambler ($x^{43} + 1$ polynomial). The cell headers are transmitted unscrambled, and the scrambler may optionally be disabled.

HCS Generator

The HCS Generator performs a CRC-8 calculation over the first four header octets. A parallel implementation of the polynomial, x^8+x^2+x+1 , is used. The coset polynomial, $x^6+x^4+x^2+1$, is added (modulo 2) to the residue. The HCS Generator optionally inserts the result into the fifth octet of the header.


10.13 Transmit POS Frame Processor (TXFP)

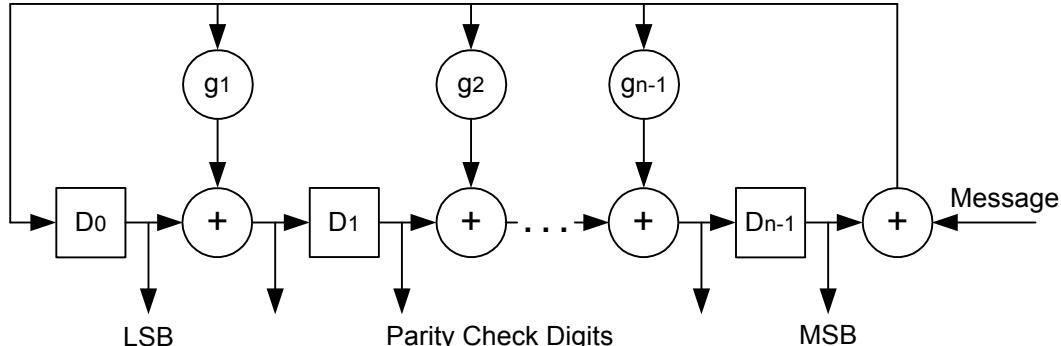
The Transmit POS Frame Processor (TXFP) provides rate adaptation by transmitting flag sequences (0x7E) between packets, provides FCS generation and insertion, performs packet data scrambling, and provides performance monitoring functions.

POS Frame Generator

The POS Frame Generator runs off of the SONET/SDH sequencer to create the POS frames to be transmitted, whose format is shown in Figure 9. Flags are inserted whenever the Transmit FIFO is empty and there is no data to transmit. When there is enough data to be transmitted, the block operates normally; it removes packets from the Transmit FIFO and transmits them. In addition, FCS generation, error insertion, byte stuffing, and scrambling can be optionally enabled.

Figure 9: Packet Over SONET/SDH Frame Format

In the event of a FIFO underflow caused by the FIFO being empty while a packet is being transmitted, the packet is aborted by transmitting the Abort Sequence. The Abort Sequence consists of an Escape Control character (0x7D) followed by the Flag Sequence (0x7E). Bytes associated with this aborted frame are still read from the FIFO but are discarded and replaced with the Flag Sequence in the outgoing data stream. Transmission of data resumes a start of the next packet is encountered in the FIFO data stream.


The POS Frame Generator also performs inter-packet gaping. This operation consists of inserting a programmable number of Flag Sequence characters between each POS frame transmission. This feature allows to control the system effective data transmission rate if required.

For correct operation, the TXFP only supports packets ranging in size from 2 bytes to 65534 bytes in length.

FCS Generator

The FCS Generator performs a CRC-CCITT or CRC-32 calculation on the whole POS frame, before byte stuffing and data scrambling. A parallel implementation of the CRC polynomial is used. The CRC algorithm for the frame checking sequence (FCS) field is either a CRC-CCITT or CRC-32 function. The CRC-CCITT is two bytes in size and has a generating polynomial $g(x) = 1 + x^5 + x^{12} + x^{16}$. The CRC-32 is four bytes in size and has a generating polynomial $g(x) = 1 + x + x^2 + x^4 + x^5 + x^7 + x^8 + x^{10} + x^{11} + x^{12} + x^{16} + x^{22} + x^{23} + x^{26} + x^{32}$. The first FCS bit transmitted is the coefficient of the highest term. When transmitting a packet from the Transmit FIFO, the FCS Generator appends the result after the last data byte, before the closing flag. Note that the Frame Check Sequence is the one's complement of the CRC register after calculation ends. FCS calculation and insertion can be disabled.

Figure 10: CRC Generator

An error insertion mechanism is provided for system diagnosis purposes. Error insertion is performed by inverting the resulting FCS value, before transmission. This should cause an FCS Error at the far end.

Byte Stuffing

The POS Frame generator provides transparency by performing byte stuffing. This operation is done after the FCS calculation. Two characters are being escaped, the Flag Sequence (0x7E) and the Escape Character itself (0x7D). When a character is being escaped, it is XORed with 0x20 before transmission and preceded by the Control Escape (0x7D) character.

Table 4: HDLC Byte Sequences

Data Value	Sequence
0x7E (Flag Sequence)	0x7D 0x5E
0x7D (Control Escape)	0x7D 0x5D
HDLC Abort Sequence	0x7D 0x7E

Data Scrambling

The Scrambler will optionally scramble the whole packet data, including the FCS and the flags. Scrambling is performed after the POS frame is formed using a parallel implementation of the self-synchronous scrambler polynomial, $x^{43}+1$. On reset, the scrambler is set to all ones to ensure scrambling on start-up. The scrambler may optionally be completely disabled. Data scrambling can provide for a more robust system preventing the injection of hostile patterns into the data stream.

SONET/SDH Framer

The SONET/SDH Framer gaps the POS frames in order to insert the SONET/SDH framing and overhead bytes (Section/Line Overhead and Path Overhead). The framer uses framing alignment information provided by the TPOP TSB to perform its function. The TXFP does not set any SONET/SDH overhead bytes.

10.14 SONET/SDH Path Trace Buffer (SPTB)

The SONET/SDH Section Trace Buffer (SPTB) block can handle both 64-byte CLLI messages in SONET and 16-byte E.164 messages in SDH. This block operates similarly to the SONET/SDH Section Trace Buffer (SSTB) except the C2 byte is also processed.

Receive Trace Message Receiver

When TIMODE is low, the Trace Message Receiver (TMR) captures the received path trace identifier message (J1 byte) into microprocessor readable register. It contains three pages of trace message memory. They are the capture page, the accepted page and the expected page. Path trace identifier data bytes from the receive stream are written into the capture page. The expected identifier message is written by the microprocessor into the expected page.

On receipt of a trace identifier byte, it is written into next location in the capture page. The received byte is compared with the data from the previous message in

the capture page. An identifier message is accepted if it is received unchanged three times, or optionally, five times. The accepted message is then compared with the expected message. If the current message differs from the previous message for eight consecutive messages, the received message is declared unstable. The received message is declared stable when the received message passes the persistency criterion (three or five identical receptions) for being accepted. An interrupt may be optionally generated on entry to and exit from the unstable state.

The length of the path trace identifier message is selectable between 16 bytes and 64 bytes. When programmed for 16 byte messages, the path trace buffer synchronizes to the byte with the most significant bit set to high and places the byte at the first location in the capture page. When programmed for 64 byte messages, the path trace buffer synchronizes to the trailing carriage return (CR = 0DH), line feed (LF = 0AH) sequence and places the next byte at the head of the capture page. This enables the path trace message to be appropriately aligned for interpretation by the microprocessor. Synchronization may be disabled, in which case, the memory acts as a circular buffer.

When TIMODE is high, a stable message is declared when forty eight of the same path trace identifier message (J1) bytes are received. Once in the stable state, an unstable state is declared when one or more errors are detected in three consecutive sixteen byte windows.

Transmit Trace Buffer

The Trace Transmit Buffer (TTB) sources the 16-byte or 64-byte trace identifier message. The TTB contains one page of transmit trace identifier message memory. Identifier message data bytes are written by the microprocessor into the message buffer and inserted in the transmit stream. When the microprocessor is updating the transmit page buffer, the TTB may be programmed to transmit null characters to prevent transmission of partial messages.

Overhead Byte Receiver

The path signal label (PSL) found in the path overhead byte (C2) is processed. Two detection algorithms are implemented for the declaration of path signal label mismatch.

When PSLMODE is low, an incoming PSL is accepted when it is received unchanged for five consecutive frames. The accepted PSL is compared with the provisioned value. The PSL alarm declarations are determined by Table 5.

Each time an incoming PSL differs from the one in the previous frame, the PSL unstable counter is incremented. Thus, a single bit error in the PSL in a sequence of constant PSL values will cause the counter to increment twice, once on the errored PSL and again on the first error-free PSL. The incoming PSL is considered unstable, when the counter reaches five. The counter is cleared when the same PSL is received for five consecutive frames.

Table 5: Path Signal Label Mismatch Mechanism

Expect	Receive	Action
00	00	Match
00	01	Mismatch
00	XX	Mismatch
01	00	Mismatch
01	01	Match
01	XX	Match
XX	00	Mismatch
XX	01	Match
XX	XX	Match
XX	YY	Mismatch

Note: XX, YY are equal to anything except 0x00 or 0x01 and are not equal to each other.

When PSLMODE is high, the receive path signal mismatch alarm is declared based on the declaration of a match or mismatch between the received label and the expected label. The mismatch is set when five consecutive mismatches are declared. The mismatch is cleared when five consecutive matches are declared. Table 6 shows the alarm declarations determined by the different received and expected labels.

Table 6: Path Signal Label Mismatch Mechanism

Expect	Receive	Action
00	00	Unequipped
00	01	Mismatch
00	XX	Mismatch

01	00	Unequipped
01	01	Match
01	XX	Match
XX	00	Unequipped
XX	01	Match
XX	XX	Match
XX	YY	Mismatch

Note: XX, YY are equal to anything except 0x00 or 0x01 and are not equal to each other.

10.15 SONET/SDH Section Trace Buffer (SSTB)

The SONET/SDH Section Trace Buffer (SSTB) block can handle both 64-byte CLLI messages in SONET and 16-byte E.164 messages in SDH. This block operates similarly to the SONET/SDH Path Trace Buffer (SPTB).

Receive Trace Message Receiver

When TIMODE is low, the Trace Message Receiver (TMR) captures the received section trace identifier message (J0 byte) into microprocessor readable register. It contains three pages of trace message memory. They are the capture page, the accepted page and the expected page. Section trace identifier data bytes from the receive stream are written into the capture page. The expected identifier message is written by the microprocessor into the expected page.

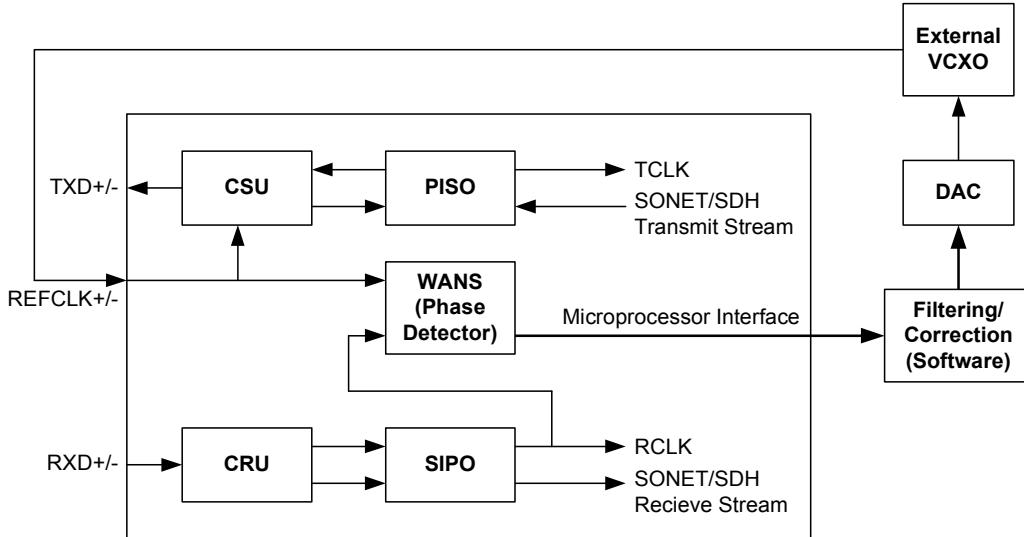
On receipt of a trace identifier byte, it is written into next location in the capture page. The received byte is compared with the data from the previous message in the capture page. An identifier message is accepted if it is received unchanged three times, or optionally, five times. The accepted message is then compared with the expected message. If the current message differs from the previous message for eight consecutive messages, the received message is declared unstable. The received message is declared stable when the received message passes the persistency criterion (three or five identical receptions) for being accepted. An interrupt may be optionally generated on entry to and exit from the unstable state.

The length of the section trace identifier message is selectable between 16 bytes and 64 bytes. When programmed for 16 byte messages, the section trace buffer synchronizes to the byte with the most significant bit set to high and places the

byte at the first location in the capture page. When programmed for 64 byte messages, the section trace buffer synchronizes to the trailing carriage return (CR = 0DH), line feed (LF = 0AH) sequence and places the next byte at the head of the capture page. This enables the section trace message to be appropriately aligned for interpretation by the microprocessor. Synchronization may be disabled, in which case, the memory acts as a circular buffer.

When TIMODE is high, a stable message is declared when forty eight of the same section trace identifier message (J0) bytes are received. Once in the stable state, an unstable state is declared when one or more errors are detected in three consecutive sixteen byte windows.

Transmit Trace Buffer (TTB)


The TTB sources the 16-byte or 64-byte trace identifier message. The TTB contains one page of transmit trace identifier message memory. Identifier message data bytes are written by the microprocessor into the message buffer and inserted in the transmit stream. When the microprocessor is updating the transmit page buffer, the TTB may be programmed to transmit null characters to prevent transmission of partial messages.

10.16 WAN Synchronization Controller (WANS)

The WANS provides hardware support to implement a local clock reference compliant to SONET/SDH Stratum 3 clock specifications (GR-253-CORE & GR-1244-CORE) in wander transfer, long term and holdover stability. The WANS block is intended to be used in conjunction with an external processor, digital to analog converter (DAC), analog circuitry and voltage control crystal oscillator (VCXO).

In general, WANS block implements the phase detector of a phase lock loop structure which relies on an external processor and a VCXO to produce the Stratum 3 clock as shown in Figure 11. The WANS performs a digital phase comparison between the recovered receive clock (receive line rate clock from a clock recovery unit) and the reference clock used to generate the transmit stream for all channels (REFCLK+/- supplied by the VCXO).

Figure 11. WANS PLL Block Diagram

The software running on the external processor is responsible for performing: digital loop filtering, temperature compensation, VCXO linearity compensation; determining the validity of the timing reference; and performing reference switchover. The VCXO creates the 77.76 MHz Stratum 3 reference clock which the CSU will synthesize to the desired 155.52 MHz transmit clock.

Thus, the WANS PLL structure can phase lock the SONET/SDH transmit serial stream to the SONET/SDH receive serial stream. With appropriate software filtering and compensation, the device may meet SONET/SDH Stratum 3 clock specifications (GR-253-CORE & GR-1244-CORE) in wander transfer, long term and holdover stability.

A description of how to program and use the WANS feature is available in the S/UNI-16x155 reference design (PMC-200-0506). A description of the functionality supplied by the WANS block is given below.

Phase Comparison

The phase comparison between the receive recovered clock (RCLK) and the transmit reference clock (REFCLK+/-) is implemented by sampling, at a fixed interval specified by the Reference Counter, the output of the Phase Counter. The Reference Counter is clocked by RCLK while the Phase Counter is clocked by the REFCLK+/- clock.

Successive reading of the value obtained, referred to as the phase sample (PHSAMP), can be used to calculate the phase relation between both clocks. Both the Reference Counter and the Phase Counter are programmable counters

and are set to have equal cycle period. Therefore, if REFCLK+/- was phased locked to RCLK, successive readings of the phase sample would be equal. The phase sample value will increase or decrease depending if REFCLK+/- is faster or slower than RCLK.

At each reference period, a signal enabling the sampling (SAMPLEN) of the Phase Counter is produced. This signal is resynchronized to REFCLK+/- to avoid any potential metastability problem that could result due to the asynchronous nature of both clocks.

Phase Reacquisition Control

The Phase Reacquisition Control circuit prevents using the phase sample from both sides of the counter wrap-around point when performing the Phase Sample averaging. The Phase Count is first divided in four quadrants, each equal to approximately a quarter of the Phase Count. Comparators are used to determine in which quadrant each phase sample is located. When two successive samples (one in the first quadrant and the other in the last quadrant) are seen, the Reference Phase Alignment Flag (RPHALFLG) is generated.

Upon reception of this signal, the Phase Counter is reset to align the phase count sampling point towards its middle count. This signal is also sent to the Phase Averager circuit. The generation of this signal may be squelched by setting the AUTOREAC bit of the WANS configuration register.

Phase Averager

To provide some noise immunity and improve the resolution of the phase detector algorithm of the WANS, the phase samples are averaged over a programmable number of samples.

Although referred to as an averaging process, it is truly an accumulation process. It retains full resolution, i.e. no division is performed on the accumulated value. The Phase Word includes an integer and a fractional part. The number of averaging samples sets the size of the fractional part.

A programmable counter, the Sample Counter, is incremented at each SAMPLEN signal. This Sample Counter defines the Phase Averaging Period, equal to the Reference Period times the programmed number of phase samples. At the end of this period, the accumulated phase sample value is transferred to the Phase Word register. The Phase Word (PHAWORD) is then accessible by an external processor. A timer flag (TIMFLG) is raised at the end of each averaging period. The flag may be used to generate an interrupt request to an external processor.

Because it indicates that the averaging process includes invalid sample values, the RPHALFLG signal also prevents the Phase Word register from being updated at the end of the current Phase Averaging period. The RPHAFLG signal indicates this event by sending the Reference Phase Alignment condition signal (RPHALGN) to the CBI status register. The RPHALGN signal is reset at the end of the following valid Phase Averaging period.

10.17 ATM UTOPIA and Packet over SONET/SDH POS-PHY System Interfaces

The S/UNI-16x155 system interface can be configured for UTOPIA or POS-PHY modes of operation.

When configured for UTOPIA operation, the S/UNI-16x155 implements a multi-PHY UTOPIA Level 3 interface to allow the transfer of ATM cells between the ATM layer device and the S/UNI-16x155.

When configured for POS-PHY operation, the S/UNI-16x155 implements a multi-PHY POS-PHY Level 3 interface. In this mode, the S/UNI-16x155 supports POS applications or applications requiring a mix of channels provisioned for POS and ATM operation. In this mixed operation, ATM cells are transferred as fixed-length packets over the POS-PHY Level 3 interface.

Receive UTOPIA Level 3 Interface

The Receive UTOPIA/POS-PHY Level 3 Interface (RUL3) provides FIFO management at the S/UNI-16x155 receive cell interface during UTOPIA Level 3 operation. Each channel receive FIFO may contain up to four cells. The FIFO provides the cell rate decoupling function between the transmission system physical layer and the ATM layer.

In general, the management functions include filling the receive FIFO, indicating when the receive FIFO contains cells, maintaining the receive FIFO read and write pointers, and detecting FIFO overrun conditions.

The UTOPIA Level 3 compliant interface accepts a read clock (RFCLK) and read enable signal (RENB). The RADR[3:0] bus with RCA is used to poll the channel FIFOs for fill status. As well, channels are selected using the RADR[3:0] and falling edge of RENB. The interface indicates the start of a cell (RSOC) when data is read on the receive RDAT[31:0] bus. The RPRTY signal reports the parity on the RDAT[31:0] bus (selectable as odd or even parity). This interface also indicates FIFO overruns via a maskable interrupt and register bits.

Receive POS-PHY Level 3 Interface

The Receive UTOPIA/POS-PHY Level 3 Interface (RUL3) provides FIFO management at the S/UNI-16x155 receive interface during POS-PHY Level 3 operation. Each channel receive FIFO contains 256 bytes. The FIFO provides the system rate decoupling function between the transmission system physical layer and the link layer, and to handle timing differences caused by the removal of escape characters.

In general, the management functions include filling the receive FIFO, indicating when the receive FIFO contains packet data or cells, maintaining the receive FIFO read and write pointers, and detecting FIFO overrun conditions.

The interface accepts a read clock (RFCLK) and read enable signal (RENB) when data is read from the receive FIFO (using the rising edge of the RFCLK). The start of packet RSOP marks the first byte of receive packet data on the RDAT[31:0]. The RPRTY signal determine the parity on the RDAT[31:0] bus (selectable as odd or even parity). The end of a packet is indicated by the REOP signal with the RMOD[1:0] signals indicating the number of valid bytes on RDAT[31:0]. Signal RERR is provided to indicate that an error in the received packet has occurred (the error may have several causes include an abort sequence or a FCS error).

The RVAL signal is used to indicate when RSOP, REOP, RERR, RMOD[1:0] and RDAT[31:0] are valid. This interface also indicates FIFO overruns via a maskable interrupt and register bits. Read accesses while RVAL is low are ignored and will output invalid data. RVAL will not assert until RENB is asserted.

Transmit UTOPIA Level 3 Interface

The Transmit UTOPIA/POS-PHY Level 3 Interface (TUL3) provides FIFO management and the S/UNI-16x155 transmit cell interface. Each channel receive FIFO may contain up to four cells. The FIFO depth may be programmed from 4 to 1 cells. The FIFO provides the cell rate decoupling function between the transmission system physical layer and the ATM layer.

In general, the management functions include emptying cells from the transmit FIFO, indicating when the transmit FIFO is full, maintaining the transmit FIFO read and write pointers and detecting a FIFO overrun condition.

The UTOPIA Level 3 compliant interface accepts a write clock (TFCLK), a write enable signal (TENB), the start of a cell (TSOC) indication and the parity bit (TPRTY) when data is written to the transmit. The TADR[3:0] bus with TCA is used to poll the channel FIFOs for fill status. As well, channels are selected

using the TADR[3:0] and falling edge of TENB. To reduce FIFO latency, the FIFO depth at which TCA indicates “full” can be set to one, two, three or four cells by the FIFODP[1:0] bits of the TUL3. If the programmed depth is less than 16, more than one cell may be written after TCA is asserted as the TUL3 still allows 16 cells to be stored in its FIFO.

The interface also indicates FIFO overruns via a maskable interrupt and register bits. The TXCP automatically transmits idle cells until a full cell is available to be transmitted.

Transmit POS-PHY Level 3 Interface

The Transmit UTOPIA/POS-PHY Level 3 Interface (TUL3) provides FIFO management at the S/UNI-16x155 transmit packet interface. Each channel transmit FIFO contains 256 bytes. The FIFO provides the system rate decoupling function between the transmission system physical layer and the link layer, and to handle timing differences caused by the insertion of escape characters.

The POS-PHY Level 3 compliant interface accepts a write clock (TFCLK), a write enable signal (TENB), the start of packet (TSOP) indication, the end of packet (TEOP) indication, errored packet (TERR) indication and the parity bit (TPRTY) when data is written to the transmit FIFO (using the rising edges of the TFCLK). The TADR[3:0] bus with TPA is used to poll the channel FIFOs for fill status. As well, channels are selected using the TADR[3:0] and falling edge of TENB. The POS processor will not start transmitting a packet until a programmable number of bytes for a single packet or the entire packet is in the FIFO. A packet may be aborted by asserting the TERR signal at the end of the packet.

The interface also indicates FIFO overruns via a maskable interrupt and register bits. The TXFP automatically transmits idle flag characters until sufficient data is available in the transmit FIFO to start transmission.

10.18 Transmit APS Interface

The Transmit APS interface allows two S/UNI-16x155 devices to exchange SONET/SDH path data streams. The transmit interface generates a SONET/SDH serial data stream with valid section and path overheads. This allows performance monitoring and alarm generation to be done in a similar manner to the serial line side interfaces.

The APS path information may be sourced from the receive side of a channel (RSOP/RLOP) or from the transmit side of a channel (TPOP/TXFP/TXCP/TUL3).

APS Parallel to Serial Converter

The APS Parallel to Serial Converter (APISO) converts each transmit APS byte serial stream to a bit serial stream. The transmit bit serial stream appears on the APSO[3:0]+/- PECL outputs.

10.19 Transmit APS Overhead Processor

The Transmit APS Overhead Processor (TAOP) provides frame pattern insertion (A1, A2), scrambling and section BIP-8 (B1) insertion on the APS output stream. The processor is similar to a Transmit Section Overhead processor (TSOP) except some features of the TSOP are not supported.

Data Link Insert

The section DCC bytes (D1, D2 and D3) are used to imbed the transport alarm (section and/or line alarms) status of the path data into the APS stream. When the section or line overheads of the path data stream is in alarm condition (LOS, LOF, LAIS, LRDI or LOP), the DCC bytes are set to all ones (0xFF). The DCC bytes are set to all zeros (0x00) when the section and line overheads of the path data stream are not in alarm condition.

BIP-8 Insert

The BIP-8 calculation is based on the scrambled data of the complete APS frame. The section BIP-8 code is based on a bit interleaved parity calculation using even parity. Details are provided in the references. The calculated BIP-8 code is then inserted into the B1 byte of the following frame before scrambling. BIP-8 errors may be continuously inserted under register control for diagnostic purposes.

Framing and Identity Insert

The Framing and Identity Insert Block inserts the framing bytes (A1, A2) into the APS frame. Framing bit errors may be continuously inserted under register control for diagnostic purposes.

Scrambler

The Scrambler Block utilizes a frame synchronous scrambler to process the transmit stream when enabled through an internal register accessed via the microprocessor interface. The generating polynomial is $x^7 + x^6 + 1$. Precise details of the scrambling operation are provided in the references. Note that the

framing bytes are not scrambled. All zeros may be continuously inserted (after scrambling) under register control for diagnostic purposes.

10.20 SONET/SDH Path Aligner

The SONET/SDH Path Aligner (STAL) synchronizes the transmit APS path data streams to the CSU transmit clock domain. All APS bit serial interfaces are transmitted using the synthesized 622.08 MHz clock from the CSU and require all APS path data streams to be aligned to this clock domain.

Frequency offsets (due to receive path information) and phase differences (due to normal network operation) between a channel's path stream and the APS stream are accommodated by pointer adjustments on the APS stream. The alignment is accomplished by recalculating the SONET/SDH payload pointer value based on the offset between transport overhead of the path data stream and the outgoing APS data stream.

Since each STAL only processes a STS-1/STM-0 pointer, each APS interface uses four master STAL blocks to process the four concatenated payload pointers and 8 other slave STAL blocks to handle the remaining STS-3c/STM-1 data streams.

10.21 Receive APS Interface

The Receive APS interface (RAPS) allows two S/UNI-16x155 devices to exchange SONET/SDH path data streams. The receive interface accepts a SONET/SDH serial data stream with valid section and path overheads ignoring all line overhead information. This allows performance monitoring and alarm generation to be done in a similar manner to the serial line side interfaces.

The APS path information may be terminated by the receive side of a channel (RPOP/RXCP/RXFP/RUL3) or inserted into the transmit side of a channel (TSOP/TLOP).

APS Data Recovery Unit

The data recovery unit (DRU) recovers the data from the incoming 622Mbit/s APS serial stream. The DRU adapts the 622.08 MHz free running clock from the CSU to recover the incoming APS bit serial. In order for the DRU to lock to the incoming stream, the APS link must be frequency locked to the CSU 622.08 MHz clock. Low frequency jitter, such as temperature induced wander, may be tracked by the DRU.

The typical jitter tolerance performance of an APS interface is shown in Figure 12. Note that for frequencies below 300Hz, the jitter tolerance is greater than 22 UIpp; 22UIpp is the maximum jitter tolerance of the test equipment.

Figure 12: Typical APS DRU Jitter Tolerance

TBD

APS FIFO

The receive APS FIFO is a 16 byte FIFO which allows a receive APS link to tolerate low frequency jitter. Since the DRU tracks low frequency phase variations around the 622.08 MHz CSU clock derived from reference clock REFCLK, the APS FIFO synchronizes the APS data stream to the local REFCLK domain. Further downstream processing of the APS stream is performed on the REFCLK clock domain.

APS Serial to Parallel Converter

The APS Serial to Parallel Converter (SIPO) searches for the initial SONET/SDH framing pattern in the receive APS stream, and performs serial to parallel conversion on octet boundaries.

While out of frame, the SIPO block monitors the recovered APS data stream for an occurrence of a A1 byte. The SIPO adjusts its byte alignment of the serial-to-parallel converter when three consecutive A1 bytes followed by three consecutive A2 bytes occur in the data stream. The SIPO informs the RAOP Framer block when this framing pattern has been detected to reinitializes the RAOP to the new frame alignment.

While in frame, the SIPO maintains the byte alignment APS data stream until AROP declares out of frame.

10.22 Receive APS Overhead Processor

The Receive APS Overhead Processor (RAOP) provides frame synchronization, descrambling, section level alarm and performance monitoring. The processor is similar to a Receive Section Overhead processor (RSOP) except some features of the RSOP are not supported.

Framer

The Framer Block determines the in-frame/out-of-frame status of the receive APS stream. While in-frame, the framing bytes (A1, A2) in each frame are compared against the expected pattern. Out-of-frame is declared when four consecutive frames containing one or more framing pattern errors have been received.

While out of frame, the RAPS block monitors the bit-serial APS data stream for an occurrence of the framing pattern (A1, A2). The RAPS informs the RAOP Framer block when three A1 bytes followed by three A2 bytes has been detected to reinitializes the frame byte counter to the new alignment. The Framer block declares frame alignment on the next SONET/SDH frame when either all A1 and A2 bytes are seen error-free or when only the first A1 byte and the first four bits of the last A2 byte are seen error-free depending upon the selected framing algorithm.

Once in frame, the Framer block monitors the framing pattern sequence and declares out of frame (OOF) when one or more bits errors in each framing pattern are detected for four consecutive frames. Again, depending upon the algorithm either all framing bytes are examined for bit errors each frame, or only the first A1 byte and the first four bits of the last A2 byte are examined for bit errors each frame.

Descramble

The Descramble Block utilizes a frame synchronous descrambler to process the receive stream. The generating polynomial is $x^7 + x^6 + 1$ and the sequence length is 127. Details of the descrambling operation are provided in the references. Note that the framing bytes (A1 and A2) are not descrambled. A register bit is provided to disable the descrambling operation.

Data Link Extract

The section DCC bytes (D1, D2 and D3) are used to indicate transport alarm (section and/or line alarms) status of the path data stream. When 3 of 5 bits of the DCC data stream are high, the path data stream is in transport alarm condition (LOS, LOF, LAIS, LRDI or LOP). When 3 of 5 bits of the DCC data stream are low, the path data stream is not in alarm condition.

When the APS path data stream is used by the transmit serial interface (transmit path bridged from a remote S/UNI-16x155 to a transmit channel), a transport alarm will cause path AIS to be inserted in the transmit direction.

When the APS path data stream is terminated by the receive serial interface (receive path from a remove S/UNI-16x155 selected by a receive channel), a transport alarm will affect the AUTOPRDI function in the path transmit direction.

Error Monitor

The Error Monitor Block calculates the received section BIP-8 error detection code (B1) based on the scrambled data of the complete SONET/SDH frame. The section BIP-8 code is based on a bit interleaved parity calculation using even parity. The calculated BIP-8 code is compared with the BIP-8 code extracted from the B1 byte of the following frame. Differences indicate that a section level bit error has occurred. Up to 64000 (8 x 8000) bit errors can be detected per second.

The Error Monitor Block accumulates these section level bit errors in a 16-bit saturating counter that can be read via the microprocessor interface. Circuitry is provided to latch this counter so that its value can be read while simultaneously resetting the internal counter to 0 or 1, if appropriate, so that a new period of accumulation can begin without loss of any events. It is intended that this counter be polled at least once per second so as not to miss bit error events.

Loss of Signal

The Loss of Signal Block monitors the scrambled data of the receive stream for the absence of 1's or 0's. When $20 \pm 3 \mu s$ of all zeros patterns or all ones patterns are detected, a loss of signal (LOS) is declared. Loss of signal is cleared when two valid framing words are detected and during the intervening time, no loss of signal condition is detected. The APS path stream is forced to all ones (PAIS) when LOS occurs.

Loss of Frame

The Loss of Frame Block monitors the in-frame / out-of-frame status of the Framer Block. A loss of frame (LOF) is declared when an out-of-frame (OOF) condition persists for 3 ms. The LOF is cleared when an in-frame condition persists for a period of 3 ms. To provide for intermittent out-of-frame (or in-frame) conditions, the 3 ms timer is not reset to zero until an in-frame (or out-of-frame) condition persists for 3 ms. The APS path stream is forced to all ones (PAIS) when OOF or LOF occurs.

10.23 Channel Cross Connect

The Channel Cross Connect allows channels to exchange path information with other channels as well as exchange path information with the APS serial

interface. For all configurations, the transmit and receive path processors (RPOP and TPOP) of a given channel are a matched set and exchange path FEBE and RDI information.

In the transmit direction, the cross connect allows two channels to transmit identical path information (bridge) and/or allow channels to transmit receive APS path data streams (protection channel function).

In the receive direction, the cross connect allows a receive path processor (RPOP) to select between receive channels (select between working and protection channels) or select between receive channels and APS path data streams (select between working and protection channels).

10.24 JTAG Test Access Port

The JTAG Test Access Port block provides JTAG support for boundary scan. The standard JTAG EXTEST, SAMPLE, BYPASS, IDCODE and STCTEST instructions are supported. The S/UNI-16x155 identification code is 0x053820CD hexadecimal.

10.25 Microprocessor Interface

The microprocessor interface block provides normal and test mode registers, and the logic required to connect to the microprocessor interface. The normal mode registers are required for normal operation, and test mode registers are used to enhance the testability of the S/UNI-16x155. In the following section every register is documented and identified using the register number.

Table 7: Top Level Register Memory Map

Address	Register Description
000	S/UNI-16x155 Master Reset and Identity
001	S/UNI-16x155 Master Configuration
002	RESERVED
003	S/UNI-16x155 Clock Monitors
004-0FF	Channel #0 Configuration and Status Registers
100	S/UNI-16x155 Master Interrupt Status #1
101	S/UNI-16x155 Master Interrupt Status #2
102	S/UNI-16x155 Master Interrupt Status #2
103	Reserved
104-1FF	Channel #1 Configuration and Status Registers
200-203	Reserved

Address	Register Description
204-2FF	Channel #2 Configuration and Status Registers
300-303	Reserved
304-3FF	Channel #3 Configuration and Status Registers
400-403	Reserved
404-4FF	Channel #4 Configuration and Status Registers
500-503	Reserved
504-5FF	Channel #5 Configuration and Status Registers
600-603	Reserved
604-6FF	Channel #6 Configuration and Status Registers
700-703	Reserved
704-7FF	Channel #7 Configuration and Status Registers
800-803	Reserved
804-8FF	Channel #8 Configuration and Status Registers
900-903	Reserved
904-9FF	Channel #9 Configuration and Status Registers
A00-A03	Reserved
A04-AFF	Channel #10 Configuration and Status Registers
B00-B03	Reserved
B04-BFF	Channel #11 Configuration and Status Registers
C00-C03	Reserved
C04-CFF	Channel #12 Configuration and Status Registers
D00-D03	Reserved
D04-DFF	Channel #13 Configuration and Status Registers
E00-E03	Reserved
E04-EFF	Channel #14 Configuration and Status Registers
F00-F03	Reserved
F04-FFF	Channel #15 Configuration and Status Registers
1000	S/UNI-16x155 Clock Source Configuration
1001	S/UNI-16x155 DCC Interface Configuration #1
1002	S/UNI-16x155 DCC Interface Configuration #2
1003	Reserved
1004-10FF	System and APS Interface Configuration and Status Registers
1100	CSPI Clock Synthesis Configuration
1101	CSPI Clock Synthesis Status

Address	Register Description
1102	CSPI Clock Synthesis Control #1
1103	CSPI Clock Synthesis Control #2
1104-11FF	APS Cross Connect and Aligner Configuration and Status Registers
1200-1FFF	Unused
2000-3FFF	Reserved for Test

As shown by the top level register map in Table 7, each channel is represented by a repeat addressable structure. Table 8 describes every normal mode register for a channel's address space. The channel offset is shown for channel #0 with all other channels similarly located by the address spaces listed above.

Table 8: Per Channel Register Memory Map

Offset	Register Description
004	Channel Master Configuration #1
005	Channel Master Configuration #2
006	Channel Reset/Interrupt Status #1
007	Channel Interrupt Status #2
008	Channel Auto Line RDI Control
009	Channel Auto Path RDI Control
00A	Channel Auto Enhanced Path RDI Control
00B	Channel Receive RDI and Enhanced RDI Control
00C	Channel Receive Line AIS Control
00D	Channel Receive Path AIS Control
00E	Channel Receive Alarm Control #1
00F	Channel Receive Alarm Control #2
010	RSOP Control/Interrupt Enable
011	RSOP Status/Interrupt Status
012	RSOP Section BIP-8 LSB
013	RSOP Section BIP-8 MSB
014	TSOP Control
015	TSOP Diagnostic
016	TSOP Reserved
017	TSOP Reserved
018	RLOP Control/Status

Offset	Register Description
019	RLOP Interrupt Enable/Interrupt Status
01A	RLOP Line BIP-24 LSB
01B	RLOP Line BIP-24
01C	RLOP Line BIP-24 MSB
01D	RLOP Line FEBE LSB
01E	RLOP Line FEBE
01F	RLOP Line FEBE MSB
020	TLOP Control
021	TLOP Diagnostic
022	TLOP Transmit K1
023	TLOP Transmit K2
024	TLOP Transmit Synchronization Message (S1)
025	TLOP Transmit J0/Z0
026	Reserved
027	Reserved
028	SSTB Control
029	SSTB Section Trace Identifier Status
02A	SSTB Indirect Address Register
02B	SSTB Indirect Data Register
02C	SSTB Reserved
02D	SSTB Reserved
02E	SSTB Indirect Access Trigger Register
02F	SSTB Reserved
030	RPOP Status/Control (EXTD=0)
030	RPOP Status/Control (EXTD=1)
031	RPOP Interrupt Status (EXTD=0)
031	RPOP Interrupt Status (EXTD=1)
032	RPOP Pointer Interrupt Status
033	RPOP Interrupt Enable (EXTD=0)
033	RPOP Interrupt Enable (EXTD=1)
034	RPOP Pointer Interrupt Enable
035	RPOP Pointer LSB
036	RPOP Pointer MSB
037	RPOP Path Signal Label
038	RPOP Path BIP-8 LSB

Offset	Register Description
039	RPOP Path BIP-8 MSB
03A	RPOP Path FEBE LSB
03B	RPOP Path FEBE MSB
03C	RPOP RDI
03D	RPOP Ring Control
03E	RPOP Reserved
03F	RPOP Reserved
040	TPOP Control/Diagnostic
041	TPOP Pointer Control
042	TPOP Reserved
043	TPOP Current Pointer LSB
044	TPOP Current Pointer MSB
045	TPOP Arbitrary Pointer LSB
046	TPOP Arbitrary Pointer MSB
047	TPOP Path Trace
048	TPOP Path Signal Label
049	TPOP Path Status
04A	TPOP Reserved
04B	TPOP Reserved
04C	TPOP Reserved
04D	TPOP Reserved
04E	TPOP Concatenation LSB
04F	TPOP Concatenation MSB
050	SPTB Control
051	SPTB Path Trace Identifier Status
052	SPTB Indirect Address Register
053	SPTB Indirect Data Register
054	SPTB Expected Path Signal Label
055	SPTB Path Signal Label Status
056	SPTB Indirect Access Trigger Register
057	SPTB Reserved
058	DCRU Configuration
059	DCRU Reserved
05A	DCRU Reserved
05B	DCRU Reserved

Offset	Register Description
05C	CRSI Configuration
05D	CRSI Status
05E	CRSI Reserved
05F	CRSI Reserved
060	RXCP Configuration 1
061	RXCP Configuration 2
062	RXCP FIFO/UTOPIA Control and Configuration
063	RXCP Interrupt Enable and Counter Status
064	RXCP Status/Interrupt Status
065	RXCP LCD Count Threshold LSB
066	RXCP LCD Count Threshold MSB
067	RXCP Idle Cell Header Pattern
068	RXCP Idle Cell Header Mask
069	RXCP Corrected HCS Error Count
06A	RXCP Uncorrected HCS Error Count
06B	RXCP Received Cell Count LSB
06C	RXCP Received Cell Count
06D	RXCP Received Cell Count MSB
06E	RXCP Idle Cell Count LSB
06F	RXCP Idle Cell Count
070	RXCP Idle Cell Count MSB
071	RXCP Reserved
072	RXCP Reserved
073	RXCP Reserved
074	RXCP Reserved
075	RXCP Reserved
076	RXCP Reserved
077	RXCP Reserved
078	RXCP Reserved
079	RXCP Reserved
07A	RXCP Reserved
07B	RXCP Reserved
07C	RXCP Reserved
07D	RXCP Reserved
07E	RXCP Reserved

Offset	Register Description
07F	RXCP Reserved
080	TXCP Configuration 1
081	TXCP Configuration 2
082	TXCP Transmit Cell Status
083	TXCP Interrupt Enable/Status
084	TXCP Idle Cell Header Control
085	TXCP Idle Cell Payload Control
086	TXCP Transmit Cell Counter LSB
087	TXCP Transmit Cell Counter
088	TXCP Transmit Cell Counter MSB
089	RXCP Reserved
08A	RXCP Reserved
08B	RXCP Reserved
08C	RXCP Reserved
08D	RXCP Reserved
08E	RXCP Reserved
08F	RXCP Reserved
090	BIDX Reserved
091	BIDX Reserved
092-093	Unused
094	Receive Cell/Packet Count LSB
095	Receive Cell/Packet Count
096	Receive Cell/Packet Count MSB
097	Reserved
098	JAT Configuration #1
099	JAT Configuration #2
09A	JAT Reserved
09B	JAT Reserved
09C	Unused
09D-09F	Receive Performance Count
0A0	RXFP Configuration
0A1	RXFP Configuration/Interrupt Enable
0A2	RXFP Interrupt Status
0A3	RXFP Minimum Packet Length
0A4	RXFP Maximum Packet Length LSB

Offset	Register Description
0A5	RXFP Maximum Packet Length MSB
0A6	RXFP Receive Initiation Level
0A7	RXFP Reserved
0A8	RXFP Receive Byte Counter LSB
0A9	RXFP Receive Byte Counter
0AA	RXFP Receive Byte Counter
0AB	RXFP Receive Byte Counter MSB
0AC	RXFP Receive Frame Counter LSB
0AD	RXFP Receive Frame Counter
0AE	RXFP Receive Frame Counter MSB
0AF	RXFP Aborted Frame Count LSB
0B0	RXFP Aborted Frame Count MSB
0B1	RXFP FCS Error Frame Count LSB
0B2	RXFP FCS Error Frame Count MSB
0B3	RXFP Minimum Length Frame Count LSB
0B4	RXFP Minimum Length Frame Count MSB
0B5	RXFP Maximum Length Frame Count LSB
0B6	RXFP Maximum Length Frame Count MSB
0B7	RXFP Reserved
0B8	RXFP Reserved
0B9	RXFP Reserved
0BA	RXFP Reserved
0BB	RXFP Reserved
0BC	RXFP Reserved
0BD	RXFP Reserved
0BE	RXFP Reserved
0BF	RXFP Reserved
0C0	TXFP Interrupt Enable/Status
0C1	TXFP Configuration
0C2	TXFP Control
0C3	TXFP Reserved
0C4	TXFP Reserved
0C5	TXFP Transmit Byte Count LSB
0C6	TXFP Transmit Byte Count
0C7	TXFP Transmit Byte Count

Offset	Register Description
0C8	TXFP Transmit Byte Count MSB
0C9	TXFP Transmit Frame Count LSB
0CA	TXFP Transmit Frame Count
0CB	TXFP Transmit Frame Count MSB
0CC	TXFP Transmit User Aborted Frame Count LSB
0CD	TXFP Transmit User Aborted Frame Count MSB
0CE	TXFP Transmit Underrun Aborted Frame Count LSB
0CF	TXFP Transmit Underrun Aborted Frame Count MSB
0D0	WANS Configuration
0D1	WANS Interrupt and Status
0D2	WANS Phase Word LSB
0D3	WANS Phase Word
0D4	WANS Phase Word
0D5	WANS Phase Word MSB
0D6	WANS Reserved
0D7	WANS Reserved
0D8	WANS Reserved
0D9	WANS Reference Period LSB
0DA	WANS Reference Period MSB
0DB	WANS Phase Counter Period LSB
0DC	WANS Phase Counter Period MSB
0DD	WANS Phase Average Period
0DE	WANS Reserved
0DF	WANS Reserved
0E0	RASE Interrupt Enable
0E1	RASE Interrupt Status
0E2	RASE Configuration/Control
0E3	RASE SF BERM Accumulation Period LSB
0E4	RASE SF BERM Accumulation Period
0E5	RASE SF BERM Accumulation Period MSB
0E6	RASE SF BERM Saturation Threshold LSB
0E7	RASE SF BERM Saturation Threshold MSB
0E8	RASE SF BERM Declaring Threshold LSB
0E9	RASE SF BERM Declaring Threshold MSB
0EA	RASE SF BERM Clearing Threshold LSB

Offset	Register Description
0EB	RASE SF BERM Clearing Threshold MSB
0EC	RASE SD BERM Accumulation Period LSB
0ED	RASE SD BERM Accumulation Period
0EE	RASE SD BERM Accumulation Period MSB
0EF	RASE SD BERM Saturation Threshold LSB
0F0	RASE SD BERM Saturation Threshold MSB
0F1	RASE SD BERM Declaring Threshold LSB
0F2	RASE SD BERM Declaring Threshold MSB
0F3	RASE SD BERM Clearing Threshold LSB
0F4	RASE SD BERM Clearing Threshold MSB
0F5	RASE Receive K1
0F6	RASE Receive K2
0F7	RASE Receive Z1/S1
0F8	BIDX Reserved
0F9	BIDX Reserved
0FA	BIMX Reserved
0FB	BIMX Reserved
0FC	Channel Concatenation Status and Enable
0FD	Channel Concatenation Interrupt Status
0FE	Channel Serial Interface Configuration
0FF	Channel Clock Monitors

As shown by the top level register map in Table 7, the Level 3 System Interface and APS Serial Interface registers are located together memory similar to a channel interface. Table 9 lists the registers for the Level 3 System interface and APS Serial Interface.

Table 9: System and APS Interface Register Memory Map

Address	Register Description
1004	APS Configuration and Status
1005	APS FIFO Configuration and Status
1006	APS Interrupt Status #1
1007	APS Interrupt Status #2
1008	APS Reset Control
1009-100F	Unused

Address	Register Description
1010	TUL3 Interface Configuration
1011	TUL3 Interrupt Status/Enable #1
1012	TUL3 Interrupt Status/Enable #2
1013	TUL3 ATM Level 3 FIFO Configuration
1014	TUL3 ATM Level 3 Signal Label
1015	TUL3 POS Level 3 FIFO Low Water Mark
1016	TUL3 POS Level 3 FIFO High Water Mark
1017	TUL3 POS Level 3 Signal Label
1018	TUL3 Reserved
1019	TUL3 Channel #0, #4, #8, #12 Mode Configuration
101A	TUL3 Channel #1, #5, #9, #13 Mode Configuration
101B	TUL3 Channel #2, #6, #10, #14 Mode Configuration
101C	TUL3 Channel #3, #7, #11, #15 Mode Configuration
101D	TUL3 Reserved
101E	TUL3 Reserved
101F	TUL3 Reserved
1020	RUL3 Interface Configuration
1021	RUL3 Interrupt Status/Configuration
1022	RUL3 ATM Level 3 Configuration
1023	RUL3 ATM Level 3 Signal Label
1024	RUL3 POS Level 3 Configuration
1025	RUL3 POS Level 3 Signal Label
1026	RUL3 POS Level 3 Transfer Size
1027	RUL3 Reserved
1028	RUL3 Channel #0, #4, #8, #12 Mode Configuration
1029	RUL3 Channel #1, #5, #9, #13 Mode Configuration
102A	RUL3 Channel #2, #6, #10, #14 Mode Configuration
102B	RUL3 Channel #3, #7, #11, #15 Mode Configuration
102C	RUL3 Reserved
102D	RUL3 Reserved
102E	RUL3 Reserved
102F	RUL3 Reserved
1030	TUL3 DLL Configuration
1031	TUL3 DLL Vernier Control
1032	TUL3 DLL Delay Tap Status

Address	Register Description
1033	TUL3 DLL Control Status
1034	RUL3 DLL Configuration
1035	RUL3 DLL Vernier Control
1036	RUL3 DLL Delay Tap Status
1037	RUL3 APS DLL Control Status
1038	TAOP APS Link #0 Control
1039	TAOP APS Link #0 Diagnostic
103A	TAOP APS Link #0 Reserved
103B	TAOP APS Link #0 Reserved
103C	TAOP APS Link #1 Control
103D	TAOP APS Link #1 Diagnostic
103E	TAOP APS Link #1 Reserved
103F	TAOP APS Link #1 Reserved
1040	TAOP APS Link #2 Control
1041	TAOP APS Link #2 Diagnostic
1042	TAOP APS Link #2 Reserved
1043	TAOP APS Link #2 Reserved
1044	TAOP APS Link #3 Control
1045	TAOP APS Link #3 Diagnostic
1046	TAOP APS Link #3 Reserved
1047	TAOP APS Link #3 Reserved
1048	RAOP APS Link #0 Control/Interrupt Enable
1049	RAOP APS Link #0 Status/Interrupt Status
104A	RAOP APS Link #0 Section BIP-8 LSB
104B	RAOP APS Link #0 Section BIP-8 MSB
104C	RAOP APS Link #1 Control/Interrupt Enable
104D	RAOP APS Link #1 Status/Interrupt Status
104E	RAOP APS Link #1 Section BIP-8 LSB
104F	RAOP APS Link #1 Section BIP-8 MSB
1050	RAOP APS Link #2 Control/Interrupt Enable
1051	RAOP APS Link #2 Status/Interrupt Status
1052	RAOP APS Link #2 Section BIP-8 LSB
1053	RAOP APS Link #2 Section BIP-8 MSB
1054	RAOP APS Link #3 Control/Interrupt Enable
1055	RAOP APS Link #3 Status/Interrupt Status

Address	Register Description
1056	RAOP APS Link #3 Section BIP-8 LSB
1057	RAOP APS Link #3 Section BIP-8 MSB
1058	RAPS APS Link #0 Configuration
1059	RAPS APS Link #0 Status
105A	RAPS APS Link #0 Reserved
105B	RAPS APS Link #0 Reserved
105C	RAPS APS Link #1 Configuration
105D	RAPS APS Link #1 Status
105E	RAPS APS Link #1 Reserved
105F	RAPS APS Link #1 Reserved
1060	RAPS APS Link #2 Configuration
1061	RAPS APS Link #2 Status
1062	RAPS APS Link #2 Reserved
1063	RAPS APS Link #2 Reserved
1064	RAPS APS Link #3 Configuration
1065	RAPS APS Link #3 Status
1066	RAPS APS Link #3 Reserved
1067	RAPS APS Link #3 Reserved
1068	BIMX Link #0 Reserved
1069	BIMX Link #0 Reserved
106A	BIMX Link #1 Reserved
106B	BIMX Link #1 Reserved
106C	BIMX Link #2 Reserved
106D	BIMX Link #2 Reserved
106E	BIMX Link #2 Reserved
106F	BIMX Link #2 Reserved
1070 -10FF	Unused

As shown by the top level register map in Table 7, the APS Cross Connect and Path Aligner registers are located together memory similar to a channel interface. Table 10 lists the registers for the APS Cross Connect and Path Aligner registers.

Table 10: APS Cross Connect and Aligner

Address	Register Description
1104	Channel #0 Receive Connect Select

Address	Register Description
1105	Channel #0 Transmit Connect Select
1106	Channel #0 Connect Control
1107	Channel #1 Receive Connect Select
1108	Channel #1 Transmit Connect Select
1109	Channel #1 Connect Control
110A	Channel #2 Receive Connect Select
110B	Channel #2 Transmit Connect Select
110C	Channel #2 Connect Control
110D	Channel #3 Receive Connect Select
110E	Channel #3 Transmit Connect Select
110F	Channel #3 Connect Control
1110	Channel #4 Receive Connect Select
1111	Channel #4 Transmit Connect Select
1112	Channel #4 Connect Control
1113	Channel #5 Receive Connect Select
1114	Channel #5 Transmit Connect Select
1115	Channel #5 Connect Control
1116	Channel #6 Receive Connect Select
1117	Channel #6 Transmit Connect Select
1118	Channel #6 Connect Control
1119	Channel #7 Receive Connect Select
111A	Channel #7 Transmit Connect Select
111B	Channel #7 Connect Control
111C	Channel #8 Receive Connect Select
111D	Channel #8 Transmit Connect Select
111E	Channel #8 Connect Control
111F	Channel #9 Receive Connect Select
1120	Channel #9 Transmit Connect Select
1121	Channel #9 Connect Control
1122	Channel #10 Receive Connect Select
1123	Channel #10 Transmit Connect Select
1124	Channel #10 Connect Control
1125	Channel #11 Receive Connect Select
1126	Channel #11 Transmit Connect Select
1127	Channel #11 Connect Control

Address	Register Description
1128	Channel #12 Receive Connect Select
1129	Channel #12 Transmit Connect Select
112A	Channel #12 Connect Control
112B	Channel #13 Receive Connect Select
112C	Channel #13 Transmit Connect Select
112D	Channel #13 Connect Control
112E	Channel #14 Receive Connect Select
112F	Channel #14 Transmit Connect Select
1130	Channel #14 Connect Control
1131	Channel #15 Receive Connect Select
1132	Channel #15 Transmit Connect Select
1133	Channel #15 Connect Control
1134-113F	Unused
1140	STAL Channel #0 Configuration
1141	STAL Channel #0 Control and Interrupt Status
1142	STAL Channel #0 Alarm and Diagnostic Control
1143	STAL Channel #0 Reserved
1144-1147	STAL Channel #0 Slave #0
1148-114B	STAL Channel #0 Slave #1
114C	STAL Channel #1 Configuration
114D	STAL Channel #1 Control and Interrupt Status
114E	STAL Channel #1 Alarm and Diagnostic Control
114F	STAL Channel #1 Reserved
1150-1153	STAL Channel #1 Slave #0
1154-1157	STAL Channel #1 Slave #1
1158	STAL Channel #2 Configuration
1159	STAL Channel #2 Control and Interrupt Status
115A	STAL Channel #2 Alarm and Diagnostic Control
115B	STAL Channel #2 Reserved
115C-115F	STAL Channel #2 Slave #0
1160-1163	STAL Channel #2 Slave #1
1164	STAL Channel #3 Configuration
1165	STAL Channel #3 Control and Interrupt Status
1166	STAL Channel #3 Alarm and Diagnostic Control
1167	STAL Channel #3 Reserved

Address	Register Description
1168-116B	STAL Channel #3 Slave #0
116C-116F	STAL Channel #3 Slave #1
1170	STAL Channel #4 Configuration
1171	STAL Channel #4 Control and Interrupt Status
1172	STAL Channel #4 Alarm and Diagnostic Control
1173	STAL Channel #4 Reserved
1174-1177	STAL Channel #4 Slave #0
1178-117B	STAL Channel #4 Slave #1
117C	STAL Channel #5 Configuration
117D	STAL Channel #5 Control and Interrupt Status
117E	STAL Channel #5 Alarm and Diagnostic Control
117F	STAL Channel #5 Reserved
1180-1183	STAL Channel #5 Slave #0
1184-1187	STAL Channel #5 Slave #1
1188	STAL Channel #6 Configuration
1189	STAL Channel #6 Control and Interrupt Status
118A	STAL Channel #6 Alarm and Diagnostic Control
118B	STAL Channel #6 Reserved
118C-118F	STAL Channel #6 Slave #0
1190-1193	STAL Channel #6 Slave #1
1194	STAL Channel #7 Configuration
1195	STAL Channel #7 Control and Interrupt Status
1196	STAL Channel #7 Alarm and Diagnostic Control
1197	STAL Channel #7 Reserved
1198-119B	STAL Channel #7 Slave #0
119C-119F	STAL Channel #7 Slave #1
11A0	STAL Channel #8 Configuration
11A1	STAL Channel #8 Control and Interrupt Status
11A2	STAL Channel #8 Alarm and Diagnostic Control
11A3	STAL Channel #8 Reserved
11A4-11A7	STAL Channel #8 Slave #0
11A8-11AB	STAL Channel #8 Slave #1
11AC	STAL Channel #9 Configuration
11AD	STAL Channel #9 Control and Interrupt Status
11AE	STAL Channel #9 Alarm and Diagnostic Control

Address	Register Description
11AF	STAL Channel #9 Reserved
11B0-11B3	STAL Channel #9 Slave #0
11B4-11B7	STAL Channel #9 Slave #1
11B8	STAL Channel #10 Configuration
11B9	STAL Channel #10 Control and Interrupt Status
11BA	STAL Channel #10 Alarm and Diagnostic Control
11BB	STAL Channel #10 Reserved
11BC-11BF	STAL Channel #10 Slave #0
11C0-11C3	STAL Channel #10 Slave #1
11C4	STAL Channel #11 Configuration
11C5	STAL Channel #11 Control and Interrupt Status
11C6	STAL Channel #11 Alarm and Diagnostic Control
11C7	STAL Channel #11 Reserved
11C8-11CB	STAL Channel #11 Slave #0
11CC-11CF	STAL Channel #11 Slave #1
11D0	STAL Channel #12 Configuration
11D1	STAL Channel #12 Control and Interrupt Status
11D2	STAL Channel #12 Alarm and Diagnostic Control
11D3	STAL Channel #12 Reserved
11D4-11D7	STAL Channel #12 Slave #0
11D8-11DB	STAL Channel #12 Slave #1
11DC	STAL Channel #13 Configuration
11DD	STAL Channel #13 Control and Interrupt Status
11DE	STAL Channel #13 Alarm and Diagnostic Control
11DF	STAL Channel #13 Reserved
11E0-11E3	STAL Channel #13 Slave #0
11E4-11E7	STAL Channel #13 Slave #1
11E8	STAL Channel #14 Configuration
11E9	STAL Channel #14 Control and Interrupt Status
11EA	STAL Channel #14 Alarm and Diagnostic Control
11EB	STAL Channel #14 Reserved
11EC-11EF	STAL Channel #14 Slave #0
11F0-11F3	STAL Channel #14 Slave #1
11F4	STAL Channel #15 Configuration
11F5	STAL Channel #15 Control and Interrupt Status

Address	Register Description
11F6	STAL Channel #15 Alarm and Diagnostic Control
11F7	STAL Channel #15 Reserved
11F8-11FB	STAL Channel #15 Slave #0
11FC-11FF	STAL Channel #15 Slave #1

Notes on Register Memory Map:

- For all register accesses, CSB must be low.
- Addresses that are not shown must be treated as Reserved.
- A[13] is the test register select (TRS) and should be set low for normal mode register access.

11 NORMAL MODE REGISTER DESCRIPTION

Normal mode registers are used to configure and monitor the operation of the S/UNI-16x155. Normal mode registers (as opposed to test mode registers) are selected when TRS (A[13]) is low.

Notes on Normal Mode Register Bits:

1. Writing values into unused register bits has no effect. However, to ensure software compatibility with future, feature-enhanced versions of the product, unused register bits must be written with logic zero. Reading back unused bits can produce either a logic one or a logic zero; hence, unused register bits should be masked off by software when read.
2. All configuration bits that can be written into can also be read back. This allows the processor controlling the S/UNI-16x155 to determine the programming state of the block.
3. Writable normal mode register bits are cleared to logic zero upon reset unless otherwise noted.
4. Writing into read-only normal mode register bit locations does not affect S/UNI-16x155 operation unless otherwise noted. Performance monitoring counter registers are a common exception.
5. Certain register bits are reserved. These bits are associated with megacell functions that are unused in this application. To ensure that the S/UNI-16x155 operates as intended, reserved register bits must be written with their default value as indicated by the register bit description.
6. Writing any data to the Master Reset and Identity register (0x001) simultaneously loads all the performance monitoring registers in RSOP, RLOP, RPOP, SPTB, SSTB, RXCP, TXCP, RXFP, TXFP and RAOP blocks in the device.

Writing to a channel's Interrupt Status register (0x007, 0x107, 0x207 or 0x307) will simultaneously load all the performance monitor registers in RSOP, RLOP, RPOP, SPTB, SSTB, RXCP, TXCP, RXFP and TXFP blocks in the channel.

Writing any data to the performance register in question may individually trigger the performance registers in each block. In some cases, all performance registers in the block are loaded. In other cases, only the

PRELIMINARY
S/UNI-16X155
DATASHEET
PMC-2000495

ISSUE 2

PM5382
S/UNI-16X155

SATURN USER NETWORK INTERFACE (16X155)

specific register being written will load. See the register descriptions for the performance register in question for more information.

Register 0x000: S/UNI-16x155 Master Reset and Identity

Bit	Type	Function	Default
Bit 7	R/W	RESET	0
Bit 6	R	TYPE[3]	0
Bit 5	R	TYPE[2]	0
Bit 4	R	TYPE[1]	0
Bit 3	R	TYPE[0]	0
Bit 2	R	ID[2]	0
Bit 1	R	ID[1]	0
Bit 0	R	ID[0]	1

This register allows the revision number of the S/UNI-16x155 to be read by software permitting graceful migration to newer, feature-enhanced versions of the S/UNI-16x155.

In addition, writing to this register simultaneously loads all the performance monitor registers in all channels (equivalent to writing to 0x007, 0x107, 0x207 and 0x307). The TIP register in 0x001 is set high while the performance registers are loaded and clears when the transfer is done.

ID[2:0]:

The ID bits can be read to provide a binary S/UNI-16x155 revision number.

TYPE[3:0]:

The TYPE bits can be read to distinguish the S/UNI-16x155 from the other members of the S/UNI family of devices.

RESET:

The RESET bit allows the S/UNI-16x155 to be reset under software control. If the RESET bit is a logic one, the entire S/UNI-16x155 is held in reset. This bit is not self-clearing. Therefore, a logic zero must be written to bring the S/UNI-16x155 out of reset. Holding the S/UNI-16x155 in a reset state places it into a low power, stand-by mode. A hardware reset clears the RESET bit, thus negating the software reset. Otherwise, the effect of a software reset is equivalent to that of a hardware reset.

Register 0x001: S/UNI-16x155 Master Configuration

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3		Unused	X
Bit 2		Unused	X
Bit 1		Unused	X
Bit 0	R	TIP	X

TIP:

The TIP bit is set to a logic one when the performance monitor registers are being loaded. Writing to the S/UNI-16x155 Master Reset and Identity register (0x000) initiates an accumulation interval transfer and loads all the performance monitor registers in the RSOP, RLOP, RPOP, SSTB, SPTB, RXCP, TXCP, RXFP, TXFP and RAOP blocks.

TIP remains high while the transfer is in progress, and is set to a logic zero when the transfer is complete. TIP can be polled by a microprocessor to determine when the accumulation interval transfer is complete.

Register 0x003: S/UNI-16x155 Clock Monitors

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5	R	RCLKA	X
Bit 4	R	TCLKA	X
Bit 3		Unused	X
Bit 2	R	RFCLKA	X
Bit 1	R	TFCLKA	X
Bit 0	R	REFCLKA	X

This register provides activity monitoring of the S/UNI-16x155 clocks. When a monitored clock signal makes a low to high transition, the corresponding register bit is set high. The bit will remain high until this register is read, at which point, all the bits in this register are cleared. A lack of transitions is indicated by the corresponding register bit reading low. This register should be read at periodic intervals to detect clock failures.

REFCLKA:

The REFCLK active (REFCLKA) bit monitors for low to high transition on the REFCLK reference clock input. REFCLKA is set high on a rising edge of REFCLK and is set low when this register is read.

TFCLKA:

The TFCLK active (TFCLKA) bit monitors for low to high transition on the TFCLK system interface clock input. TFCLKA is set high on a rising edge of TFCLK and is set low when this register is read.

RFCLKA:

The RFCLK active (RFCLKA) bit monitors for low to high transition on the RFCLK system interface clock input. RFCLKA is set high on a rising edge of RFCLK and is set low when this register is read.

RCLKA:

The RCLK active (RCLKA) bit monitors for low to high transition on the RCLK receive line rate clock. RCLKA is set high on a rising edge of RCLK and is set low when this register is read.

TCLKA:

The TCLK active (TCLKA) bit monitors for low to high transition on the TCLK transmit line rate clock. TCLKA is set high on a rising edge of TCLK and is set low when this register is read.

Register 0x100: S/UNI-16x155 Master Interrupt Status #1

Bit	Type	Function	Default
Bit 7	R	RDLLI	X
Bit 6	R	RUL3I	X
Bit 5	R	TDLLI	X
Bit 4	R	TUL3I	X
Bit 3	R	TAPSI	X
Bit 2	R	CSPII	X
Bit 1	R	STALI	X
Bit 0	R	RAPSI	X

When the interrupt output INTB goes low, this register allows the source of the active interrupt to be identified down to the block level. Further register accesses are required for the block in question to determine the cause of an active interrupt and to acknowledge the interrupt source.

RAPSI:

The RAPSI bit is a logic one when an interrupt request is active from the receive APS interfaces. The APS Interrupt Status #1 and APS Interrupt Status #2 registers must be read in order to determine the block with the active interrupt source.

STALI:

The STALI bit is a logic one when an interrupt request is active from the STAL blocks. Each Channel Cross Connect Control registers must be read to identify the channel STALs with the active interrupt source.

CSPII:

The CSPI bit is a logic one when an interrupt request is active from the CSPI block. The CSPI interrupt sources are enabled in the CSPI Clock Synthesis Configuration register.

TAPSI:

The TXAPSI bit is a logic one when an interrupt request is active from the APS interfaces. The APSI interrupt sources can be determined by the APS Interrupt Status and APS FIFO Configuration and Status registers.

TUL3I:

The TUL3I bit is a logic one when an interrupt request is active from the TUL3 block. The TUL3 interrupt sources are enabled in the TUL3 Interrupt Status/Enable #1 and Interrupt Status/Enable #2 registers.

TDLLI:

The TDLLI bit is a logic one when an interrupt request is active from the TUL3 DLL block. The TUL3 DLL interrupt sources are enabled in the TUL3 DLL Configuration register.

RUL3I:

The RUL3I bit is a logic one when an interrupt request is active from the RUL3 block. The RUL3 interrupt sources are enabled in the RUL3 Interrupt Status/Enable register.

RDLLI:

The RDLLI bit is a logic one when an interrupt request is active from the RUL3 DLL block. The RUL3 DLL interrupt sources are enabled in the RUL3 DLL Configuration register.

Register 0x101: S/UNI-16x155 Master Interrupt Status #2

Bit	Type	Function	Default
Bit 7	R	CHNLI[7]	X
Bit 6	R	CHNLI[6]	X
Bit 5	R	CHNLI[5]	X
Bit 4	R	CHNLI[4]	X
Bit 3	R	CHNLI[3]	X
Bit 2	R	CHNLI[2]	X
Bit 1	R	CHNLI[1]	X
Bit 0	R	CHNLI[0]	X

Register 0x102: S/UNI-16x155 Master Interrupt Status #2

Bit	Type	Function	Default
Bit 7	R	CHNLI[15]	X
Bit 6	R	CHNLI[14]	X
Bit 5	R	CHNLI[13]	X
Bit 4	R	CHNLI[12]	X
Bit 3	R	CHNLI[11]	X
Bit 2	R	CHNLI[10]	X
Bit 1	R	CHNLI[9]	X
Bit 0	R	CHNLI[8]	X

When the interrupt output INTB goes low, this register allows the source of the active interrupt to be identified down to the channel level. Further register accesses are required for the channel in question to determine the cause of an active interrupt and to acknowledge the interrupt source.

CHNLI[15:0]:

A channel interrupt CHNLI[15:0] bit is a logic one when an interrupt request is active from the corresponding channel. A channel's Reset/Interrupt Status #1 register or Interrupt Status #2 registers must be read in order to determine the block with the active interrupt source.

**Register 0x004, 0x104, 0x204, 0x304, 0x404, 0x504, 0x604, 0x704, 0x804,
0x904, 0xA04, 0xB04, 0xC04, 0xD04, 0xE04, 0xF04:
Channel Master Configuration #1**

Bit	Type	Function	Default
Bit 7	R/W	TPTBEN	0
Bit 6	R/W	TSTBEN	0
Bit 5	R/W	SDH_J0/Z0	0
Bit 4	R/W	TFPEN	1
Bit 3	R/W	DLE	0
Bit 2	R/W	PDLE	0
Bit 1	R/W	PCM	0
Bit 0	R	CHTIP	X

CHTIP:

The CHTIP bit is set to a logic one when the channel's performance monitor registers are being loaded. Writing to the channel's Interrupt Status #2 register (0x007, 0x107, 0x207 or 0x307) initiates an accumulation interval transfer and loads all the performance monitor registers in the channel's RSOP, RLOP, RPOP, SSTB, SPTB, RXCP, TXCP, RXFP and TXFP blocks.

Writing to the S/UNI-16x155 Master Reset and Identity register (0x000) will cause all channels to load their performance monitor registers. This operation is equivalent to writing to each channel's Interrupt Status #2 register (0x007, 0x107, 0x207 or 0x307).

CHTIP remains high while the transfer is in progress, and is set to a logic zero when the transfer is complete. CHTIP can be polled by a microprocessor to determine when the accumulation interval transfer is complete.

PCM:

The pointer concatenation mode select (PCM) determines the number of H1/H2 pointer pairs used to determine loss of pointer concatenation (LOPC) and pointer AIS (AISC). When PCM is set high, all H1/H2 pointer pairs are processed. When PCM is set low, only four H1/H2 pointer pairs (corresponding to the active STM-1 pointers) are processed.

PDLE:

The Parallel Diagnostic Loopback, PDLE bit enables the channel's diagnostic loopback where the channel's Transmit Section Overhead Processor (TSOP) is directly connected to its Receive Section Overhead Processor (RSOP). When PDLE is logic one, loopback is enabled. Under this operating condition, the channel continues to operate normally in the transmit direction. When PDLE is logic zero, the channel operates normally in both directions.

DLE:

The Diagnostic Loopback, DLE bit enables the channel's diagnostic loopback where the channel's Transmit ATM and POS Processors (TXCP and TXFP respectively) are directly connected to the Receive ATM and POS Processor (RXCP and RXFP respectively). When DLE is logic one, loopback is enabled. Under this operating condition, the channel does not operate normally in the transmit direction or receive direction. When DLE is logic zero, the channel operates normally.

The receive APS enable RXEN must be low while DLE is high in order for the loopback to operate correctly.

TFPEN:

The Transmit Frame Pulse Enable (TFPEN) enables the TFPI input. When TFPEN is set low, the channel ignores the TFPI input. When TFPEN is set high, the TFPI input is used by the channel for frame alignment.

Since the TFPI input is sampled by the rising edge of TCLK, the TFPI input is affected by clock source TSEL[1:0] configuration. A channel may use TFPI input only if the channel's TCLK is frequency locked to the TCLK of the channel selected by TSEL[3:0]. In general, channel's operating in loop timed must set TFPEN low.

SDH_J0/Z0

The SDH_J0/Z0 bit selects whether to insert SONET or SDH format J0/Z0 section overhead bytes into the transmit stream. When SDH_J0/Z0 is set high, SDH format J0/Z0 bytes are selected for insertion. For this case, all the J0/Z0 bytes are forced to the value programmed in the channel's Transmit J0/Z0 register. When SDH_J0/Z0 is set low, SONET format J0/Z0 bytes are selected for insertion. For this case, the J0/Z0 bytes of an STS-N signal are numbered incrementally from 1 to N.

TSTBEN can be used to overwrite the first J0/Z0 byte of an STS-N signal.

TSTBEN:

The TSTBEN bit controls whether the section trace message stored in the SSTB block is inserted into the transmit stream (i.e., the first J0/Z0 byte). When TSTBEN is set high, the message stored in the SSTB is inserted into the transmit stream. When TSTBEN is set low, the section trace message is supplied by the TSOP block.

TPTBEN:

The TPTBEN bit controls whether the path trace message stored in the SPTB block is inserted into the transmit stream (i.e., the J1 byte). When TPTBEN is set high, the message stored in the SPTB is inserted into the transmit stream. When TPTBEN is set low, the path trace message is supplied by the TPOP block.

**Register 0x005, 0x105, 0x205, 0x305, 0x405, 0x505, 0x605, 0x705, 0x805,
0x905, 0xA05, 0xB05, 0xC05, 0xD05, 0xE05, 0xF05:
Channel Master Configuration #2**

Bit	Type	Function	Default
Bit 7	R/W	SLLE	0
Bit 6	R/W	SDLE	0
Bit 5	R/W	LOOPT	0
Bit 4	R/W	DPLE	0
Bit 3	R/W	AUTOLRDI	1
Bit 2	R/W	AUTOPRDI	1
Bit 1	R/W	AUTOLFEBE	1
Bit 0	R/W	AUTOPFEBE	1

AUTOPFEBE

The AUTOPFEBE bit determines if the remote path block errors are sent upon detection of an incoming path BIP error event. When AUTOPFEBE is set to logic one, one path FEBE is inserted for each path BIP error event, respectively. When AUTOPFEBE is set to logic zero, incoming path BIP error events do not generate FEBE events.

AUTOLFEBE

The AUTOLFEBE bit determines if remote line block errors are sent upon detection of an incoming line BIP error event. When AUTOLFEBE is set to logic one, one line FEBE is inserted for each line BIP error event, respectively. When AUTOLFEBE is set to logic zero, incoming line BIP error events do not generate FEBE events.

AUTOPRDI

The AUTOPRDI bit determines whether STS path remote defect indication (RDI) is sent immediately upon detection of an incoming alarm. When AUTOPRDI is set to logic one, STS path RDI is inserted immediately upon declaration of several alarms. Each alarm can individually be enabled and disabled using the channel's Path RDI Control Registers.

AUTOLRDI

The AUTOLRDI bit determines if line remote defect indication (RDI) is sent immediately upon detection of an incoming alarm. When AUTOLRDI is set to logic one, line RDI is inserted immediately upon declaration of several alarms. Each alarm can individually be enabled and disabled using the channel's Line RDI Control Registers.

DPLE:

The Diagnostic Path Loopback, DPLE bit enables the channel's diagnostic loopback where channel's Transmit Path Overhead Processor (TPOP) is directly connected to its Receive Path Overhead Processor (RPOP). When DPLE is logic one, loopback is enabled. Under this operating condition, the channel continues to operates normally in the transmit direction. When DPLE is logic zero, the channel operates normally.

LOOPT:

The LOOPT bit selects the source of timing for the transmit section of the channel. When LOOPT is a logic zero, the transmitter timing is derived from input REFCLK (CSU). When LOOPT is a logic one, the transmitter timing is derived from the recovered clock (Clock Recovery Unit). LOOPT should not be set if the WANS is being used. The SDLE and LOOPT bits should not be set high simultaneously.

SDLE:

The SDLE bit enables the serial diagnostic loopback. When SDLE is a logic one, the channel's transmit serial stream on the TXD+/- differential outputs is internally connected to the received serial RXD+/- differential inputs. Under this operating condition, the channel continues to operates normally in the transmit direction. The SDLE and LOOPT bits should not be set high simultaneously.

SLLE:

The SLLE bit enables the channel's line loopback mode. When SLLE is a logic one, the channel's recovered data from the receive serial RXD+/- differential inputs is mapped to the TXD+/- differential outputs. Under this operating condition, the channel continues to operates normally in the receive direction. LOOPT must be set high when SLLE is high for proper operation.

**Register 0x006, 0x106, 0x206, 0x306, 0x406, 0x506, 0x606, 0x706, 0x806,
0x906, 0xA06, 0xB06, 0xC06, 0xD06, 0xE06, 0xF06:
Channel Reset/Master Interrupt Status #1**

Bit	Type	Function	Default
Bit 7	R/W	CHRST	0
Bit 6	R	CONCATI	X
Bit 5	R	RASEI	X
Bit 4	R	TXCPI	X
Bit 3	R	RXCPI	X
Bit 2	R	RPOPI	X
Bit 1	R	RLOPI	X
Bit 0	R	RSOPI	X

When the interrupt output INTB goes low, this register allows the source of the active interrupt to be identified down to the block level for the channel. Further register accesses are required for the block in question to determine the cause of an active interrupt and to acknowledge the interrupt source.

RSOPI:

The RSOPI bit is high when an interrupt request is active from the RSOP block. The RSOP interrupt sources are enabled in the RSOP Control/Interrupt Enable Register.

RLOPI:

The RLOPI bit is high when an interrupt request is active from the RLOP block. The RLOP interrupt sources are enabled in the RLOP Interrupt Enable/Status Register.

RPOPI:

The RPOPI bit is high when an interrupt request is active from the RPOP block. The RPOP interrupt sources are enabled in the RPOP Interrupt Enable Register.

RXCPI:

The RXCPI bit is high when an interrupt request is active from the RXCP block. The RXCP interrupt sources are enabled in the RXCP Interrupt Enable/Status Register.

TXCPI:

The TXCPI bit is high when an interrupt request is active from the TXCP block. The TXCP interrupt sources are enabled in the TXCP Interrupt Control/Status Register.

RASEI:

The RASEI bit is high when an interrupt request is active from the RASE block. The RASE interrupt sources are enabled in the RASE Interrupt Enable Register.

CONCATI:

The CONCATI bit is high when an interrupt request is active from the Concatenation Interrupt Status Register. The CONCAT interrupt sources are enabled in the Concatenation Status and Enable Register.

CHRST:

The CHRST bit allows the channel to be reset under software control. If the CHRST bit is a logic one, the entire channel is held in reset. This bit is not self-clearing. Therefore, a logic zero must be written to bring the channel out of reset. Holding the channel in a reset state places it into a low power, stand-by mode. A hardware reset or top level reset using RESET clears the CHRST bit, thus negating the software reset. Otherwise, the effect of the channel software reset is equivalent to that of a hardware reset.

**Register 0x007, 0x107, 0x207, 0x307, 0x407, 0x507, 0x607, 0x707, 0x807,
0x907, 0xA07, 0xB07, 0xC07, 0xD07, 0xE07, 0xF07:
Channel Master Interrupt Status #2**

Bit	Type	Function	Default
Bit 7	R	Unused	X
Bit 6	R	Unused	X
Bit 5	R	CRSII	X
Bit 4	R	TXFPI	X
Bit 3	R	RXFPI	X
Bit 2	R	WANSI	X
Bit 1	R	SSTBI	X
Bit 0	R	SPTBI	X

When the interrupt output INTB goes low, this register allows the source of the active interrupt to be identified down to the block level for the channel. Further register accesses are required for the block in question to determine the cause of an active interrupt and to acknowledge the interrupt source.

In addition, writing to this register simultaneously loads all the performance monitor registers in the channel. The corresponding channel CHTIP bit (registers 0x004, 0x104, 0x204, 0x304, 0x404, 0x504, 0x604, 0x704, 0xA04, 0xB04, 0xC04, 0xD04, 0xE04, 0xF04) is set high while the performance registers are loaded and clears when the transfer is done.

SPTBI:

The SPTBI bit is a logic one when an interrupt request is active from the SPTB block. The SPTB interrupt sources are enabled in the SPTB Control Register and the SPTB Path Signal Label Status Register.

SSTBI:

The SSTBI bit is a logic one when an interrupt request is active from the SSTB block. The SSTB interrupt sources are enabled in the SSTB Control Register and the SSTB Synchronization Message Status Register.

WANSI:

The WANSI bit is a logic one when an interrupt request is active from the WANS block. The WANS interrupt sources are enabled in the WANS Interrupt Enable/Status Register.

RXFPI:

The RXFPI bit is high when an interrupt request is active from the RXFP block. The RXFP interrupt sources are enabled in the RXFP Interrupt Enable/Status Register.

TXFPI:

The TXFPI bit is high when an interrupt request is active from the TXFP block. The TXFP interrupt sources are enabled in the TXFP Interrupt Control/Status Register.

CRSII:

The CRSII bit is high when an interrupt request is active from the Clock Recovery and SIPO block (CRSI). The CRSI interrupt sources are enabled in the Clock Recovery Interrupt Control/Status Register.

**Register 0x008, 0x108, 0x208, 0x308, 0x408, 0x508, 0x608, 0x708, 0x808,
0x908, 0xA08, 0xB08, 0xC08, 0xD08, 0xE08, 0xF08:
Channel Auto Line RDI Control**

Bit	Type	Function	Default
Bit 7	R/W	SDLRDI	0
Bit 6	R/W	SFLRDI	0
Bit 5	R/W	LOFLRDI	1
Bit 4	R/W	LOSLRDI	1
Bit 3	R/W	RTIMLDRI	0
Bit 2	R/W	RTIULRDI	0
Bit 1	R/W	LAISLRDI	1
Bit 0		Unused	X

This register controls the auto assertion of the line RDI in TLOP for the entire SONET/SDH stream for a channel.

LAISLRDI:

The Line Alarm Indication Signal LRD (LAISLRDI) controls the insertion of a Line RDI in the transmit data stream upon detection of this alarm condition. When LAISLRDI is set high, the transmit line RDI will be inserted. When LAISLRDI is set low, no action is taken. This register bit is used only if the AUTOLRDI register bit is also set high.

RTIULRDI:

The Section Trace Identifier Unstable LRD (RTIULRDI) controls the insertion of a Line RDI in the transmit data stream upon detection of this alarm condition. When RTIULRDI is set high, the transmit line RDI will be inserted. When RTIULRDI is set low, no action is taken. This register bit is used only if the AUTOLRDI register bit is also set high.

RTIMLDRI:

The Section Trace Identifier Mismatch LRD (RTIMLDRI) controls the insertion of a Line RDI in the transmit data stream upon detection of this alarm condition. When RTIMLDRI is set high, the transmit line RDI will be inserted. When RTIMLDRI is set low, no action is taken. This register bit is used only if the AUTOLRDI register bit is also set high.

LOSLRDI:

The Loss of Signal LRD^I (LOSLRDI) controls the insertion of a Line RDI in the transmit data stream upon detection of this alarm condition. When LOSLRDI is set high, the transmit line RDI will be inserted. When LOSLRDI is set low, no action is taken. This register bit is used only if the AUTOLRDI register bit is also set high.

LOFLRDI:

The Loss of Frame LRD^I (LOFLRDI) controls the insertion of a Line RDI in the transmit data stream upon detection of this alarm condition. When LOFLRDI is set high, the transmit line RDI will be inserted. When LOFLRDI is set low, no action is taken. This register bit is used only if the AUTOLRDI register bit is also set high.

SFLRDI:

The Signal Fail BER LRD^I (SFLRDI) controls the insertion of a Line RDI in the transmit data stream upon detection of this alarm condition. When SFLRDI is set high, the transmit line RDI will be inserted. When SFLRDI is set low, no action is taken. This register bit is used only if the AUTOLRDI register bit is also set high.

SDLRDI:

The Signal Degrade BER LRD^I (SDLRDI) controls the insertion of a Line RDI in the transmit data stream upon detection of this alarm condition. When SDLRDI is set high, the transmit line RDI will be inserted. When SDLRDI is set low, no action is taken. This register bit is used only if the AUTOLRDI register bit is also set high.

**Register 0x009, 0x109, 0x209, 0x309, 0x409, 0x509, 0x609, 0x709, 0x809,
0x909, 0xA09, 0xB09, 0xC09, 0xD09, 0xE09, 0xF09:
Channel Auto Path RDI Control**

Bit	Type	Function	Default
Bit 7	R/W	LCDPRDI	0
Bit 6	R/W	ALRMPRDI	0
Bit 5	R/W	PAISPRDI	1
Bit 4	R/W	PSLMPRDI	1
Bit 3	R/W	LOPPRDI	1
Bit 2	R/W	LOPCONPRDI	1
Bit 1	R/W	PTIUPRDI	1
Bit 0	R/W	PTIMPRDI	1

This register controls the auto assertion of path RDI (G1 bit 5) in the TPOP for the entire SONET/SDH stream for a channel. Also see the Auto Enhanced Path RDI register.

PTIMPRDI:

The Path Trace Identifier Mismatch PRDI (PTIMPRDI) controls the insertion of a Path RDI in the transmit data stream upon detection of this alarm condition. When PTIMPRDI is set high, the transmit line RDI will be inserted. When PTIMPRDI is set low, no action is taken. This register bit is used only if the AUTOPRDI register bit is also set high.

PTIUPRDI:

The Path Trace Identifier Unstable PRDI (PTIUPRDI) controls the insertion of a Path RDI in the transmit data stream upon detection of this alarm condition. When PTIUPRDI is set high, the transmit line RDI will be inserted. When PTIUPRDI is set low, no action is taken. This register bit is used only if the AUTOPRDI register bit is also set high.

LOPCONPRDI:

The Loss of Pointer Concatenation Indication PRDI (LOPCONPRDI) controls the insertion of a Path RDI in the transmit data stream upon detection of this alarm condition. When LOPCONPRDI is set high, the transmit line RDI will be inserted. When LOPCONPRDI is set low, no action is taken. This register bit is used only if the AUTOPRDI register bit is also set high.

LOPPRDI:

The Loss of Pointer Indication PRDI (LOPPRDI) controls the insertion of a Path RDI in the transmit data stream upon detection of this alarm condition. When LOPPRDI is set high, the transmit line RDI will be inserted. When LOPPRDI is set low, no action is taken. This register bit is used only if the AUTOPRDI register bit is also set high.

PSLMPRDI:

The Path Signal Label Mismatch PRDI (PSLMPRDI) controls the insertion of a Path RDI in the transmit data stream upon detection of this alarm condition. When PSLMPRDI is set high, the transmit line RDI will be inserted. When PSLMPRDI is set low, no action is taken. This register bit is used only if the AUTOPRDI register bit is also set high.

PAISPRDI:

The Path Alarm Indication Signal PRDI (PAISPRDI) controls the insertion of a Path RDI in the transmit data stream upon detection of this alarm condition. When PAISPRDI is set high, the transmit line RDI will be inserted. When PAISPRDI is set low, no action is taken. This register bit is used only if the AUTOPRDI register bit is also set high.

ALRMPRDI:

The Line Alarm Indication Signal PRDI (ALRMPRDI) controls the insertion of a Path RDI in the transmit data stream upon detection of one of the following alarm conditions: Loss of Signal (LOS), Loss of Frame (LOF) and Line Alarm Indication Signal (LAIS). When ALRMPRDI is set high, the transmit line RDI will be inserted. When ALRMPRDI is set low, no action is taken. This register bit is used only if the AUTOPRDI register bit is also set high.

LCDPRDI:

The Loss of ATM Cell Delineation Signal PRDI (LCDPRDI) controls the insertion of a Path RDI in the transmit data stream upon detection of this alarm. When LCDPRDI is set high, the transmit path RDI will be inserted. When LCDPRDI is set low, no action is taken. This register bit is used only if the AUTOPRDI register bit is also set high.

**Register 0x00A, 0x10A, 0x20A, 0x30A, 0x40A, 0x50A, 0x60A, 0x70A, 0x80A,
0x90A, 0xA0A, 0xB0A, 0xC0A, 0xD0A, 0xE0A, 0xF0A:
Channel Auto Enhanced Path RDI Control**

Bit	Type	Function	Default
Bit 7	R/W	LCDEPRDI	0
Bit 6	R/W	NOALMEPRDI	0
Bit 5	R/W	NOPAISEPRDI	0
Bit 4	R/W	PSLMEPRDI	1
Bit 3	R/W	NOLOPEPRDI	0
Bit 2	R/W	NOLOPCONEPRDI	0
Bit 1	R/W	TIUEPRDI	0
Bit 0	R/W	TIMEPRDI	1

This register controls the auto assertion of enhanced path RDI (G1 bit 5, 6 and 7) in the TPOP for the entire SONET/SDH stream.

TIMEPRDI:

When set high, the TIMEPRDI bit enables enhanced path RDI assertion when path trace message mismatch (TIM) events are detected in the receive stream. When TIMEPRDI is set high and TIM occurs, bit 6 of the G1 byte is set high while bit 7 of the G1 byte is set low.

When TIMEPRDI is set low, trace identifier mismatch events have no effect on path RDI. In addition, this bit has no effect when EPRDI_EN is set low.

TIUEPRDI:

When set high, the TIUEPRDI bit enables enhanced path RDI assertion when path trace message unstable events are detected in the receive stream.

When TIUEPRDI is set high and path trace message unstable occurs, bit 6 of the G1 byte is set high while bit 7 of the G1 byte is set low.

When TIUEPRDI is set low, trace identifier unstable events have no effect on path RDI. In addition, this bit has no effect when EPRDI_EN is set low.

NOLOPCONEPRDI:

When set high, the NOLOPCONEPRDI bit disables enhanced path RDI assertion when loss of pointer concatenation (LOPCON) events are detected

in the receive stream. When NOLOPCONEPRDI is set high and LOPCON occurs, bit 6 of the G1 byte is set low while bit 7 of the G1 byte is set high. NOLOPCONEPRDI has precedence over PSLMEPRDI , TIUEPRDI, TIMEPRDI and UNEQEPRDI.

When NOLOPCONEPRDI is set low, reporting of enhanced RDI is according to PSLMEPRDI , TIUEPRDI, TIMEPRDI and UNEQEPRDI and the associated alarm states.

NOLOPEPRDI:

When set high, the NOLOPEPRDI bit disables enhanced path RDI assertion when loss of pointer (LOP) events are detected in the receive stream. When NOLOPEPRDI is set high and LOP occurs, bit 6 of the G1 byte is set low while bit 7 of the G1 byte is set high. NOLOPEPRDI has precedence over PSLMEPRDI , TIUEPRDI, TIMEPRDI and UNEQEPRDI.

When NOLOPEPRDI is set low, reporting of enhanced RDI is according to PSLMEPRDI , TIUEPRDI, TIMEPRDI and UNEQEPRDI and the associated alarm states.

PSLMEPRDI:

When set high, the PSLMEPRDI bit enables enhanced path RDI assertion when path signal label mismatch (PSLM) events are detected in the receive stream. When PSLMEPRDI is set high and PSLM occurs, bit 6 of the G1 byte is set high while bit 7 of the G1 byte is set low.

When PSLMEPRDI is set low, path signal label mismatch events have no effect on path RDI. In addition, this bit has no effect when EPRDI_EN is set low.

NOPAISEPRDI:

When set high, the NOPAISEPRDI bit disables enhanced path RDI assertion when the path alarm indication signal state (PAIS) is detected in the receive stream. When NOPAISEPRDI is set high and PAIS occurs, bit 6 of the G1 byte is set low while bit 7 of the G1 byte is set high. NOPAISEPRDI has precedence over PSLMEPRDI , TIUEPRDI, TIMEPRDI and UNEQEPRDI.

When NOPAISEPRDI is set low, reporting of enhanced RDI is according to PSLMEPRDI , TIUEPRDI, TIMEPRDI and UNEQEPRDI and the associated alarm states.

NOALMEPRDI:

When set high, the NOALMEPRDI bit disables enhanced path RDI assertion when loss of signal (LOS), loss of frame (LOF) or line alarm indication signal (LAIS) events are detected in the receive stream. When NOALMEPRDI is set high and one of the listed events occur, bit 6 of the G1 byte is set low while bit 7 of the G1 byte is set high. NOALMEPRDI has precedence over PSLMEPRDI, TIUEPRDI, TIMEPRDI and UNEQEPRDI.

When NOALMEPRDI is set low, reporting of enhanced RDI is according to PSLMEPRDI, TIUEPRDI, TIMEPRDI and UNEQEPRDI and the associated alarm states.

LCDEPRDI:

When set high, the LCDEPRDI bit enables enhanced path RDI assertion when loss of ATM cell delineation (LCD) events are detected in the receive stream. If enabled, when the event occurs, bit 6 of the G1 byte is set high while bit 7 of the G1 byte is set low.

When LCDEPRDI is set low, loss of ATM cell delineation has no effect on path RDI. In addition, this bit has no effect when EPRDI_EN is set low.

**Register 0x00B, 0x10B, 0x20B, 0x30B, 0x40B, 0x50B, 0x60B, 0x70B, 0x80B,
0x90B, 0xA0B, 0xB0B, 0xC0B, 0xD0B, 0xE0B, 0xF0B:
Channel Receive RDI and Enhanced RDI Control**

Bit	Type	Function	Default
Bit 7	R/W	PAISCONPRDI	0
Bit 6	R/W	NOPAISCONEPRDI	0
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3		Unused	X
Bit 2	R/W	EPRDI_EN	0
Bit 1	R/W	UNEQPRDI	1
Bit 0	R/W	UNEQEPRDI	1

This register along with the Enhanced Path RDI Control register controls the auto assertion of path RDI (G1 bit 5, 6 and 7) in the TPOP for the entire SONET/SDH stream.

UNEQEPRDI:

When set high, the UNEQEPRDI bit enables enhanced path RDI assertion when the path signal label in the receive stream indicates unequipped status.

When UNEQEPRDI is set high and the path signal label indicates unequipped, bit 6 of the G1 byte is set high while bit 7 of the G1 byte is set low.

When UNEQEPRDI is set low, path signal label unequipped status has no effect on enhanced path RDI.

UNEQPRDI:

When set high, the UNEQPRDI bit enables path RDI assertion when the path signal label in the receive stream indicates unequipped status. When UNEQPRDI is set low, the path signal label unequipped status has no effect on path RDI.

EPRDI_EN:

The EPRDI_EN bit enables the automatic insertion of enhanced RDI in the local transmitter. When EPRDI_EN is a logic one, auto insertion is enabled

using the event enable bits in this register. When EPRDI_EN is a logic zero, enhanced path RDI is not automatically inserted in the transmit stream.

The EPRDIEN and EPRDISRC in register offset 0x040 must also be set to enable enhanced RDI.

NOPAISCONEPRDI:

When set high, the NOPAISCONEPRDI bit disables enhanced path RDI assertion when path AIS concatenation (PAISCON) events are detected in the receive stream. When NOPAISCONEPRDI is set high and PAISCON occurs, bit 6 of the G1 byte is set low while bit 7 of the G1 byte is set high. NOPAISCONEPRDI has precedence over PSLMEPRDI, TIUEPRDI, TIMEPRDI and UNEQEPRDI.

When NOPAISCONEPRDI is set low, reporting of enhanced RDI is according to PSLMEPRDI, TIUEPRDI, TIMEPRDI and UNEQEPRDI and the associated alarm states.

PAISCONPRDI:

When set high, the PAISCONPRDI bit enables path RDI assertion when path AIS concatenation (PAISCON) events are detected in the receive stream. When PAISCONPRDI is set low, path AIS concatenation events have no effect on path RDI.

**Register 0x00C, 0x10C, 0x20C, 0x30C, 0x40C, 0x50C, 0x60C, 0x70C, 0x80C,
0x90C, 0xA0C, 0xB0C, 0xC0C, 0xD0C, 0xE0C, 0xF0C:
Channel Received Line AIS Control**

Bit	Type	Function	Default
Bit 7	R/W	SDINS	0
Bit 6	R/W	SFINS	0
Bit 5	R/W	LOFINS	1
Bit 4	R/W	LOSINS	1
Bit 3	R/W	RTIMINS	0
Bit 2	R/W	RTIUINS	0
Bit 1		Unused	X
Bit 0	R/W	DCCAIS	0

This register controls the auto assertion of the receive line AIS for the entire SONET/SDH stream.

DCCAIS:

The DCCAIS bit enables the insertion of all ones in the section DCC (and the line DCC when loss of frame (LOF) or LOS is declared. When DCCAIS is a logic one, all ones is inserted in RDCC/RACC outputs when LOF or LOS is declared.

RTIUINS:

The RTIUINS bit enables the insertion of path AIS in the receive direction upon the declaration of section trace unstable. If RTIUINS is a logic one, path AIS is inserted into the SONET/SDH frame when the current received section trace identifier message has not matched the previous message for eight consecutive messages. Path AIS is terminated when the current message becomes the accepted message.

RTIMINS:

The RTIMINS bit enables the insertion of path AIS in the receive direction upon the declaration of section trace mismatch. If RTIMINS is a logic one, path AIS is inserted into the SONET/SDH frame when the accepted identifier message differs from the expected message. Path AIS is terminated when the accepted message matches the expected message.

LOSINS:

The LOSINS bit enables the insertion of path AIS in the receive direction upon the declaration of loss of signal (LOS). If LOSINS is a logic one, path AIS is inserted into the SONET/SDH frame when LOS is declared. Path AIS is terminated when LOS is removed.

LOFINS:

The LOFINS bit enables the insertion of path AIS in the receive direction upon the declaration of loss of frame (LOF). If LOFINS is a logic one, path AIS is inserted into the SONET/SDH frame when LOF is declared. Path AIS is terminated when LOF is removed.

SFINS:

The SFINS bit enables the insertion of path AIS in the receive direction upon the declaration of signal fail (SF). If SFINS is a logic one, path AIS is inserted into the SONET/SDH frame when SF is declared. Path AIS is terminated when SF is removed.

SDINS:

The SDINS bit enables the insertion of path AIS in the receive direction upon the declaration of signal degrade (SD). If SDINS is a logic one, path AIS is inserted into the SONET/SDH frame when SD is declared. Path AIS is terminated when SD is removed.

**Register 0x00D, 0x10D, 0x20D, 0x30D, 0x40D, 0x50D, 0x60D, 0x70D, 0x80D,
0x90D, 0xA0D, 0xB0D, 0xC0D, 0xD0D, 0xE0D, 0xF0D:
Channel Receive Path AIS Control**

Bit	Type	Function	Default
Bit 7	R/W	PAISCONPAIS	1
Bit 6	R/W	LOPCONPAIS	1
Bit 5	R/W	PSLUPAIS	1
Bit 4	R/W	PSLMPAIS	1
Bit 3	R/W	LOPPAIS	1
Bit 2	R/W	Reserved	1
Bit 1	R/W	TIUPAIS	1
Bit 0	R/W	TIMPAIS	1

This register controls the auto assertion of path AIS, which will force a loss of cell delineation by the receive cell processor.

TIMPAIS:

When set high, the TIMPAIS bit enables path AIS insertion when path trace message mismatch (TIM) events are detected in the receive stream. When TIMPAIS is set low, trace identifier mismatch events will not assert path AIS.

TIUPAIS:

When set high, the TIUPAIS bit enables path AIS insertion when path trace message unstable events are detected in the receive stream. When TIUPAIS is set low, trace identifier unstable events will not assert path AIS.

LOPPAIS:

When set high, the LOPPAIS bit enables path AIS insertion when loss of pointer (LOP) events are detected in the receive stream. When LOPPAIS is set low, loss of pointer events will not assert path AIS.

PSLMPAIS:

When set high, the PSLMPAIS bit enables path AIS insertion when path signal label mismatch (PSLM) events are detected in the receive stream. When PSLMPAIS is set low, path signal label mismatch events will not assert path AIS.

PSLUPAIS:

When set high, the PSLUPAIS bit enables path AIS insertion when path signal label unstable (PSLU) events are detected in the receive stream. When PSLUPAIS is set low, path signal label unstable events will not assert path AIS.

LOPCONPAIS:

When set high, the LOPCONPAIS bit enables path AIS insertion when loss of pointer concatenation (LOPCON) events are detected in the receive stream. When LOPCONPAIS is set low, loss of pointer concatenation events will not assert path AIS.

PAISCONPAIS:

When set high, the PAISCONPAIS bit enables path AIS insertion when Path AIS concatenation (PAISCON) events are detected in the receive direction. When PAISCONPAIS is set low, Path AIS concatenation events will not assert path AIS.

Reserved:

The reserved bit must be programmed to logic zero for proper operation.

**Register 0x00E, 0x10E, 0x20E, 0x30E, 0x40E, 0x50E, 0x60E, 0x70E, 0x80E,
0x90E, 0xA0E, 0xB0E, 0xC0E, 0xD0E, 0xE0E, 0xF0E:
Channel Receive Alarm Control #1**

Bit	Type	Function	Default
Bit 7	R/W	CONEN	0
Bit 6	R/W	PTIMEN	0
Bit 5	R/W	PSLMEN	0
Bit 4	R/W	PERDIEN	0
Bit 3	R/W	PRDIEN	0
Bit 2	R/W	PAISEN	0
Bit 1	R/W	LCDEN	0
Bit 0	R/W	LOPEN	0

Register 0x0F: S/UNI-16x155 Receive Alarm Control #2

Bit	Type	Function	Default
Bit 7	R/W	STIMEN	0
Bit 6	R/W	SFBEREN	0
Bit 5	R/W	SDBEREN	0
Bit 4	R/W	LRDIEN	0
Bit 3	R/W	LAISEN	0
Bit 2	R/W	OOFEN	0
Bit 1	R/W	LOFEN	0
Bit 0	R/W	LOSEN	0

LOSEN, LOFEN, OOFEN, LAISEN, LRDEN, SDBEREN, SFBEREN, STIMEN,
LOPEN, LCDEN, PAISEN, PRDIEN, PERDIEN, PSLMEN, PTIMEN, CONEN:

The above enable bits allow the corresponding alarm indications to be reported (ORed) into the channel's RALRM output. When the enable bit is high, the corresponding alarm indication is combined with other alarm indications and output on the channel's RALRM. When the enable bit is low, the corresponding alarm indication does not affect the channel's RALRM output.

Alarm	Description
LOS	Loss of signal
LOF	Loss of frame
OOF	Out of Frame
LAIS	Line Alarm Indication Signal
LRDI	Line Remote Defect Indication
SDBER	Signal Degrade Bit Error Rate
SFBER	Signal Fail Bit Error Rate
STIM	Section Trace Identifier Mismatch
LOP	Loss of Pointer
LCD	Loss of Cell Delineation
PAIS	Path Alarm Indication Signal
PRDI	Path Remote Defect Indication
PERDI	Path Enhanced Remote Defect Indication
PSLM	Path Signal Label Mismatch
PTIM	Path Trace Identifier Mismatch
CON	Pointer Concatenation Violation or Pointer AIS

Reserved:

The reserved bit must be programmed to logic zero for proper operation.

**Register 0x010, 0x110, 0x210, 0x310, 0x410, 0x510, 0x610, 0x710, 0x810,
0x910, 0xA10, 0xB10, 0xC10, 0xD10, 0xE10, 0xF10:
RSOP Control/Interrupt Enable**

Bit	Type	Function	Default
Bit 7	R/W	BLKBIP	0
Bit 6	R/W	DDS	0
Bit 5	W	FOOF	X
Bit 4	R/W	ALGO2	0
Bit 3	R/W	BIPEE	0
Bit 2	R/W	LOSE	0
Bit 1	R/W	LOFE	0
Bit 0	R/W	OOFE	0

OOFE:

The OOF_E bit is an interrupt enable for the out-of-frame alarm. When OOF_E is set to logic one, an interrupt is generated when the out-of-frame alarm changes state.

LOFE:

The LOF_E bit is an interrupt enable for the loss of frame alarm. When LOF_E is set to logic one, an interrupt is generated when the loss of frame alarm changes state.

LOSE:

The LOSE bit is an interrupt enable for the loss of signal alarm. When LOSE is set to logic one, an interrupt is generated when the loss of signal alarm changes state.

BIPEE:

The BIPEE bit is an interrupt enable for the section BIP-8 errors. When BIPEE is set to logic one, an interrupt is generated when a section BIP-8 error (B1) is detected.

ALGO2:

The ALGO2 bit position selects the framing algorithm used to determine and maintain the frame alignment. When a logic one is written to the ALGO2 bit

position, the framer is enabled to use the second of the framing algorithms where only the first A1 framing byte and the first 4 bits of the last A2 framing byte (12 bits total) are examined. This algorithm examines only 12 bits of the framing pattern regardless; all other framing bits are ignored. When a logic zero is written to the ALGO2 bit position, the framer is enabled to use the first of the framing algorithms where all the A1 framing bytes and all the A2 framing bytes are examined.

FOOF:

The FOOF bit controls the framing of the RSOP. When a logic one is written to FOOF, the RSOP is forced out of frame at the next frame boundary. The FOOF bit is a write only bit, register reads may yield a logic one or a logic zero.

DDS:

The DDS bit is set to logic one to disable the descrambling of the STS-3c/STM-1 stream. When DDS is a logic zero, descrambling is enabled.

BLKBIP:

The BLKBIP bit position enables the accumulating of section BIP word errors. When a logic one is written to the BLKBIP bit position, one or more errors in the BIP-8 byte result in a single error being accumulated in the B1 error counter. When a logic zero is written to the BLKBIP bit position, all errors in the B1 byte are accumulated in the B1 error counter.

**Register 0x011, 0x111, 0x211, 0x311, 0x411, 0x511, 0x611, 0x711, 0x811,
0x911, 0xA11, 0xB11, 0xC11, 0xD11, 0xE11, 0xF11:
RSOP Status/Interrupt Status**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6	R	BIPEI	X
Bit 5	R	LOSI	X
Bit 4	R	LOFI	X
Bit 3	R	OOFI	X
Bit 2	R	LOSV	X
Bit 1	R	LOFV	X
Bit 0	R	OOFV	X

OOFV:

The OOFV bit is read to determine the out-of-frame state of the RSOP. When OOFV is high, the RSOP is out of frame. When OOFV is low, the RSOP is in-frame.

LOFV:

The LOFV bit is read to determine the loss of frame state of the RSOP. When LOFV is high, the RSOP has declared loss of frame.

LOSV:

The LOSV bit is read to determine the loss of signal state of the RSOP. When LOSV is high, the RSOP has declared loss of signal.

OOFI:

The OOFI bit is the out-of-frame interrupt status bit. OOFI is set high when a change in the out-of-frame state occurs. This bit is cleared when this register is read.

LOFI:

The LOFI bit is the loss of frame interrupt status bit. LOFI is set high when a change in the loss of frame state occurs. This bit is cleared when this register is read.

LOSI:

The LOSI bit is the loss of signal interrupt status bit. LOSI is set high when a change in the loss of signal state occurs. This bit is cleared when this register is read.

BIPEI:

The BIPEI bit is the section BIP-8 interrupt status bit. BIPEI is set high when a section layer (B1) bit error is detected. This bit is cleared when this register is read.

**Register 0x012, 0x112, 0x212, 0x312, 0x412, 0x512, 0x612, 0x712, 0x812,
0x912, 0xA12, 0xB12, 0xC12, 0xD12, 0xE12, 0xF12:
RSOP Section BIP-8 LSB**

Bit	Type	Function	Default
Bit 7	R	SBE[7]	X
Bit 6	R	SBE[6]	X
Bit 5	R	SBE[5]	X
Bit 4	R	SBE[4]	X
Bit 3	R	SBE[3]	X
Bit 2	R	SBE[2]	X
Bit 1	R	SBE[1]	X
Bit 0	R	SBE[0]	X

**Register 0x013, 0x113, 0x213, 0x313, 0x413, 0x513, 0x613, 0x713, 0x813,
0x913, 0xA13, 0xB13, 0xC13, 0xD13, 0xE13, 0xF13:
RSOP Section BIP-8 MSB**

Bit	Type	Function	Default
Bit 7	R	SBE[15]	X
Bit 6	R	SBE[14]	X
Bit 5	R	SBE[13]	X
Bit 4	R	SBE[12]	X
Bit 3	R	SBE[11]	X
Bit 2	R	SBE[10]	X
Bit 1	R	SBE[9]	X
Bit 0	R	SBE[8]	X

SBE[15:0]:

Bits SBE[15:0] represent the number of section BIP-8 errors (individual or block) that have been detected since the last time the error count was polled. The error count is polled by writing to either of the RSOP Section BIP-8 Register addresses. Such a write transfers the internally accumulated error count to the Section BIP-8 registers within approximately 7 μ s and

simultaneously resets the internal counter to begin a new cycle of error accumulation. This transfer and reset is carried out in a manner that ensures that coincident events are not lost.

The count can also be polled by writing to the S/UNI-16x155 Master Reset and Identity register (0x000). Writing to register address 0x000 loads all counter registers in all channels and APS links.

The count can also be polled by writing to the channel Master Interrupt Status register (offset 0x07). Writing to register offset 0x07 loads all counter registers in the RSOP, RLOP, RPOP, SPTB, SSTB, RXCP, TXCP, RXFP, and TXFP blocks of the channel.

**Register 0x014, 0x114, 0x214, 0x314, 0x414, 0x514, 0x614, 0x714, 0x814,
0x914, 0xA14, 0xB14, 0xC14, 0xD14, 0xE14, 0xF14:
TSOP Control**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6	R/W	DS	0
Bit 5	R/W	Reserved	0
Bit 4	R/W	Reserved	0
Bit 3	R/W	Reserved	0
Bit 2	R/W	Reserved	0
Bit 1	R/W	Reserved	0
Bit 0	R/W	LAIS	0

LAIS:

The LAIS bit controls the insertion of line alarm indication signal (AIS). When LAIS is set to logic one, the TSOP inserts AIS into the transmit SONET/SDH stream. Activation or deactivation of line AIS insertion is synchronized to frame boundaries. Line AIS insertion results in all bits of the SONET/SDH frame being set to 1 prior to scrambling except for the section overhead.

DS:

The DS bit is set to logic one to disable the scrambling of the STS-3c/STM-1 stream. When DS is a logic zero, scrambling is enabled.

Reserved:

The reserved bits must be programmed to logic zero for proper operation.

**Register 0x015, 0x115, 0x215, 0x315, 0x415, 0x515, 0x615, 0x715, 0x815,
0x915, 0xA15, 0xB15, 0xC15, 0xD15, 0xE15, 0xF15:
TSOP Diagnostic**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3		Unused	X
Bit 2	R/W	DLOS	0
Bit 1	R/W	DBIP8	0
Bit 0	R/W	DFP	0

DFP:

The DFP bit controls the insertion of a single bit error continuously in the most significant bit (bit 1) of the A1 section overhead framing byte. When DFP is set to logic one, the A1 bytes are set to 0x76 instead of 0xF6.

DBIP8:

The DBIP8 bit controls the insertion of bit errors continuously in the section BIP-8 byte (B1). When DBIP8 is set to logic one, the B1 byte is inverted.

DLOS:

The DLOS bit controls the insertion of all zeros in the STS-3c/STM-1 stream. When DLOS is set to logic one, the transmit stream is forced to 0x00.

**Register 0x018, 0x118, 0x218, 0x318, 0x418, 0x518, 0x618, 0x718, 0x818,
0x918, 0xA18, 0xB18, 0xC18, 0xD18, 0xE18, 0xF18:
RLOP Control/Status**

Bit	Type	Function	Default
Bit 7	R/W	BIPWORD	0
Bit 6	R/W	ALLONES	0
Bit 5	R/W	AISDET	0
Bit 4	R/W	LRDIDET	0
Bit 3	R/W	BIPWORDO	0
Bit 2	R/W	FEBEWORD	0
Bit 1	R	LAISV	X
Bit 0	R	LRDIV	X

LRDIV:

The LRDIV bit is read to determine the remote defect indication state of the RLOP. When LRDIV is high, the RLOP has declared line RDI.

LAISV:

The LAISV bit is read to determine the line AIS state of the RLOP. When LAISV is high, the RLOP has declared line AIS.

FEBEWORD:

The FEBEWORD bit controls the accumulation of FEBEs. When FEBEWORD is high, if the FEBE event has a value from 1 to 4, the FEBE event counter is incremented for each and every FEBE bit. However, if the FEBE event has a value greater than 4 and is valid, the FEBE event counter is incremented by 4. When FEBEWORD is low, the FEBE event counter is incremented for each and every FEBE bit that occurs during that frame (the counter can be incremented up to 24.).

BIPWORDO:

The BIPWORDO bit controls the indication of B2 errors reported to the TLOP block for insertion as FEBEs. When BIPWORDO is logic one, the BIP errors are indicated once per frame whenever one or more B2 bit errors occur during that frame. When BIPWORDO is logic zero, BIP errors are indicated once for every B2 bit error that occurs during that frame. The accumulation of

B2 error events functions independently and is controlled by the BIPWORD register bit.

LRDIDET:

The LRDIDET bit determines the line RDI alarm detection algorithm. When LRDIDET is set to logic one, line RDI is declared when a 110 binary pattern is detected in bits 6, 7 and 8 of the K2 byte for three consecutive frames. When LRDIDET is set to logic zero, line RDI is declared when a 110 binary pattern is detected in bits 6, 7 and 8 of the K2 byte for five consecutive frames.

AISDET:

The AISDET bit determines the line AIS alarm detection algorithm. When AISDET is set to logic one, line AIS is declared when a 111 binary pattern is detected in bits 6, 7 and 8 of the K2 byte for three consecutive frames. When AISDET is set to logic zero, line AIS is declared when a 111 binary pattern is detected in bits 6, 7 and 8 of the K2 byte for five consecutive frames.

ALLONES:

The ALLONES bit controls automatically forcing the SONET/SDH frame passed to downstream blocks to logical all-ones whenever line AIS is detected. When ALLONES is set to logic one, the SONET/SDH frame is forced to logic one immediately when the line AIS alarm is declared. When line AIS is removed, the downstream data stream is immediately returned to carrying the receive data. When ALLONES is set to logic zero, the downstream data stream always carry the receive data regardless of the line AIS alarm state.

BIPWORD:

The BIPWORD bit controls the accumulation of B2 errors. When BIPWORD is logic one, the B2 error event counter is incremented only once per frame whenever one or more B2 bit errors occur during that frame. When BIPWORD is logic zero, the B2 error event counter is increment for each and every B2 bit error that occurs during that frame.

**Register 0x019, 0x119, 0x219, 0x319, 0x419, 0x519, 0x619, 0x719, 0x819,
0x919, 0xA19, 0xB19, 0xC19, 0xD19, 0xE19, 0xF19:
RLOP Interrupt Enable/Interrupt Status**

Bit	Type	Function	Default
Bit 7	R/W	FEBEE	0
Bit 6	R/W	BIPEE	0
Bit 5	R/W	LAISE	0
Bit 4	R/W	LRDIE	0
Bit 3	R	FEBEI	X
Bit 2	R	BIPEI	X
Bit 1	R	LAISI	X
Bit 0	R	LRDII	X

LRDII:

The LRDII bit is the remote defect indication interrupt status bit. LRDII is set high when a change in the line RDI state occurs. This bit is cleared when this register is read.

LAISI:

The LAISI bit is the line AIS interrupt status bit. LAISI is set high when a change in the line AIS state occurs. This bit is cleared when this register is read.

BIPEI:

The BIPEI bit is the line BIP-24 interrupt status bit. BIPEI is set high when a line layer (B2) bit error is detected. This bit is cleared when this register is read.

FEBEI:

The FEBEI bit is the line far end block error interrupt status bit. FEBEI is set high when a line layer FEBE (M1) is detected. This bit is cleared when this register is read.

LRDIE:

The LRDIE bit is an interrupt enable for the line remote defect indication alarm. When LRDIE is set to logic one, an interrupt is generated when the line RDI state changes.

LAISE:

The LAISE bit is an interrupt enable for line AIS. When LAISE is set to logic one, an interrupt is generated when line AIS changes state.

BIPEE:

The BIPEE bit is an interrupt enable for the line BIP-24 errors. When BIPEE is set to logic one, an interrupt is generated when a line BIP-24 error (B2) is detected.

FEBEE:

The FEBEE bit is an interrupt enable for the line far end block errors. When FEBEE is set to logic one, an interrupt is generated when FEBE (Z2) is detected.

**Register 0x01A, 0x11A, 0x21A, 0x31A, 0x41A, 0x51A, 0x61A, 0x71A, 0x81A,
0x91A, 0xA1A, 0xB1A, 0xC1A, 0xD1A, 0xE1A, 0xF1A:
RLOP Line BIP-24 LSB**

Bit	Type	Function	Default
Bit 7	R	LBE[7]	X
Bit 6	R	LBE[6]	X
Bit 5	R	LBE[5]	X
Bit 4	R	LBE[4]	X
Bit 3	R	LBE[3]	X
Bit 2	R	LBE[2]	X
Bit 1	R	LBE[1]	X
Bit 0	R	LBE[0]	X

**Register 0x01B, 0x11B, 0x21B, 0x31B, 0x41B, 0x51B, 0x61B, 0x71B, 0x81B,
0x91B, 0xA1B, 0xB1B, 0xC1B, 0xD1B, 0xE1B, 0xF1B:
RLOP Line BIP-24**

Bit	Type	Function	Default
Bit 7	R	LBE[15]	X
Bit 6	R	LBE[14]	X
Bit 5	R	LBE[13]	X
Bit 4	R	LBE[12]	X
Bit 3	R	LBE[11]	X
Bit 2	R	LBE[10]	X
Bit 1	R	LBE[9]	X
Bit 0	R	LBE[8]	X

**Register 0x01C, 0x11C, 0x21C, 0x3: , 0x4: , 0x5: , 0x6: , 0x7: , 0x8: , 0x9: ,
0xA: , 0xB: , 0xC: , 0xD: , 0xE: , 0xF:
RLOP Line BIP-24 MSB**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3	R	LBE[19]	X
Bit 2	R	LBE[18]	X
Bit 1	R	LBE[17]	X
Bit 0	R	LBE[16]	X

LBE[19:0]

Bits LBE[19:0] represent the number of line BIP-24 errors (individual or block) that have been detected since the last time the error count was polled. The error count is polled by writing to any of the RLOP Line BIP-24 Register or Line FEBE Register addresses. Such a write transfers the internally accumulated error count to the Line BIP-24 Registers within approximately 7 μ s and simultaneously resets the internal counter to begin a new cycle of error accumulation.

The count can also be polled by writing to the S/UNI-16x155 Master Reset and Identity register (0x000). Writing to register address 0x000 loads all counter registers in all channels and APS links.

The count can also be polled by writing to the channel Master Interrupt Status register (offset 0x07). Writing to register offset 0x07 loads all counter registers in the RSOP, RLOP, RPOP, SPTB, SSTB, RXCP, TXCP, RXFP, and TXFP blocks of the channel.

**Register 0x01D, 0x11D, 0x21D, 0x31D, 0x41D, 0x51D, 0x61D, 0x71D, 0x81D,
0x91D, 0xA1D, 0xB1D, 0xC1D, 0xD1D, 0xE1D, 0xF1D:
RLOP Line FEBE LSB**

Bit	Type	Function	Default
Bit 7	R	LFE[7]	X
Bit 6	R	LFE[6]	X
Bit 5	R	LFE[5]	X
Bit 4	R	LFE[4]	X
Bit 3	R	LFE[3]	X
Bit 2	R	LFE[2]	X
Bit 1	R	LFE[1]	X
Bit 0	R	LFE[0]	X

**Register 0x01E, 0x11E, 0x21E, 0x31E, 0x41E, 0x51E, 0x61E, 0x71E, 0x81E,
0x91E, 0xA1E, 0xB1E, 0xC1E, 0xD1E, 0xE1E, 0xF1E:
RLOP Line FEBE**

Bit	Type	Function	Default
Bit 7	R	LFE[15]	X
Bit 6	R	LFE[14]	X
Bit 5	R	LFE[13]	X
Bit 4	R	LFE[12]	X
Bit 3	R	LFE[11]	X
Bit 2	R	LFE[10]	X
Bit 1	R	LFE[9]	X
Bit 0	R	LFE[8]	X

**Register 0x01F, 0x11F, 0x21F, 0x31F, 0x41F, 0x51F, 0x61F, 0x71F, 0x81F,
0x91F, 0xA1F, 0xB1F, 0xC1F, 0xD1F, 0xE1F, 0xF1F:
RLOP Line FEBE MSB**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3	R	LFE[19]	X
Bit 2	R	LFE[18]	X
Bit 1	R	LFE[17]	X
Bit 0	R	LFE[16]	X

LFE[19:0]

Bits LFE[19:0] represent the number of line FEBE errors (individual or block) that have been detected since the last time the error count was polled. The error count is polled by writing to any of the RLOP Line BIP-24 Register or Line FEBE Register addresses. Such a write transfers the internally accumulated error count to the Line FEBE Registers within approximately 7 μ s and simultaneously resets the internal counter to begin a new cycle of error accumulation.

The count can also be polled by writing to the S/UNI-16x155 Master Reset and Identity register (0x000). Writing to register address 0x000 loads all counter registers in all channels and APS links

The count can also be polled by writing to the channel Master Interrupt Status register (offset 0x07). Writing to register offset 0x07 loads all counter registers in the RSOP, RLOP, RPOP, SPTB, SSTB, RXCP, TXCP, RXFP, and TXFP blocks of the channel.

**Register 0x020, 0x120, 0x220, 0x320, 0x420, 0x520, 0x620, 0x720, 0x820,
0x920, 0xA20, 0xB20, 0xC20, 0xD20, 0xE20, 0xF20:
TLOP Control**

Bit	Type	Function	Default
Bit 7	R/W	Reserved	0
Bit 6	R/W	Reserved	0
Bit 5	R/W	APSREG	0
Bit 4	R/W	Reserved	0
Bit 3	R/W	Reserved	0
Bit 2	R/W	Reserved	0
Bit 1	R/W	Reserved	0
Bit 0	R/W	LRDI	0

LRDI:

The LRD_I bit controls the insertion of line remote defect indication (LRDI). When LRD_I is set to logic one, the TLOP inserts line RDI into the transmit SONET/SDH stream. Line RDI is inserted by transmitting the code 110 in bit positions 6, 7 and 8 of the K2 byte of the STS-3c stream.

APSREG:

The APSREG bit selects the source for the transmit APS channel K1/K2 bytes. When APSREG is a logic zero, 0x0000 is inserted in the transmit APS K1 and K2 bytes. When APSREG is a logic one, the transmit APS channel is inserted from the TLOP Transmit K1 Register and the TLOP Transmit K2 Register.

Reserved:

The reserved bits must be programmed to logic zero for proper operation.

**Register 0x021, 0x121, 0x221, 0x321, 0x421, 0x521, 0x621, 0x721, 0x821,
0x921, 0xA21, 0xB21, 0xC21, 0xD21, 0xE21, 0xF21:
TLOP Diagnostic**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3		Unused	X
Bit 2		Unused	X
Bit 1		Unused	X
Bit 0	R/W	DBIP96	0

DBIP96:

The DBIP96 bit controls the insertion of bit errors continuously in the line BIP-24 bytes (B2). When DBIP96 is set to logic one, the B2 bytes are inverted.

**Register 0x022, 0x122, 0x222, 0x322, 0x422, 0x522, 0x622, 0x722, 0x822,
0x922, 0xA22, 0xB22, 0xC22, 0xD22, 0xE22, 0xF22:
TLOP Transmit K1**

Bit	Type	Function	Default
Bit 7	R/W	K1[7]	0
Bit 6	R/W	K1[6]	0
Bit 5	R/W	K1[5]	0
Bit 4	R/W	K1[4]	0
Bit 3	R/W	K1[3]	0
Bit 2	R/W	K1[2]	0
Bit 1	R/W	K1[1]	0
Bit 0	R/W	K1[0]	0

K1[7:0]:

The K1[7:0] bits contain the value inserted in the K1 byte when the APSREG bit in the TLOP Control Register is logic one. K1[7] is the most significant bit corresponding to bit 1, the first bit transmitted. K1[0] is the least significant bit, corresponding to bit 8, the last bit transmitted. The bits in this register are double buffered so that register writes do not need to be synchronized to SONET/SDH frame boundaries. The insertion of a new APS code value is initiated by a write to this register. The contents of this register, and the TLOP Transmit K2 Register are inserted in the SONET/SDH stream starting at the next frame boundary. Successive writes to this register must be spaced at least two frames (250 μ s) apart.

**Register 0x023, 0x123, 0x223, 0x323, 0x423, 0x523, 0x623, 0x723, 0x823,
0x923, 0xA23, 0xB23, 0xC23, 0xD23, 0xE23, 0xF23:
TLOP Transmit K2**

Bit	Type	Function	Default
Bit 7	R/W	K2[7]	0
Bit 6	R/W	K2[6]	0
Bit 5	R/W	K2[5]	0
Bit 4	R/W	K2[4]	0
Bit 3	R/W	K2[3]	0
Bit 2	R/W	K2[2]	0
Bit 1	R/W	K2[1]	0
Bit 0	R/W	K2[0]	0

K2[7:0]:

The K2[7:0] bits contain the value inserted in the K2 byte when the APSREG bit in the TLOP Control Register is logic one. K2[7] is the most significant bit corresponding to bit 1, the first bit transmitted. K2[0] is the least significant bit, corresponding to bit 8, the last bit transmitted. The bits in this register are double buffered so that register writes do not need to be synchronized to SONET/SDH frame boundaries. The insertion of a new APS code value is initiated by a write to the TLOP Transmit K1 Register. A coherent APS code value is ensured by writing the desired K2 APS code value to this register before writing the TLOP Transmit K1 Register.

**Register 0x024, 0x124, 0x224, 0x324, 0x424, 0x524, 0x624, 0x724, 0x824,
0x924, 0xA24, 0xB24, 0xC24, 0xD24, 0xE24, 0xF24:
S/UNI-16x155 Transmit Sync. Message (S1)**

Bit	Type	Function	Default
Bit 7	R/W	Reserved	0
Bit 6	R/W	Reserved	0
Bit 5	R/W	Reserved	0
Bit 4	R/W	Reserved	0
Bit 3	R/W	TS1[3]	0
Bit 2	R/W	TS1[2]	0
Bit 1	R/W	TS1[1]	0
Bit 0	R/W	TS1[0]	0

TS1[3:0]:

The value written to these bit positions is inserted in the first S1 byte position of the transmit stream. The S1 byte is used to carry synchronization status messages between line terminating network elements. TS1[3] is the most significant bit, corresponding to the first bit transmitted. TS1[0] is the least significant bit, corresponding to the last bit transmitted.

Reserved:

The reserved bits must be programmed to logic zero for proper operation.

**Register 0x025, 0x125, 0x225, 0x325, 0x425, 0x525, 0x625, 0x725, 0x825,
0x925, 0xA25, 0xB25, 0xC25, 0xD25, 0xE25, 0xF25:
S/UNI-16x155 Transmit J0/Z0**

Bit	Type	Function	Default
Bit 7	R/W	J0/Z0[7]	1
Bit 6	R/W	J0/Z0[6]	1
Bit 5	R/W	J0/Z0[5]	0
Bit 4	R/W	J0/Z0[4]	0
Bit 3	R/W	J0/Z0[3]	1
Bit 2	R/W	J0/Z0[2]	1
Bit 1	R/W	J0/Z0[1]	0
Bit 0	R/W	J0/Z0[0]	0

J0/Z0[7:0]:

The value written to this register is inserted into the J0/Z0 byte positions of the transmit stream when enabled using the SDH_J0/Z0 register. J0/Z0[7] is the most significant bit, corresponding to the first bit (bit 1) transmitted. J0/Z0[0] is the least significant bit, corresponding to the last bit (bit 8) transmitted.

**Register 0x028, 0x128, 0x228, 0x328, 0x428, 0x528, 0x628, 0x728, 0x828,
0x928, 0xA28, 0xB28, 0xC28, 0xD28, 0xE28, 0xF28:
SSTB Control**

Bit	Type	Function	Default
Bit 7	R/W	ZEROEN	0
Bit 6	R/W	TIMODE	0
Bit 5	R/W	RTIUIE	0
Bit 4	R/W	RTIMIE	0
Bit 3	R/W	PER5	0
Bit 2	R/W	TNULL	1
Bit 1	R/W	NOSYNC	0
Bit 0	R/W	LEN16	0

This register controls the receive and transmit portions of the SSTB.

LEN16:

The section trace message length bit (LEN16) selects the length of the section trace message to be 16 bytes or 64 bytes. When set high, a 16-byte section trace message is selected. If set low, a 64-byte section trace message is selected.

NOSYNC:

The section trace message synchronization disable bit (NOSYNC) disables the writing of the section trace message into the trace buffer to be synchronized to the content of the message. When LEN16 is set high and NOSYNC is set low, the receive section trace message byte with its most significant bit set will be written to the first location in the buffer. When LEN16 is set low, and NOSYNC is also set low, the byte after the carriage return/linefeed (CR/LF) sequence will be written to the first location in the buffer. When NOSYNC is set high, synchronization is disabled, and the section trace message buffer behaves as a circular buffer.

TNULL:

The transmit null bit (TNULL) controls the insertion of an all-zeros section trace identifier message in the transmit stream. When TNULL is set high, the contents of the transmit buffer is ignored and all-zeros bytes are provided to the TSOP block. When TNULL is set low the contents of the transmit section

trace buffer is sent to TSOP for insertion into the J0/Z0 transmit section overhead byte. TNULL should be set high before changing the contents of the trace buffer to avoid sending partial messages.

PER5:

The receive trace identifier persistence bit (PER5) control the number of times a section trace identifier message must be received unchanged before being accepted. When PER5 is set high, a message is accepted when it is received unchanged five times consecutively. When PER5 is set low, the message is accepted after three identical repetitions.

RTIMIE:

The RTIMIE bit controls the activation of the interrupt output when the comparison between the trace identifier mode 1 accepted identifier message and the expected message changes state. When RTIMIE is a logic one, changes in match state activates the interrupt (INTB) output.

This register is ignored when TIMODE is set high.

RTIUIE:

The RTIUIE bit controls the activation of the interrupt output when, in either trace identifier mode, the receive identifier message changes state. When RTIUIE is a logic one, changes in the received section trace identifier message stable/unstable state will activate the interrupt (INTB) output.

TIMODE:

The trace identifier mode is used to set the mode used for the received trace identifier. Setting TIMODE low sets the trace identifier mode to 1. In this mode, the trace identifier is defined as a regular 16 or 64 byte trace message and persistency is based on the whole message. Receive trace identifier mismatch (RTIM) and unstable (RTIU) alarms are declared on the trace message.

Setting TIMODE high set the trace identifier mode to 2. In this mode, the trace identifier is defined as a single byte that is monitored for persistency and then errors. A receive trace identifier unstable (RTIU) alarm is declared when one or more errors are detected in three consecutive 16 byte windows.

ZEROEN:

For trace identifier mode 1 only, the zero enable bit (ZEROEN) enables TIM assertion and removal based on an all ZERO's section trace message string. When ZEROEN is set high, all ZERO's section trace message strings are

considered when entering and exiting TIM states. When ZEROEN is set low, all ZERO's section trace message strings are ignored.

This register is ignored when in trace identifier mode 2 (controlled by TIMODE).

Reserved:

The reserved bits must be programmed to logic zero for proper operation.

**Register 0x029, 0x129, 0x229, 0x329, 0x429, 0x529, 0x629, 0x729, 0x829,
0x929, 0xA29, 0xB29, 0xC29, 0xD29, 0xE29, 0xF29:
SSTB Section Trace Identifier Status**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3	R	RTIUI	X
Bit 2	R	RTIUV	X
Bit 1	R	RTIMI	X
Bit 0	R	RTIMV	X

This register reports the section trace identifier status of the SSTB.

RTIMV:

When TIMODE is low, the RTIMV bit reports the match/mismatch status of the identifier message framer. RTIMV is a logic one when the accepted identifier message differs from the expected message written by the microprocessor. The accepted message is the last message to have been received 5 consecutive times. RTIMV is a logic zero when the accepted message matches the expected message.

If the accepted message string is all-zeros, the mismatch is not declared unless the ZEROEN register bit is set. This register is invalid when TIMODE is high.

RTIMI:

When TIMODE is low, the RTIMI bit is a logic one when match/mismatch status of the trace identifier framer changes state. This bit is cleared when this register is read. This register is invalid TIMODE is high.

RTIUV:

The RTIUV bit reports the stable/unstable status of the identifier message framer.

When TIMODE is low, RTIUV is set high when 8 trace messages mismatching against their immediate predecessor message have been

received without a persistent message being detected. The unstable counter is incremented on each message that mismatches its predecessor and is cleared on the reception of a persistent message. RTIUV is set high when the unstable counter reaches 8. RTIUV is set low and the unstable counter cleared once a persistent message has been received.

When TIMODE is high, RTIUV is set low during the stable state which is declared after having received the same trace byte for 48 consecutive SONET/SDH frames. The stable byte is declared the accepted byte. RTIUV is set high when mismatches between the accepted byte and the received byte have been detected for three consecutive 16 byte windows. The 16 byte windows do not overlap and start immediately after the 48th persistent byte.

RTIUI:

The RTIUI bit is a logic one when stable/unstable status of the trace identifier framer changes state. When RTIUV changes value, RTIUI is set high. This bit is cleared when this register is read.

**Register 0x02A, 0x12A, 0x22A, 0x32A, 0x42A, 0x52A, 0x62A, 0x72A, 0x82A,
0x92A, 0xA2A, 0xB2A, 0xC2A, 0xD2A, 0xE2A, 0xF2A:
SSTB Indirect Address Register**

Bit	Type	Function	Default
Bit 7	R/W	A[7]	0
Bit 6	R/W	A[6]	0
Bit 5	R/W	A[5]	0
Bit 4	R/W	A[4]	0
Bit 3	R/W	A[3]	0
Bit 2	R/W	A[2]	0
Bit 1	R/W	A[1]	0
Bit 0	R/W	A[0]	0

This register supplies the address used to index into section trace identifier buffers. Writing to this register triggers the indirect read/write access to the trace buffer.

A[7:0]:

The indirect read address bits (A[7:0]) indexes into the path trace identifier buffers. Addresses 0 to 63 reference the transmit message buffer which contains the identifier message to be inserted into the transmit stream.

Addresses 64 to 127 reference the receive accepted message page. A receive message is accepted into this page when it is received unchanged three or five times consecutively as determined by the PER5 bit setting.

Addresses 128 to 191 reference the receive capture page while addresses 192 to 255 reference the receive expected page. The receive capture page contains the identifier bytes extracted from the receive stream. The receive expected page contains the expected trace identifier message down-loaded from the microprocessor.

**Register 0x02B, 0x12B, 0x22B, 0x32B, 0x42B, 0x52B, 0x62B, 0x72B, 0x82B,
0x92B, 0xA2B, 0xB2B, 0xC2B, 0xD2B, 0xE2B, 0xF2B:
SSTB Indirect Data Register**

Bit	Type	Function	Default
Bit 7	R/W	D[7]	0
Bit 6	R/W	D[6]	0
Bit 5	R/W	D[5]	0
Bit 4	R/W	D[4]	0
Bit 3	R/W	D[3]	0
Bit 2	R/W	D[2]	0
Bit 1	R/W	D[1]	0
Bit 0	R/W	D[0]	0

This register contains the data read from the section trace message buffer after a read operation or the data to be written into the buffer before a write operation.

D[7:0]:

The indirect data bits (D[7:0]) reports the data read from a message buffer after an indirect read operation has completed. The data to be written to a buffer must be set up in this register before initiating an indirect write operation.

The current and accepted message pages should be read at least twice and the results of the successive reads compared for consistency. The section trace message buffer keeps overwriting these message pages and consequently the result of a read can be composed of multiple messages.

**Register 0x02E, 0x12E, 0x22E, 0x32E, 0x42E, 0x52E, 0x62E, 0x72E, 0x82E,
0x92E, 0xA2E, 0xB2E, 0xC2E, 0xD2E, 0xE2E, 0xF2E:
SSTB Indirect Access Trigger Register**

Bit	Type	Function	Default
Bit 7	R	BUSY	0
Bit 6	R/W	RWB	0
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3		Unused	X
Bit 2		Unused	X
Bit 1		Unused	X
Bit 0		Unused	X

BUSY:

The BUSY bit reports whether a previously initiated indirect read or write to a message buffer has been completed. BUSY is set high upon writing to the SSTB Indirect Address register, and stays high until the initiated access has completed. At which point, BUSY is set low. This register should be polled to determine when new data is available in the SSTB Indirect Data register.

RWB:

The access control bit (RWB) selects between an indirect read or write access to the static page of the section trace message buffer. When RWB is set high, a read access is initiated. The data read can be found in the SSTB Indirect Data register. When RWB is set low, a write access is initiated. The data in the SSTB Indirect Data register will be written to the addressed location in the static page.

Register 0x030, 0x130, 0x230, 0x330, 0x430, 0x530, 0x630, 0x730, 0x830, 0x930, 0xA30, 0xB30, 0xC30, 0xD30, 0xE30, 0xF30 (EXTD=0): RPOP Status/Control

Bit	Type	Function	Default
Bit 7	R/W	Reserved	0
Bit 6		Unused	X
Bit 5	R	LOPV	X
Bit 4		Unused	X
Bit 3	R	PAISV	X
Bit 2	R	PRDIV	X
Bit 1	R	NEWPTRI	X
Bit 0	R/W	NEWPTRE	0

NOTE: To facilitate additional register mapping, shadow registers have been added to channel registers offset 0x30, 0x31 and 0x33. These shadow registers are accessed in the same way as the normal registers.

The EXTD (extend register) bit must be set in register offset 0x36 to allow switching between accessing the normal registers and the shadow registers.

This register allows the status of path level alarms to be monitored.

NEWPTRE:

The NEWPTRE bit is the interrupt enable for the receive new pointer status. When NEWPTRE is a logic one, an interrupt is generated when the pointer interpreter validates a new pointer.

NEWPTRI:

The NEWPTRI bit is the receive new pointer interrupt status bit. NEWPTRI is a logic one when the pointer interpreter has validated a new pointer value (H1, H2). NEWPTRI is cleared when this register is read.

PRDIV:

The PRDIV bit is read to determine the remote defect indication state. When PRDIV is a logic one, the S/UNI-16x155 has declared path RDI.

PAISV:

The PAISV bit is read to determine the path AIS state. When PAISV is a logic one, the S/UNI-16x155 has declared path AIS.

PLOPV:

The PLOPV bit is read to determine the loss of pointer state. When PLOPV is a logic one, the S/UNI-16x155 has declared LOP.

Reserved:

The reserved bits must be programmed to logic zero for proper operation.

Register 0x030, 0x130, 0x230, 0x330, 0x430, 0x530, 0x630, 0x730, 0x830, 0x930, 0xA30, 0xB30, 0xC30, 0xD30, 0xE30, 0xF30 (EXTD=1): RPOP Status/Control

Bit	Type	Function	Default
Bit 7	R/W	Reserved	0
Bit 6	R/W	IINVCNT	0
Bit 5	R/W	PSL5	0
Bit 4	R/W	Reserved	0
Bit 3		Unused	X
Bit 2	R	ERDIV[2]	X
Bit 1	R	ERDIV[1]	X
Bit 0	R/W	ERDIV[0]	X

NOTE: To facilitate additional register mapping, shadow registers have been added to channel registers offset 0x30, 0x31 and 0x33. These shadow registers are accessed in the same way as the normal registers.

The EXTD (extend register) bit must be set in register offset 0x36 to allow switching between accessing the normal registers and the shadow registers.

The Status Register is provided at RPOP read address 0, if the extend register (EXTD) bit is set in register 6.

ERDIV[2:0]:

The ERDIV[2:0] bits reflect the current state of the detected enhanced RDI, (filtered G1 bits 5, 6, & 7).

IINVCNT:

When a logic one is written to the IINVCNT (Intuitive Invalid Pointer Counter) bit, if in the LOP state 3 x new point resets the inv_point count. If this bit is set to 0 the inv_point count will not be reset if in the LOP state and 3 x new pointers are detected.

PSL5:

The PSL5 bit controls the filtering of the path signal label byte (C2). When PSL5 is set high, the PSL is updated when the same value is received for 5

consecutive frames. When the PSL5 is set low, the PSL is updated when the same value is received for 3 consecutive frames.

Reserved:

The reserved bits must be programmed to logic zero for proper operation.

Register 0x031, 0x131, 0x231, 0x331, 0x431, 0x531, 0x631, 0x731, 0x831, 0x931, 0xA31, 0xB31, 0xC31, 0xD31, 0xE31, 0xF31 (EXTD=0): RPOP Interrupt Status

Bit	Type	Function	Default
Bit 7	R	PSLI	X
Bit 6		Unused	X
Bit 5	R	LOPI	X
Bit 4		Unused	X
Bit 3	R	PAISI	X
Bit 2	R	PRDII	X
Bit 1	R	BIPEI	X
Bit 0	R	FEBEI	X

NOTE: To facilitate additional register mapping, shadow registers have been added to channel registers offset 0x30, 0x31 and 0x33. These shadow registers are accessed in the same way as the normal registers.

The EXTD (extend register) bit must be set in register offset 0x36 to allow switching between accessing the normal registers and the shadow registers.

This register allows identification and acknowledgment of path level alarm and error event interrupts.

FEBEI:

The FEBEI bit is the path FEBE interrupt status bit. FEBEI is a logic one when a FEBE error is detected. This bit is cleared when this register is read.

BIPEI:

The BIPEI bit is the path BIP-8 interrupt status bit. BIPEI is a logic one when a B3 error is detected. This bit is cleared when this register is read.

PRDII:

The PRDII bit is the path remote defect indication interrupt status bit. PRDII is a logic one when a change in the path RDI state or the auxiliary path RDI state occurs. This bit is cleared when this register is read.

PAISI:

The PAISI bit is the path alarm indication signal interrupt status bit. PAISI is a logic one when a change in the path AIS state occurs. This bit is cleared when this register is read.

LOPI:

The LOPI bit is the loss of pointer interrupt status bit. LOPI is a logic one when a change in the LOP state occurs. This bit is cleared when this register is read.

PSLI:

The PSLI bit is the change of path signal label interrupt status bit. PSLI is a logic one when a change is detected in the path signal label register. The current path signal label can be read from the RPOP Path Signal Label register. This bit is cleared when this register is read.

**Register 0x031, 0x131, 0x231, 0x331, 0x431, 0x531, 0x631, 0x731, 0x831,
0x931, 0xA31, 0xB31, 0xC31, 0xD31, 0xE31, 0xF31 (EXTD=1):
RPOP Interrupt Status**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3		Unused	X
Bit 2		Unused	X
Bit 1		Unused	X
Bit 0	R	ERDII	X

NOTE: To facilitate additional register mapping, shadow registers have been added to channel registers offset 0x30, 0x31 and 0x33. These shadow registers are accessed in the same way as the normal registers.

The EXTD (extend register) bit must be set in register 0x36 to allow switching between accessing the normal registers and the shadow registers.

This register allows identification and acknowledgment of path level alarm and error event interrupts.

ERDII:

The ERDII bit is set high when a change is detected in the received enhanced RDI state. This bit is cleared when the RPOP Interrupt Status register is read.

**Register 0x032, 0x132, 0x232, 0x332, 0x432, 0x532, 0x632, 0x732, 0x832,
0x932, 0xA32, 0xB32, 0xC32, 0xD32, 0xE32, 0xF32:
RPOP Pointer Interrupt Status**

Bit	Type	Function	Default
Bit 7	R	ILLJREQI	X
Bit 6		Unused	X
Bit 5	R	DISCOPAI	X
Bit 4	R	INVNDFI	X
Bit 3	R	ILLPTRI	X
Bit 2	R	NSEI	X
Bit 1	R	PSEI	X
Bit 0	R	NDFI	X

This register allows identification and acknowledgment of pointer event interrupts.

NDFI:

The NDFI bit is set to logic one when the RPOP detects an active NDF event to a valid pointer value. NDFI is cleared when the RPOP Pointer Interrupt Status register is read.

PSEI:

The PSEI bit is set to logic one when the RPOP detects a positive stuff event. PSEI is cleared when the RPOP Pointer Interrupt Status register is read.

NSEI:

The NSEI bit is set to logic one when the RPOP detects a negative stuff event. NSEI is cleared when the RPOP Pointer Interrupt Status register is read.

ILLPTRI:

The ILLPTRI bit is set to logic one when the RPOP detects an illegal pointer event. ILLPTRI is cleared when the RPOP Pointer Interrupt Status register is read.

INVNDFI:

The INVNDFI bit is set to logic one when the RPOP detects an invalid NDF event. INVNDFI is cleared when the RPOP Pointer Interrupt Status register is read.

DISCOPAI:

The DISCOPAI bit is set to logic one when the RPOP detects a discontinuous change of pointer. DISCOPAI is cleared when the RPOP Pointer Interrupt Status register is read.

ILLJREQI:

The ILLJREQI bit is set to logic one when the RPOP detects an illegal pointer justification request event. ILLJREQI is cleared when the RPOP Pointer Interrupt Status register is read.

Register 0x033, 0x133, 0x233, 0x333, 0x433, 0x533, 0x633, 0x733, 0x833, 0x933, 0xA33, 0xB33, 0xC33, 0xD33, 0xE33, 0xF33 (EXTD=0): RPOP Interrupt Enable

Bit	Type	Function	Default
Bit 7	R/W	PSLE	0
Bit 6	R/W	Reserved	0
Bit 5	R/W	LOPE	0
Bit 4	R/W	Reserved	0
Bit 3	R/W	PAISE	0
Bit 2	R/W	PRDIE	0
Bit 1	R/W	BIPEE	0
Bit 0	R/W	FEBEE	0

NOTE: To facilitate additional register mapping, shadow registers have been added to channel registers offset 0x30, 0x31 and 0x33. These shadow registers are accessed in the same way as the normal registers.

The EXTD (extend register) bit must be set in register offset 0x36 to allow switching between accessing the normal registers and the shadow registers.

This register allows interrupt generation to be enabled for path level alarm and error events.

FEBEE:

The FEBEE bit is the interrupt enable for path FEBEs. When FEBEE is a logic one, an interrupt is generated when a path FEBE is detected.

BIPEE:

The BIPEE bit is the interrupt enable for path BIP-8 errors. When BIPEE is a logic one, an interrupt is generated when a B3 error is detected.

PRDIE:

The PRDIE bit is the interrupt enable for path RDI. When PRDIE is a logic one, an interrupt is generated when the path RDI state changes.

PAISE:

The PAISE bit is the interrupt enable for path AIS. When PAISE is a logic one, an interrupt is generated when the path AIS state changes.

LOPE:

The LOPE bit is the interrupt enable for LOP. When LOPE is a logic one, an interrupt is generated when the LOP state changes.

PSLE:

The PSLE bit is the interrupt enable for changes in the received path signal label. When PSLE is a logic one, an interrupt is generated when the received C2 byte changes.

Reserved:

The reserved bits must be programmed to logic zero for proper operation.

**Register 0x033, 0x133, 0x233, 0x333, 0x433, 0x533, 0x633, 0x733, 0x833,
0x933, 0xA33, 0xB33, 0xC33, 0xD33, 0xE33, 0xF33 (EXTD=1):
RPOP Interrupt Enable**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3		Unused	X
Bit 2		Unused	X
Bit 1		Unused	X
Bit 0	R/W	ERDIE	0

NOTE: To facilitate additional register mapping, shadow registers have been added to channel registers offset 0x30, 0x31 and 0x33. These shadow registers are accessed in the same way as the normal registers.

The EXTD (extend register) bit must be set in register offset 0x36 to allow switching between accessing the normal registers and the shadow registers.

This register allows interrupt generation to be enabled for path level alarm and error events.

ERDIE:

When REDIE is a logic one, an interrupt is generated when a path enhanced RDI is detected.

**Register 0x034, 0x134, 0x234, 0x334, 0x434, 0x534, 0x634, 0x734, 0x834,
0x934, 0xA34, 0xB34, 0xC34, 0xD34, 0xE34, 0xF34:
RPOP Pointer Interrupt Enable**

Bit	Type	Function	Default
Bit 7	R/W	ILLJREQE	0
Bit 6	R/W	Reserved	0
Bit 5	R/W	DISCOPAE	0
Bit 4	R/W	INVNDFE	0
Bit 3	R/W	ILLPTRE	0
Bit 2	R/W	NSEE	0
Bit 1	R/W	PSEE	0
Bit 0	R/W	NDFE	0

This register is used to enable pointer event interrupts.

NDFE:

When a logic one is written to the NDFE interrupt enable bit position, an interrupt is generated when a change in active offset due to the reception of an enabled NDF (NDF_enabled indication) occurs.

PSEE:

When a logic one is written to the PSEE interrupt enable bit position, an interrupt is generated when a positive pointer adjustment event is received.

NSEE:

When a logic one is written to the NSEE interrupt enable bit position, an interrupt is generated when a negative pointer adjustment is received.

ILLPTRE:

When a logic one is written to the ILLPTRE interrupt enable bit position, an interrupt is generated when an illegal pointer is received.

INVNDFE:

When a logic one is written to the INVNDFE interrupt enable bit position, an interrupt is generated when an invalid NDF code is received.

DISCOPAE:

When a logic one is written to the DISCOPAE interrupt enable bit position, an interrupt is generated when a change of pointer alignment event occurs.

ILLJREQE:

When a logic one is written to the ILLJREQE interrupt enable bit position, an interrupt is generated when an illegal pointer justification request is received.

Reserved:

The reserved bits must be programmed to logic zero for proper operation.

**Register 0x035, 0x135, 0x235, 0x335, 0x435, 0x535, 0x635, 0x735, 0x835,
0x935, 0xA35, 0xB35, 0xC35, 0xD35, 0xE35, 0xF35:
RPOP Pointer LSB**

Bit	Type	Function	Default
Bit 7	R	PTR[7]	X
Bit 6	R	PTR[6]	X
Bit 5	R	PTR[5]	X
Bit 4	R	PTR[4]	X
Bit 3	R	PTR[3]	X
Bit 2	R	PTR[2]	X
Bit 1	R	PTR[1]	X
Bit 0	R	PTR[0]	X

**Register 0x036, 0x136, 0x236, 0x336, 0x436, 0x536, 0x636, 0x736, 0x836,
0x936, 0xA36, 0xB36, 0xC36, 0xD36, 0xE36, 0xF36:
RPOP Pointer MSB**

Bit	Type	Function	Default
Bit 7	R/W	NDFPOR	0
Bit 6	R/W	EXTD	0
Bit 5	R/W	RDI10	0
Bit 4		Unused	X
Bit 3	R	S1	X
Bit 2	R	S0	X
Bit 1	R	PTR[9]	X
Bit 0	R	PTR[8]	X

PTR[9:0]:

The PTR[7:0] bits contain the current pointer value as derived from the H1 and H2 bytes. To ensure reading a valid pointer, the NDFI, NSEI and PSEI bits of the RPOP Pointer Interrupt Status register should be read before and after reading this register to ensure that the pointer value did not change during the register read.

S0, S1:

The S0 and S1 bits contain the two S bits received in the last H1 byte. These bits should be software debounced to ensure the proper values are received.

RDI10:

The RDI10 bit controls the filtering of the remote defect indication and the auxiliary remote defect indication. When RDI10 is set to logic one, the PRDI and ARDI statuses are updated when the same value is received in the corresponding bit of the G1 byte for 10 consecutive frames. When PRDI10 is set to logic zero, the PRDI and ARDI statuses are updated when the same value is received for 5 consecutive frames.

NDFPOR:

The NDFPOR (new data flag pointer outside range) bit allows an NDF counter enable, if the pointer value is outside the range (0-782). If this bit is set high the definition for NDF counter enable is enabled NDF + ss. If this bit is set low the definition for NDF counter enable is enabled NDF + ss + offset in the range of 0 to 782. Note that this bit only allows the NDF counter to count towards LOP when the pointer is out of range, no active offset change will occur.

EXTD:

The EXTD bit extends the registers to facilitate additional mapping. If this bit is set high, the register mapping, for registers 0x30, 0x31 and 0x33, are extended.

**Register 0x037, 0x137, 0x237, 0x337, 0x437, 0x537, 0x637, 0x737, 0x837,
0x937, 0xA37, 0xB37, 0xC37, 0xD37, 0xE37, 0xF37:
RPOP Path Signal Label**

Bit	Type	Function	Default
Bit 7	R	PSL[7]	X
Bit 6	R	PSL[6]	X
Bit 5	R	PSL[5]	X
Bit 4	R	PSL[4]	X
Bit 3	R	PSL[3]	X
Bit 2	R	PSL[2]	X
Bit 1	R	PSL[1]	X
Bit 0	R	PSL[0]	X

PSL[7:0]:

The PSL[7:0] bits contain the path signal label byte (C2). The value in this register is updated to a new path signal label value if the same new value is observed for three or five consecutive frames, depending on the status of the PSL5 bit.

**Register 0x038, 0x138, 0x238, 0x338, 0x438, 0x538, 0x638, 0x738, 0x838,
0x938, 0xA38, 0xB38, 0xC38, 0xD38, 0xE38, 0xF38:
RPOP Path BIP-8 LSB**

Bit	Type	Function	Default
Bit 7	R	PBE[7]	X
Bit 6	R	PBE[6]	X
Bit 5	R	PBE[5]	X
Bit 4	R	PBE[4]	X
Bit 3	R	PBE[3]	X
Bit 2	R	PBE[2]	X
Bit 1	R	PBE[1]	X
Bit 0	R	PBE[0]	X

**Register 0x039, 0x139, 0x239, 0x339, 0x439, 0x539, 0x639, 0x739, 0x839,
0x939, 0xA39, 0xB39, 0xC39, 0xD39, 0xE39, 0xF39:
RPOP Path BIP-8 MSB**

Bit	Type	Function	Default
Bit 7	R	PBE[15]	X
Bit 6	R	PBE[14]	X
Bit 5	R	PBE[13]	X
Bit 4	R	PBE[12]	X
Bit 3	R	PBE[11]	X
Bit 2	R	PBE[10]	X
Bit 1	R	PBE[9]	X
Bit 0	R	PBE[8]	X

These registers allow path BIP-8 errors to be accumulated.

PBE[15:0]:

PBE[15:0] represent the number of B3 errors (individual or block) that have been detected since the last time the error count was polled. The error count is polled by writing to either of the RPOP Path BIP-8 Register addresses or to

either of the RPOP Path FEBE Register addresses. Such a write transfers the internally accumulated error count to the Path BIP-8 registers within a maximum of 7 μ s and simultaneously resets the internal counter to begin a new cycle of error accumulation. This transfer and reset is carried out in a manner that ensures that coincident events are not lost.

The count can also be polled by writing to the S/UNI-16x155 Master Reset and Identity register (0x000). Writing to register address 0x000 loads all counter registers in all channels and APS links

The count can also be polled by writing to the channel Master Interrupt Status register (offset 0x07). Writing to register offset 0x07 loads all counter registers in the RSOP, RLOP, RPOP, SPTB, SSTB, RXCP, TXCP, RXFP, and TXFP blocks of the channel.

**Register 0x03A, 0x13A, 0x23A, 0x33A, 0x43A, 0x53A, 0x63A, 0x73A, 0x83A,
0x93A, 0xA3A, 0xB3A, 0xC3A, 0xD3A, 0xE3A, 0xF3A:
RPOP Path FEBE LSB**

Bit	Type	Function	Default
Bit 7	R	PFE[7]	X
Bit 6	R	PFE[6]	X
Bit 5	R	PFE[5]	X
Bit 4	R	PFE[4]	X
Bit 3	R	PFE[3]	X
Bit 2	R	PFE[2]	X
Bit 1	R	PFE[1]	X
Bit 0	R	PFE[0]	X

**Register 0x03B, 0x13B, 0x23B, 0x33B, 0x43B, 0x53B, 0x63B, 0x73B, 0x83B,
0x93B, 0xA3B, 0xB3B, 0xC3B, 0xD3B, 0xE3B, 0xF3B:
RPOP Path FEBE MSB**

Bit	Type	Function	Default
Bit 7	R	PFE[15]	X
Bit 6	R	PFE[14]	X
Bit 5	R	PFE[13]	X
Bit 4	R	PFE[12]	X
Bit 3	R	PFE[11]	X
Bit 2	R	PFE[10]	X
Bit 1	R	PFE[9]	X
Bit 0	R	PFE[8]	X

These registers allow path FEBEs to be accumulated.

PFE[15:0]:

Bits PFE[15:0] represent the number of path FEBE errors (individual or block) that have been detected since the last time the error count was polled. The error count is polled by writing to either of the RPOP Path BIP-8 Register

addresses or to either of the RPOP Path FEBE Register addresses. Such a write transfers the internally accumulated error count to the Path FEBE Registers within approximately 7 μ s and simultaneously resets the internal counter to begin a new cycle of error accumulation. This transfer and reset is carried out in a manner that ensures that coincident events are not lost.

The count can also be polled by writing to the S/UNI-16x155 Master Reset and Identity register (0x000). Writing to register address 0x000 loads all counter registers in all channels and APS links.

The count can also be polled by writing to the channel Master Interrupt Status register (offset 0x07). Writing to register offset 0x07 loads all counter registers in the RSOP, RLOP, RPOP, SPTB, SSTB, RXCP, TXCP, RXFP, and TXFP blocks of the channel.

**Register 0x03C, 0x13C, 0x23C, 0x33C, 0x43C, 0x53C, 0x63C, 0x73C, 0x83C,
0x93C, 0xA3C, 0xB3C, 0xC3C, 0xD3C, 0xE3C, 0xF3C:
RPOP RDI**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5	R/W	Reserved	0
Bit 4	R/W	BLKFEBE	0
Bit 3		Unused	X
Bit 2	R/W	Reserved	0
Bit 1	R/W	ARDIE	0
Bit 0	R	ARDIV	X

ARDIV:

The auxiliary RDI bit (ARDIV) reports the current state of the path auxiliary RDI within the receive path overhead processor.

ARDIE:

When a logic one is written to the ARDIE interrupt enable bit position, an interrupt is generated when a change in the path auxiliary RDI state occurs.

BLKFEBE:

When set high, the block FEBE bit (BLKFEBE) causes path FEBE errors to be reported and accumulated on a block basis. A single path FEBE error is accumulated for a block if the received FEBE code for that block is between 1 and 8 inclusive. When BLKFEBE is set low, path FEBE errors are accumulated on a error basis.

Reserved:

The reserved bits must be programmed to logic zero for proper operation.

**Register 0x03D, 0x13D, 0x23D, 0x33D, 0x43D, 0x53D, 0x63D, 0x73D, 0x83D,
0x93D, 0xA3D, 0xB3D, 0xC3D, 0xD3D, 0xE3D, 0xF3D:
RPOP Ring Control**

Bit	Type	Function	Default
Bit 7	R/W	SOS	0
Bit 6	R/W	ENSS	0
Bit 5	R/W	BLKBIP	0
Bit 4	R/W	Reserved	0
Bit 3	R/W	BLKBIPO	0
Bit 2	R/W	Reserved	0
Bit 1	R/W	Reserved	0
Bit 0	R/W	Reserved	0

BLKBIPO:

When set high, the block BIP-8 output bit (BLKBIPO) indicates that path BIP-8 errors are to be reported on a block basis to the transmit path overhead processor (TPOP) block. A single path BIP error is reported to the return transmit path overhead processor if any of the path BIP-8 results indicates a mismatch. When BLKBIP is set low, BIP-8 errors are reported on a bit basis.

BLKBIP:

When set high, the block BIP-8 bit (BLKBIP) indicates that path BIP-8 errors are to be accumulated on a block basis. A single BIP error is accumulated if any of the BIP-8 results indicates a mismatch. When BLKBIP is set low, BIP-8 errors are accumulated on a bit basis.

ENSS:

The enable size bit (ENSS) controls whether the SS bits in the payload pointer are used to determine offset changes in the pointer interpreter state machine. When a logic one is written to this bit, an incorrect SS bit pattern (i.e., not equal to 10) will prevent RPOP from issuing NDF_enable, inc_ind, new_point and dec_ind indications. When a logic zero is written to this bit, the received SS bits do not affect active offset change events.

SOS:

The stuff opportunity spacing control bit (SOS) controls the spacing between consecutive pointer justification events on the receive stream. When a logic one is written to this bit, the definition of inc_ind and dec_ind indications includes the requirement that active offset changes have occurred at least three frame ago. When a logic zero is written to this bit, pointer justification indications in the receive stream are followed without regard to the proximity of previous active offset changes.

Reserved:

The reserved bits must be programmed to logic zero for proper operation.

**Register 0x040, 0x140, 0x240, 0x340, 0x440, 0x540, 0x640, 0x740, 0x840,
0x940, 0xA40, 0xB40, 0xC40, 0xD40, 0xE40, 0xF40:
TPOP Control/Diagnostic**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6	R/W	EPRDIEN	0
Bit 5	R/W	EPRDISRC	0
Bit 4	R/W	PERSIST	0
Bit 3	R/W	Reserved	0
Bit 2	R/W	Reserved	0
Bit 1	R/W	DBIP8	0
Bit 0	R/W	PAIS	0

PAIS:

The PAIS bit controls the insertion of STS path alarm indication signal. When a logic one is written to this bit position, the complete SPE, and the pointer bytes (H1, H2, and H3) are overwritten with the all-ones pattern. When a logic zero is written to this bit position, the pointer bytes and the SPE are processed normally.DBIP8:

The DBIP8 bit controls the insertion of bit errors continuously in the B3 byte. When DBIP8 is a logic one, the B3 byte is inverted.

EPRDISRC:

The enhanced path receive defect indication alarm source bit (EPRDISRC) controls the source of RDI input to be inserted onto the G1 byte. See the description in register offset 0x049 for more information on the operation of this register.

EPRDIEN

The enhanced path receive defect indication alarm enable bit (EPRDIEN) controls the use of 3-bit enhanced RDI mode. See the description in register offset 0x049 for more information on the operation of this register.

PERSIST

The path far end receive failure alarm persistence bit (PERSIST) controls the persistence of the RDI asserted into the transmit stream. When PERSIST is a logic one, the RDI code inserted into the transmit stream as a result of consequential actions is asserted for a minimum of 20 frames in non-enhanced RDI mode, or the last valid RDI code before an idle code (idle codes are when bits 5,6,7 are 000, 001, or 011) is asserted for 20 frames in enhanced RDI mode. When PERSIST is logic zero, the transmit RDI code changes immediately based on received alarm conditions.

Reserved:

The reserved bits must be programmed to logic zero for proper operation.

**Register 0x041, 0x141, 0x241, 0x341, 0x441, 0x541, 0x641, 0x741, 0x841,
0x941, 0xA41, 0xB41, 0xC41, 0xD41, 0xE41, 0xF41:
TPOP Pointer Control**

Bit	Type	Function	Default
Bit 7	R/W	Reserved	0
Bit 6	R/W	FTPTR	0
Bit 5	R/W	SOS	0
Bit 4	R/W	PLD	0
Bit 3	R/W	NDF	0
Bit 2	R/W	NSE	0
Bit 1	R/W	PSE	0
Bit 0	R/W	Reserved	0

This register allows control over the transmitted payload pointer for diagnostic purposes.

PSE:

The PSE bit controls the insertion of positive pointer movements. A zero to one transition on this bit enables the insertion of a single positive pointer justification in the outgoing stream. This register bit is automatically cleared when the pointer movement is inserted.

NSE:

The NSE bit controls the insertion of negative pointer movements. A zero to one transition on this bit enables the insertion of a single negative pointer justification in the outgoing stream. This register bit is automatically cleared when the pointer movement is inserted.

NDF:

The NDF bit controls the insertion of new data flags in the inserted payload pointer. When a logic one is written to this bit position, the pattern contained in the NDF[3:0] bit positions in the TPOP Arbitrary Pointer MSB Register is inserted continuously in the payload pointer. When a logic zero is written to this bit position, the normal pattern (0110) is inserted in the payload pointer.

PLD:

The PLD bit controls the loading of the pointer value contained in the TPOP Arbitrary Pointer Registers. Normally the TPOP Arbitrary Pointer Registers are written to set up the arbitrary new pointer value, the S-bit values, and the NDF pattern. A logic one is then written to this bit position to load the new pointer value. The new data flag bit positions are set to the programmed NDF pattern for the first frame; subsequent frames have the new data flag bit positions set to the normal pattern (0110) unless the NDF bit described above is set to a logic one.

Note: When loading an out of range pointer (that is a pointer with a value greater than 782), the TPOP continues to operate with timing based on the last valid pointer value. The out of range pointer value will of course be inserted in the STS-3c/STM-1 stream. Although a valid SPE will continue to be generated, it is unlikely to be extracted by downstream circuitry, which should be in a loss of pointer state.

This bit is automatically cleared after the new payload pointer has been loaded.

SOS:

The SOS bit controls the stuff opportunity spacing between consecutive SPE positive or negative stuff events. When SOS is a logic zero, stuff events may be generated every frame as controlled by the PSE and NSE register bits described above. When SOS is a logic one, stuff events may be generated at a maximum rate of once every four frames.

FTPTR:

The force transmit pointer bit (FTPTR) enables the insertion of the pointer value contained in the Arbitrary Pointer Registers into the POUT[7:0] stream for diagnostic purposes. This allows the ATM/POS payload mapping circuitry to continue functioning normally and a valid SPE to continue to be generated, although it is unlikely to be extracted by downstream circuitry as the downstream pointer processor should be in a loss of pointer state.

If FTPTR is set to logic one, the APTR[9:0] bits of the Arbitrary Pointer Registers are inserted into the H1 and H2 bytes of the transmit stream. At least one corrupted pointer is guaranteed to be sent. If FTPTR is a logic zero, a valid pointer is inserted.

Reserved:

The reserved bits must be programmed to logic zero for proper operation.

**Register 0x043, 0x143, 0x243, 0x343, 0x443, 0x543, 0x643, 0x743, 0x843,
0x943, 0xA43, 0xB43, 0xC43, 0xD43, 0xE43, 0xF43:
TPOP Current Pointer LSB**

Bit	Type	Function	Default
Bit 7	R	CPTR[7]	X
Bit 6	R	CPTR[6]	X
Bit 5	R	CPTR[5]	X
Bit 4	R	CPTR[4]	X
Bit 3	R	CPTR[3]	X
Bit 2	R	CPTR[2]	X
Bit 1	R	CPTR[1]	X
Bit 0	R	CPTR[0]	X

**Register 0x044, 0x144, 0x244, 0x344, 0x444, 0x544, 0x644, 0x744, 0x844,
0x944, 0xA44, 0xB44, 0xC44, 0xD44, 0xE44, 0xF44:
TPOP Current Pointer MSB**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3		Unused	X
Bit 2		Unused	X
Bit 1	R	CPTR[9]	X
Bit 0	R	CPTR[8]	X

CPTR[9:0]:

The CPTR[9:0] bits reflect the value of the current payload pointer being inserted in the outgoing stream. The value may be changed by loading a new pointer value using the TPOP Arbitrary Pointer LSB and MSB Registers, or by inserting positive and negative pointer movements using the PSE and NSE register bits.

It is recommended the CPTR[9:0] value be software debounced to ensure a correct value is received.

Configuring the APS interface (setting PROCM high or TXEN high) while the pointer value is 522, will cause downstream logic to improperly process the SONET stream. In general, a downstream loss of pointer (LOP) and/or line BIP errors will occur.

A pointer value of 522 can be used if the APS connection is configured (either created or removed) first with TPOP set to a non-522 value. After the APS link configuration, the pointer value can be configured to 522.

**Register 0x045, 0x145, 0x245, 0x345, 0x445, 0x545, 0x645, 0x745, 0x845,
0x945, 0xA45, 0xB45, 0xC45, 0xD45, 0xE45, 0xF45:
TPOP Arbitrary Pointer LSB**

Bit	Type	Function	Default
Bit 7	R/W	APTR[7]	0
Bit 6	R/W	APTR[6]	0
Bit 5	R/W	APTR[5]	0
Bit 4	R/W	APTR[4]	0
Bit 3	R/W	APTR[3]	0
Bit 2	R/W	APTR[2]	0
Bit 1	R/W	APTR[1]	0
Bit 0	R/W	APTR[0]	0

This register allows an arbitrary pointer to be inserted for diagnostic purposes.

APTR[7:0]:

The APTR[7:0] bits, along with the APTR[9:8] bits in the TPOP Arbitrary Pointer MSB Register are used to set an arbitrary payload pointer value. The arbitrary pointer value is inserted in the outgoing stream by writing a logic one to the PLD bit in the TPOP Pointer Control Register.

If the FTPTR bit in the TPOP Pointer Control register is a logic one, the current APTR[9:0] value is inserted into the payload pointer bytes (H1 and H2) in the transmit stream.

Configuring the APS interface (setting PROCM high or TXEN high) while the pointer value is 522, will cause downstream logic to improperly process the SONET stream. In general, a downstream loss of pointer (LOP) and/or line BIP errors will occur.

A pointer value of 522 can be used if the APS connection is configured (either created or removed) first with TPOP set to a non-522 value. After the APS link configuration, the pointer value can be configured to 522.

**Register 0x046, 0x146, 0x246, 0x346, 0x446, 0x546, 0x646, 0x746, 0x846,
0x946, 0xA46, 0xB46, 0xC46, 0xD46, 0xE46, 0xF46:
TPOP Arbitrary Pointer MSB**

Bit	Type	Function	Default
Bit 7	R/W	NDF[3]	1
Bit 6	R/W	NDF[2]	0
Bit 5	R/W	NDF[1]	0
Bit 4	R/W	NDF[0]	1
Bit 3	R/W	S[1]	1
Bit 2	R/W	S[0]	0
Bit 1	R/W	APTR[9]	0
Bit 0	R/W	APTR[8]	0

This register allows an arbitrary pointer to be inserted for diagnostic purposes.

APTR[9:8]:

The APTR[9:8] bits, along with the APTR[7:0] bits in the TPOP Arbitrary Pointer LSB Register are used to set an arbitrary payload pointer value. The arbitrary pointer value is inserted in the outgoing stream by writing a logic one to the PLD bit in the TPOP Pointer Control Register.

If the FTPTR bit in the TPOP Pointer Control register is a logic one, the current APTR[9:0] value is inserted into the payload pointer bytes (H1 and H2) in the transmit stream.

Configuring the APS interface (setting PROCM high or TXEN high) while the pointer value is 522, will cause downstream logic to improperly process the SONET stream. In general, a downstream loss of pointer (LOP) and/or line BIP errors will occur.

A pointer value of 522 can be used if the APS connection is configured (either created or removed) first with TPOP set to a non-522 value. After the APS link configuration, the pointer value can be configured to 522.

S[1:0]:

The S[1:0] bits contain the value inserted in the S[1:0] bit positions (also referred to as the unused bits) in the payload pointer. These bits are continuously inserted into the transmit stream.

NDF[3:0]:

The NDF[3:0] bits contain the value inserted in the NDF bit positions when an arbitrary new payload pointer value is inserted (using the PLD bit in the TPOP Pointer Control Register) or when new data flag generation is enabled using the NDF bit in the TPOP Pointer Control Register.

**Register 0x047, 0x147, 0x247, 0x347, 0x447, 0x547, 0x647, 0x747, 0x847,
0x947, 0xA47, 0xB47, 0xC47, 0xD47, 0xE47, 0xF47:
TPOP Path Trace**

Bit	Type	Function	Default
Bit 7	R/W	J1[7]	0
Bit 6	R/W	J1[6]	0
Bit 5	R/W	J1[5]	0
Bit 4	R/W	J1[4]	0
Bit 3	R/W	J1[3]	0
Bit 2	R/W	J1[2]	0
Bit 1	R/W	J1[1]	0
Bit 0	R/W	J1[0]	0

This register allows control over the path trace byte.

J1[7:0]:

The J1[7:0] bits are inserted in the J1 byte position in the transmit stream .

**Register 0x048, 0x148, 0x248, 0x348, 0x448, 0x548, 0x648, 0x748, 0x848,
0x948, 0xA48, 0xB48, 0xC48, 0xD48, 0xE48, 0xF48:
TPOP Path Signal Label**

Bit	Type	Function	Default
Bit 7	R/W	C2[7]	0
Bit 6	R/W	C2[6]	0
Bit 5	R/W	C2[5]	0
Bit 4	R/W	C2[4]	0
Bit 3	R/W	C2[3]	0
Bit 2	R/W	C2[2]	0
Bit 1	R/W	C2[1]	0
Bit 0	R/W	C2[0]	1

This register allows control over the path signal label. Upon reset the register defaults to 0x01, which signifies an equipped unspecific payload.

C2[7:0]:

The C2[7:0] bits are inserted in the C2 byte position in the transmit stream.

C2 should be reprogrammed with the value 0x13 when transmitting ATM payload data.

C2 should be reprogrammed with the value 0x16 when transmitting scrambled packet over SONET payload data.

**Register 0x049, 0x149, 0x249, 0x349, 0x449, 0x549, 0x649, 0x749, 0x849,
0x949, 0xA49, 0xB49, 0xC49, 0xD49, 0xE49, 0xF49:
TPOP Path Status**

Bit	Type	Function	Default
Bit 7	R/W	FEBE[3]	0
Bit 6	R/W	FEBE[2]	0
Bit 5	R/W	FEBE[1]	0
Bit 4	R/W	FEBE[0]	0
Bit 3	R/W	PRDI	0
Bit 2	R/W	APRDI	0
Bit 1	R/W	G1[1]	0
Bit 0	R/W	G1[0]	0

This register allows control over the path status byte.

G1[0]:

The G1[0] bit is inserted in bit 0 the Path Status Byte G1. This bit is currently undefined by SONET/SDH standards and should be set to 0.

PRDI, APRDI, G1[1]:

The G1[1], APRDI and PRDI bits are inserted in bits 7, 6 and 5 of the Path Status Byte G1 respectively. The following describes the operation of these registers based on the EPRDIEN and EPRDISRC configuration registers in register offset 0x40.

The value specified by AUTORDI and AUTOERDI the auto path RDI response from the channel Auto RDI and Auto Enhanced RDI configuration register bits in register offset 0x09, 0x0A and 0x0B. The path RDI response is enabled by the channel AUTOPRDI bit in register offset 0x05.

When auto path alarm operation is desired, the APRDI, PRDI and G1[1:0] registers should be set low.

EPRDIEN	EPRDISRC	G1 bit 3	G1 bit 2	G1 bit 1
0	X	AUTORDI + PRDI	APRDI	G1[1]

1	0	PRDI	APRDI	G1[1]
1	1	AUTOERDI	AUTOERDI	AUTOERDI

FEBE[3:0]:

The FEBE[3:0] bits are inserted in the FEBE bit positions in the path status byte. The value contained in FEBE[3:0] is cleared after being inserted in the path status byte. Any non-zero FEBE[3:0] value overwrites the value that would normally have been inserted based on the number of FEBEs accumulated on primary input FEBE during the last frame. When reading this register, a non-zero value in these bit positions indicates that the insertion of this value is still pending.

**Register 0x04E, 0x14E, 0x24E, 0x34E, 0x44E, 0x54E, 0x64E, 0x74E, 0x84E,
0x94E, 0xA4E, 0xB4E, 0xC4E, 0xD4E, 0xE4E, 0xF4E:
TPOP Concatenation LSB**

Bit	Type	Function	Default
Bit 7	R/W	CONCAT[7]	1
Bit 6	R/W	CONCAT[6]	1
Bit 5	R/W	CONCAT[5]	1
Bit 4	R/W	CONCAT[4]	1
Bit 3	R/W	CONCAT[3]	1
Bit 2	R/W	CONCAT[2]	1
Bit 1	R/W	CONCAT[1]	1
Bit 0	R/W	CONCAT[0]	1

**Register 0x04F, 0x14F, 0x24F, 0x34F, 0x44F, 0x54F, 0x64F, 0x74F, 0x84F,
0x94F, 0xA4F, 0xB4F, 0xC4F, 0xD4F, 0xE4F, 0xF4F:
TPOP Concatenation MSB**

Bit	Type	Function	Default
Bit 7	R/W	CONCAT[15]	1
Bit 6	R/W	CONCAT[14]	0
Bit 5	R/W	CONCAT[13]	0
Bit 4	R/W	CONCAT[12]	1
Bit 3	R/W	CONCAT[11]	0
Bit 2	R/W	CONCAT[10]	0
Bit 1	R/W	CONCAT[9]	1
Bit 0	R/W	CONCAT[8]	1

These registers allow control over the concatenation indication values transmitted in SONET/SDH pointers.

CONCAT[15:0]:

The CONCAT[15:0] bits control the value inserted in the some of the H1 and H2 byte positions when transmitting an STS-3c or STM-1 stream. The value

written to CONCAT[15:8] is inserted in the H1 byte position of STS-1 #5 and STS-1 #9 in the concatenated stream. The value written to CONCAT[7:0] is inserted in the H2 byte position of STS-1 #5 and STS-1 #9 in the concatenated stream. The default values represent the normal concatenation indication (all ones in the pointer bits, zeros in the unused bits, and NDF indication).

**Register 0x050, 0x150, 0x250, 0x350, 0x450, 0x550, 0x650, 0x750, 0x850,
0x950, 0xA50, 0xB50, 0xC50, 0xD50, 0xE50, 0xF50:
SPTB Control**

Bit	Type	Function	Default
Bit 7	R/W	ZEROEN	0
Bit 6	R/W	TIMODE	0
Bit 5	R/W	RTIUIE	0
Bit 4	R/W	RTIMIE	0
Bit 3	R/W	PER5	0
Bit 2	R/W	TNULL	1
Bit 1	R/W	NOSYNC	0
Bit 0	R/W	LEN16	0

This register controls the receive and transmit portions of the SPTB.

LEN16:

The LEN16 bit selects the length of the path trace message to be 16 bytes or 64 bytes. When LEN16 is a logic one, a 16 byte path trace message is selected. When LEN16 is a logic zero, a 64 byte path trace message is selected.

NOSYNC:

The NOSYNC bit disables the writing of the path trace message into the trace buffer to be synchronized to the content of the message. When LEN16 is a logic one and NOSYNC is a logic zero, the receive path trace message byte with its most significant bit set will be written to the first location in the buffer. When LEN16 and NOSYNC are logic zero, the byte after the carriage return/linefeed (CR/LF) sequence will be written to the first location in the buffer. When NOSYNC is a logic one, synchronization is disabled, and the path trace message buffer behaves as a circular buffer.

TNULL:

The TNULL bit controls the insertion of an all-zero path trace identifier message in the transmit stream. When TNULL is a logic one, the contents of the transmit buffer is ignored and all-zeros bytes are inserted. When TNULL is a logic zero, the contents of the transmit path trace buffer is sent to TPOP for insertion into the J1 transmit path overhead byte. TNULL should be set

high before changing the contents of the trace buffer to avoid sending partial messages.

PER5:

The PER5 bit controls the number of times a path trace identifier message must be received unchanged before being accepted. When PER5 is a logic one, a message is accepted when it is received unchanged five times consecutively. When PER5 is a logic zero, the message is accepted after three identical repetitions.

RTIMIE:

The RTIMIE bit controls the activation of the interrupt output when the comparison between the trace identifier mode 1 accepted identifier message and the expected message changes state. When RTIMIE is a logic one, changes in match state activates the interrupt (INTB) output.

This register is ignored when TIMODE is high.

RTIUIE:

The RTIUIE bit controls the activation of the interrupt output when the receive identifier message changes state. When RTIUIE is a logic one, changes in the received path trace identifier message stable/unstable state will activate the interrupt output.

TIMODE:

The trace identifier mode is used to set the mode used for the received trace identifier. Setting TIMODE low sets the trace identifier mode to 1. In this mode, the trace identifier is defined as a regular 16 or 64 byte trace message and persistency is based on the whole message. Receive trace identifier mismatch (RTIM) and unstable (RTIU) alarms are declared on the trace message.

Setting TIMODE high sets the trace identifier mode to 2. In this mode, the trace identifier is defined as a single byte that is monitored for persistency and then errors. A receive trace identifier unstable (RTIU) alarm is declared when one or more errors are detected in three consecutive 16 byte windows.

ZEROEN:

When TIMODE is low, the zero enable bit (ZEROEN) enables TIM assertion and removal based on an all ZERO's section trace message string. When ZEROEN is set high, all ZERO's section trace message strings are considered when entering and exiting TIM states. When ZEROEN is set low, all ZERO's section trace message strings are ignored.

PRELIMINARY
S/UNI-16X155
DATASHEET
PMC-2000495

ISSUE 2

PM5382
S/UNI-16X155

SATURN USER NETWORK INTERFACE (16X155)

This register is ignored when TIMODE is high.

**Register 0x051, 0x151, 0x251, 0x351, 0x451, 0x551, 0x651, 0x751, 0x851,
0x951, 0xA51, 0xB51, 0xC51, 0xD51, 0xE51, 0xF51:
SPTB Path Trace Identifier Status**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5	R	UNEQI	X
Bit 4	R	UNEQV	X
Bit 3	R	RTIUI	X
Bit 2	R	RTIUV	X
Bit 1	R	RTIMI	X
Bit 0	R	RTIMV	X

This register reports the path trace identifier status of the SPTB.

RTIMV:

When TIMODE is low, the RTIMV bit reports the match/mismatch status of the identifier message framer. RTIMV is a logic one when the accepted identifier message differs from the expected message written by the microprocessor. The accepted message is the last message to have been received 5 consecutive times. RTIMV is a logic zero when the accepted message matches the expected message.

If the accepted message string is all-zeros, the mismatch is not declared unless the ZEROEN register bit is set. This register is invalid when TIMODE is high.

RTIMI:

When TIMODE is low, the RTIMI bit is a logic one when match/mismatch status of the trace identifier framer changes state. This bit is cleared when this register is read. This register is invalid when TIMODE is high.

RTIUV:

The RTIUV bit reports the stable/unstable status of the identifier message framer.

When TIMODE is low, RTIUV is set high when 8 trace messages mismatching against their immediate predecessor message have been

received without a persistent message being detected. The unstable counter is incremented on each message that mismatches its predecessor and is cleared on the reception of a persistent message. RTIUV is set high when the unstable counter reaches 8. RTIUV is set low and the unstable counter cleared once a persistent message has been received.

When TIMODE is high, RTIUV is set low during the stable state which is declared after having received the same trace byte for 48 consecutive SONET/SDH frames. The stable byte is declared the accepted byte. RTIUV is set high when mismatches between the accepted byte and the received byte have been detected for three consecutive 16 byte windows. The 16 byte windows do not overlap and start immediately after the 48th persistent byte.

RTIUI:

The RTIUI bit is a logic one when stable/unstable status of the trace identifier framer changes state. When RTIUV changes value, RTIUI is set high. This bit is cleared when this register is read.

UNEQV:

The unequipped value status bit (UNEQV) is indicates the equip status of the path signal label. The functionality of this register is controlled by the PSLMODE register.

When PSLMODE is set low, UNEQV is set high when the accepted path signal label indicates that the path connection is unequipped. UNEQV is set low when the accepted path signal label indicates the path connection is not unequipped.

When PSLMODE is set high, UNEQV is set high upon the reception of five consecutive frames with an unequipped (0x00) label. The bit is set low when five consecutive frames are received with a label other than the unequipped label. The five consecutive labels needed to lower the alarm do not need to be the same. The assertion of UNEQV will automatically prevent a path signal label mismatch alarm.

UNEQI:

The UNEQI bit is a logic one when unequipped status of the trace identifier framer changes state. When UNEQV changes value, UNEQI is set high. This bit is cleared when this register is read.

**Register 0x052, 0x152, 0x252, 0x352, 0x452, 0x552, 0x652, 0x752, 0x852,
0x952, 0xA52, 0xB52, 0xC52, 0xD52, 0xE52, 0xF52:
SPTB Indirect Address Register**

Bit	Type	Function	Default
Bit 7	R/W	A[7]	0
Bit 6	R/W	A[6]	0
Bit 5	R/W	A[5]	0
Bit 4	R/W	A[4]	0
Bit 3	R/W	A[3]	0
Bit 2	R/W	A[2]	0
Bit 1	R/W	A[1]	0
Bit 0	R/W	A[0]	0

This register supplies the address used to index into path trace identifier buffers. Writing to this register triggers the indirect read/write access to the trace buffer.

A[6:0]:

The indirect read address bits (A[7:0]) indexes into the path trace identifier buffers. Addresses 0 to 63 reference the transmit message buffer which contains the identifier message to be inserted into the transmit stream.

Addresses 64 to 127 reference the receive accepted message page. A receive message is accepted into this page when it is received unchanged three or five times consecutively as determined by the PER5 bit setting.

Addresses 128 to 191 reference the receive capture page while addresses 192 to 255 reference the receive expected page. The receive capture page contains the identifier bytes extracted from the receive stream. The receive expected page contains the expected trace identifier message down-loaded from the microprocessor.

**Register 0x053, 0x153, 0x253, 0x353, 0x453, 0x553, 0x653, 0x753, 0x853,
0x953, 0xA53, 0xB53, 0xC53, 0xD53, 0xE53, 0xF53:
SPTB Indirect Data Register**

Bit	Type	Function	Default
Bit 7	R/W	D[7]	0
Bit 6	R/W	D[6]	0
Bit 5	R/W	D[5]	0
Bit 4	R/W	D[4]	0
Bit 3	R/W	D[3]	0
Bit 2	R/W	D[2]	0
Bit 1	R/W	D[1]	0
Bit 0	R/W	D[0]	0

This register contains the data read from the path trace message buffer after a read operation or the data to be written into the buffer before a write operation.

D[7:0]:

The indirect data bits (D[7:0]) contains the data read from either the transmit or receive path trace buffer after an indirect read operation is completed. The data that is written to a buffer is set up in this register before initiating the indirect write operation.

The current and accepted message pages should be read at least twice and the results of the successive reads compared for consistency. The section trace message buffer keeps overwriting these message pages and consequently the result of a read can be composed of multiple messages.

**Register 0x054, 0x154, 0x254, 0x354, 0x454, 0x554, 0x654, 0x754, 0x854,
0x954, 0xA54, 0xB54, 0xC54, 0xD54, 0xE54, 0xF54:
SPTB Expected Path Signal Label**

Bit	Type	Function	Default
Bit 7	R/W	EPSL[7]	0
Bit 6	R/W	EPSL[6]	0
Bit 5	R/W	EPSL[5]	0
Bit 4	R/W	EPSL[4]	0
Bit 3	R/W	EPSL[3]	0
Bit 2	R/W	EPSL[2]	0
Bit 1	R/W	EPSL[1]	0
Bit 0	R/W	EPSL[0]	0

EPSL[7:0]:

The EPSL[7:0] bits contain the expected path signal label byte (C2).
EPSL[7:0] is compared with the C2 byte extracted from the receive stream.

When PSLMODE is low, EPSL[7:0] is compared with the accepted path signal label extracted from the receive stream. A path signal label mismatch (PSLM) is declared if the accepted PSL differs from the expected PSL. A path signal label match or mismatch is declared based upon the following table:

Expect	Receive	Action Declared
00	00	Match
00	01	Mismatch
00	XX	Mismatch
01	00	Mismatch
01	01	Match
01	XX	Match
XX	00	Mismatch
XX	01	Match
XX	XX	Match
XX	YY	Mismatch

When PSLMODE is high, EPSL[7:0] is compared with the received C2 bytes

extracted from the receive stream. A path signal label mismatch (PSLM) is declared if 5 consecutively received C2 bytes (other than 0x00) differ from the expected PSL. A path signal label match or mismatch is declared based upon the following table:

Expect	Receive	Action Declared
00	00	Unequipped
00	01	Mismatch
00	XX	Mismatch
01	00	Unequipped
01	01	Match
01	XX	Match
XX	00	Unequipped
XX	01	Match
XX	XX	Match
XX	YY	Mismatch

EPSL[7:0] should be reprogrammed with the value 0x13 when receiving ATM payload data.

EPSL[7:0] should be reprogrammed with the value 0x16 when receiving scrambled packet over SONET payload data.

EPSL[7:0] may be reprogrammed with the value 0xCF when receiving unscrambled packet over SONET payload data. However, POS scrambling in the RXFP block must be turned off.

**Register 0x055, 0x155, 0x255, 0x355, 0x455, 0x555, 0x655, 0x755, 0x855,
0x955, 0xA55, 0xB55, 0xC55, 0xD55, 0xE55, 0xF55:
SPTB Path Signal Label Status**

Bit	Type	Function	Default
Bit 7	R/W	RPSLUIE	0
Bit 6	R/W	RPSLMIE	0
Bit 5	R/W	UNEQIE	0
Bit 4	R/W	PSLMODE	0
Bit 3	R	RPSLUI	X
Bit 2	R	RPSLUV	X
Bit 1	R	RPSLMI	X
Bit 0	R	RPSLMV	X

RPSLMV:

The RPSLMV bit reports the match/mismatch status between the expected and the accepted path signal label.

When PSLMODE is low, RPSLMV is a logic one when the accepted PSL results in a mismatch with EPSL[7:0]. RPSLMV is a logic zero when the accepted PSL results in a match with the expected PSL.

When PSLMODE is high, RPSLMV is a logic one when the received PSL differs from EPSL[7:0]. RPSLMV is a logic zero when the accepted PSL matches the expected PSL.

RPSLMI:

The RPSLMI bit is a logic one when the match/mismatch status between the accepted and the expected path signal label changes state. This bit is cleared when this register is read.

RPSLUV:

The RPSLUV reports the stable/unstable status of the path signal label in the receive stream. RPSLUV is a logic one when the current received C2 byte differs from the previous C2 byte for five consecutive frames. RPSLUV is a logic zero when the same PSL code is received for five consecutive frames.

RPSLUI:

The RPSLUI bit is a logic one when the stable/unstable status of the path signal label changes state. This bit is cleared when this register is read.

PSLMODE:

The PSL Mode is used to control the match/mismatch status between the expected PSL, the received PSL and the accepted PSL. Setting PSLMODE low causes the expected PSL to be compared with the accepted PSL. Set PSLMODE high causes the expected PSL to be compared to the received PSL.

UNEQIE:

The UNEQIE bit is the interrupt enable for the path signal label unequipped status. When UNEQIE is a logic one, changes in the unequipped state generate an interrupt.

RPSLMIE:

The RPSLMIE bit is the interrupt enable for the path signal label match/mismatch status. When RPSLMIE is a logic one, changes in the match state generate an interrupt.

RPSLUIE:

The RPSLUIE bit is the interrupt enable for the path signal label stable/unstable status. When RPSLUIE is a logic one, changes in the stable/unstable state generate an interrupt.

**Register 0x056, 0x156, 0x256, 0x356, 0x456, 0x556, 0x656, 0x756, 0x856,
0x956, 0xA56, 0xB56, 0xC56, 0xD56, 0xE56, 0xF56:
SPTB Indirect Access Trigger Register**

Bit	Type	Function	Default
Bit 7	R	BUSY	0
Bit 6	R/W	RWB	0
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3		Unused	X
Bit 2		Unused	X
Bit 1		Unused	X
Bit 0		Unused	X

BUSY:

The BUSY bit reports whether a previously initiated indirect read or write to a message buffer has been completed. BUSY is set to a logic one immediately upon writing to the SPTB Indirect Address register, and stays high until the initiated access is completed. This register should be polled to determine when new data is available in the SPTB Indirect Data register.

RWB:

The access control bit (RWB) selects between an indirect read or write access to the selected path trace buffer (receive or transmit as determined by the RRAMACC bit). When RWB is a logic one, a read access is initiated. The addressed location's contents are placed in the SPTB Indirect Data register. When RWB is a logic zero, a write access is initiated. The data in the SPTB Indirect Data register is written to the addressed location in the selected buffer.

**Register 0x058, 0x158, 0x258, 0x358, 0x458, 0x558, 0x658, 0x758, 0x858,
0x958, 0xA58, 0xB58, 0xC58, 0xD58, 0xE58, 0xF58:
DCRU Configuration**

Bit	Type	Function	Default
Bit 7	R/W	VERN	0
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3	R	RUN	X
Bit 2	R	Unused	X
Bit 1	R	Unused	X
Bit 0	R/W	Reserved	0

Reserved:

The reserved bit must be programmed to zero for proper operation.

RUN:

The DLL lock status register bit RUN indicates the DCRU has found an initial delay line lock. When the DCRU is attempting to recover the incoming serial stream, RUN is set high. The RUN register bit is cleared only by a system reset or a software reset.

VERN:

The vernier tap register bits VERN is used for production testing of the DCRU delay line. When VERN is set high, the delay line is forced to the tap with the maximum delay. When VERN is set low, the delay line operates normally.

**Register 0x05C, 0x15C, 0x25C, 0x35C, 0x45C, 0x55C, 0x65C, 0x75C, 0x85C,
0x95C, 0xA5C, 0xB5C, 0xC5C, 0xD5C, 0xE5C, 0xF5C:
CRSI Configuration**

Bit	Type	Function	Default
Bit 7	R/W	SDINV	0
Bit 6	R/W	Reserved	0
Bit 5	R/W	SENB	0
Bit 4	R/W	Reserved	0
Bit 3		Unused	X
Bit 2	R	LOTI	X
Bit 1	R	ROOLI	X
Bit 0	R	DOOLI	X

DOOLI:

The DOOLI bit is the data out of lock interrupt status bit. DOOLI is set high when the the DOOLV bit changes state, indicating that either the CRU has locked to the incoming data stream or has gone out of lock. DOOLI is cleared when this register is read.

ROOLI:

The ROOLI bit is the reference out of lock interrupt status bit. ROOLI is set high when the ROOLV register changes state, indicating that either the PLL is locked to the reference clock REFCLK or in out of lock. ROOLI is cleared when this register is read.

LOTI:

The LOTI bit is the loss of transition interrupt status bit. LOTI is set high when a loss of transition event occurs. A loss of transition is defined as either the SD input set low or more than 96 consecutive ones or zeros received. LOTI is cleared when this register is read.

SENB:

The loss of signal transition detector enable (SENB) bit enables the declaration of loss of transition (LOT) when more than 96 consecutive ones or zeros occurs in the receive data. When SENB is a logic zero, a loss of transition is declared when more than 96 consecutive ones or zeros occurs in

the receive data or when the SD input is low. When SENB is a logic one, a loss of transition is declared only when the SD input is low.

SDINV:

The signal detect input invert (SDINV) controls the polarity of the SD input. The value of the SD input is logically XOR'ed with the value of the SDINV register. Therefore, when SDINV is a logic zero, valid signal power is indicated by the SD input high. When SDINV is a logic one, valid signal power is indicated by the SD input low.

**Register 0x05D, 0x15D, 0x25D, 0x35D, 0x45D, 0x55D, 0x65D, 0x75D, 0x85D,
0x95D, 0xA5D, 0xB5D, 0xC5D, 0xD5D, 0xE5D, 0xF5D:
CRSI Status**

Bit	Type	Function	Default
Bit 7	R	LOCK	X
Bit 6	R	LOTV	X
Bit 5	R	ROOLV	X
Bit 4	R	DOOLV	X
Bit 3		Unused	X
Bit 2	R/W	LOTE	0
Bit 1	R/W	ROOLE	0
Bit 0	R/W	DOOLE	0

DOOLE:

The DOOLE bit is an interrupt enable for the recovered data out of lock status. When DOOLE is set to logic one, an interrupt is generated upon assertion and negation events of the DOOLV register. When ROOLE is set low, changes in the DOOL status does not generate an interrupt.

ROOLE:

The ROOLE bit enables the reference out of lock indication interrupt. When ROOLE is set high, an interrupt is generated upon assertion and negation events of the ROOLV register. When ROOLE is set low, changes in the ROOL status does not generate an interrupt.

LOTE:

The LOTE bit enables the loss of transition indication interrupt. When LOTE is set high, an interrupt is generated upon assertion events of the LOTV register. When LOTE is set low, changes in the LOTV status does not generate an interrupt.

DOOLV:

The recovered data out of lock status indicates the clock recovery phase locked loop is unable to recover and lock to the input data stream. DOOLV is a logic one if the divided down recovered clock frequency is not within

approximately 488ppm of the REFCLK frequency or if no transitions have occurred on the RXD input for more than 96 bits.

ROOLV:

The recovered reference out of lock status indicates the clock recovery phase locked loop is unable to lock to the reference clock on REFCLK. ROOLV is a logic one if the divided down synthesized clock frequency is not within approximately 488ppm of the REFCLK frequency. At startup, ROOLV may remain high for several hundred millisecond while the PLL obtains lock.

LOTV:

The loss of transition status indicates the receive power is lost or at least 97 consecutive ones or zeros have been received. LOTV is a logic zero if the SD input is high or less than 97 consecutive ones or zeros have been received. LOTV is a logic one if the SD input is low or more than 96 consecutive ones or zeros have been received.

LOCK:

The CRU reference locking status indicates if the CRU is locking to the reference clock or the locking to the receive data. LOCK is a logic zero if the CRU is locking or locked to the reference clock. LOCK is a logic one if the CRU is locking or locked to the receive data. LOCK is invalid if the CRU is not used.

**Register 0x060, 0x160, 0x260, 0x360, 0x460, 0x560, 0x660, 0x760, 0x860,
0x960, 0xA60, 0xB60, 0xC60, 0xD60, 0xE60, 0xF60:
RXCP Configuration 1**

Bit	Type	Function	Default
Bit 7	R/W	DDSCR	0
Bit 6	R/W	HDSCR	0
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3		Unused	X
Bit 2	R/W	HCSADD	1
Bit 1	R/W	Reserved	0
Bit 0	R		

HCSADD:

The HCSADD bit controls the addition of the coset polynomial, $x^6+x^4+x^2+1$, to the HCS octet prior to comparison. When HCSADD is a logic one, the polynomial is added, and the resulting HCS is compared. When HCSADD is a logic zero, the polynomial is not added, and the unmodified HCS is compared.

HDSCR:

HDSCR enables the self-synchronous $x^{43} + 1$ descrambler to continue running through the bytes which should contain the ATM cell headers. When HSCR is set low, the descrambling polynomial will function only over the ATM payload bytes. When HDSCR is set high, the descrambling polynomial will function over all bytes, including the 5 ATM header bytes. This function is available for use with PPP packets and flags which are scrambled at the source to prevent the generation of “killer” sequences.

DDSCR:

The DDSCR bit controls the descrambling of the cell payload with the polynomial $x^{43} + 1$. When DDSCR is set high, cell payload descrambling is disabled. When DDSCR is set low, payload descrambling is enabled.

Reserved:

The reserved bits must be programmed to logic zero for proper operation.

**Register 0x061, 0x161, 0x261, 0x361, 0x461, 0x561, 0x661, 0x761, 0x861,
0x961, 0xA61, 0xB61, 0xC61, 0xD61, 0xE61, 0xF61:
RXCP Configuration 2**

Bit	Type	Function	Default
Bit 7	R/W		0
Bit 6	R/W		0
Bit 5	R/W	IDLEPASS	0
Bit 4	R/W	Reserved	0
Bit 3	R/W	Reserved	0
Bit 2	R/W	Reserved	0
Bit 1	R/W		0
Bit 0	R/W		0

IDLEPASS:

The IDLEPASS bit controls the function of the Idle Cell filter. When IDLEPASS is written with a logic zero, all cells that match the Idle Cell Header Pattern and Idle Cell Header Mask are filtered out. When IDLEPASS is a logic one, the Idle Cell Header Pattern and Mask registers are ignored. The default state of this bit and the bits in the Idle Cell Header Mask and Idle Cell Header Pattern Registers enable the dropping of idle cells.

Reserved:

The reserved bits must be programmed to logic zero for proper operation.

**Register 0x062, 0x162, 0x262, 0x362, 0x462, 0x562, 0x662, 0x762, 0x862,
0x962, 0xA62, 0xB62, 0xC62, 0xD62, 0xE62, 0xF62:
RXCP FIFO/UTOPIA Control and Configuration**

Bit	Type	Function	Default
Bit 7	R/W	Reserved	0
Bit 6		Unused	X
Bit 5	R/W	Reserved	0
Bit 4	R/W	Reserved	1
Bit 3		Unused	X
Bit 2		Unused	X
Bit 1		Unused	X
Bit 0	R/W	FIFORST	0

FIFORST:

The FIFORST bit is used to reset the channel four-cell receive buffer. When FIFORST is set low, the channel buffer operates normally. When FIFORST is set high, the buffer is immediately emptied and ignores writes. The buffer remains empty and continues to ignore writes until a logic zero is written to FIFORST.

FIFORST must be set high before the per-channel FIFO reset in the RUL3 is asserted. FIFORST must be set low after the per-channel FIFO reset in the RUL3 asserted.

Reserved:

This reserved bit must be programmed to '0' to ensure correct operation of the device.

**Register 0x063, 0x163, 0x263, 0x363, 0x463, 0x563, 0x663, 0x763, 0x863,
0x963, 0xA63, 0xB63, 0xC63, 0xD63, 0xE63, 0xF63:
RXCP Interrupt Enable and Counter Status**

Bit	Type	Function	Default
Bit 7	R	XFERI	X
Bit 6	R	OVR	X
Bit 5		Unused	X
Bit 4	R/W	XFERE	0
Bit 3	R/W	OOCDE	0
Bit 2	R/W	HCSE	0
Bit 1	R/W	FOVRE	0
Bit 0	R/W	LCDE	0

LCDE:

The LCDE bit enables the generation of an interrupt due to a change in the LCD state. When LCDE is set high, the interrupt is enabled.

FOVRE:

The FOVRE bit enables the generation of an interrupt due to a FIFO overrun error condition. When FOVRE is set high, the interrupt is enabled.

HCSE:

The HCSE bit enables the generation of an interrupt due to the detection of an HCS error. When HCSE is set high, the interrupt is enabled.

OOCDE:

The OOCDE bit enables the generation of an interrupt due to a change in cell delineation state. When OOCDE is set high, the interrupt is enabled.

XFERE:

The XFERE bit enables the generation of an interrupt when an accumulation interval is completed and new values are stored in the RXCP Count registers. When XFERE is set high, the interrupt is enabled.

OVR:

The OVR bit is the overrun status of the RXCP Performance Monitoring Count registers. A logic one in this bit position indicates that a previous transfer (indicated by XFERI being logic one) has not been acknowledged before the next accumulation interval has occurred and that the contents of the RXCP Count registers have been overwritten. OVR is set low when this register is read.

XFERI:

The XFERI bit indicates that a transfer of RXCP Performance Monitoring Count data has occurred. A logic one in this bit position indicates that the RXCP Count registers have been updated. This update is initiated by writing to one of the RXCP Count register locations, to the S/UNI-16x155 Master Reset and Identity register or the channel Master Interrupt Status register. XFERI is set low when this register is read.

**Register 0x064, 0x164, 0x264, 0x364, 0x464, 0x564, 0x664, 0x764, 0x864,
0x964, 0xA64, 0xB64, 0xC64, 0xD64, 0xE64, 0xF64:
RXCP Status/Interrupt Status**

Bit	Type	Function	Default
Bit 7	R	OOCDV	X
Bit 6	R	LCDV	X
Bit 5		Unused	X
Bit 4	R	OOCDI	X
Bit 3	R		X
Bit 2	R	HCSI	X
Bit 1	R	FOVRI	X
Bit 0	R	LCDI	X

LCDI:

The LCDI bit is set high when there is a change in the loss of cell delineation (LCD) state. This bit is reset immediately after a read to this register.

FOVRI:

The FOVRI bit is set high when an attempt is made to write into the channel buffer when it is already full. This bit is reset immediately after a read to this register. Continuous over-writing of the channel buffer results in only one interrupt.

HCSI:

The HCSI bit is set high when an HCS error is detected. This bit is reset immediately after a read to this register.

OOCDI:

The OOCDI bit is set high when the RXCP enters or exits the SYNC state. The OOCDV bit indicates whether the RXCP is in the SYNC state or not. The OOCDI bit is reset immediately after a read to this register.

LCDV:

The LCDV bit gives the Loss of Cell Delineation state. When LCD is high, an out of cell delineation (OCD) defect has persisted for the number of cells specified in the LCD Count Threshold register. When LCD is low, no OCD

has persisted for the number of cells specified in the LCD Count Threshold register. The cell time period can be varied by using the LCDC[7:0] register bits in the RXCP LCD Count Threshold register.

OOCDV:

The OOCDV bit indicates the cell delineation state. When OOCDV is high, the cell delineation state machine is in the 'HUNT' or 'PRESYNC' states and is hunting for the cell boundaries. When OOCDV is low, the cell delineation state machine is in the 'SYNC' state and cells are passed through the receive FIFO.

**Register 0x065, 0x165, 0x265, 0x365, 0x465, 0x565, 0x665, 0x765, 0x865,
0x965, 0xA65, 0xB65, 0xC65, 0xD65, 0xE65, 0xF65:
RXCP LCD Count Threshold MSB**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3		Unused	X
Bit 2	R/W	LCDC[10]	0
Bit 1	R/W	LCDC[9]	0
Bit 0	R/W	LCDC[8]	1

**Register 0x066, 0x166, 0x266, 0x366, 0x466, 0x566, 0x666, 0x766, 0x866,
0x966, 0xA66, 0xB66, 0xC66, 0xD66, 0xE66, 0xF66:
RXCP LCD Count Threshold LSB**

Bit	Type	Function	Default
Bit 7	R/W	LCDC[7]	0
Bit 6	R/W	LCDC[6]	1
Bit 5	R/W	LCDC[5]	1
Bit 4	R/W	LCDC[4]	0
Bit 3	R/W	LCDC[3]	1
Bit 2	R/W	LCDC[2]	0
Bit 1	R/W	LCDC[1]	0
Bit 0	R/W	LCDC[0]	0

LCDC[10:0]:

The LCDC[10:0] bits represent the number of consecutive cell periods the receive cell processor must be out of cell delineation before loss of cell delineation (LCD) is declared. Likewise, LCD is not de-asserted until receive cell processor is in cell delineation for the number of cell periods specified by LCDC[10:0].

PRELIMINARY
S/UNI-16X155
DATASHEET
PMC-2000495

ISSUE 2

SATURN USER NETWORK INTERFACE (16X155)

PM5382
S/UNI-16X155

The default value of LCD[10:0] is 360, which translates to an average cell period of 2.83 μ s and a default LCD integration period of 1.02 μ s.

**Register 0x067, 0x167, 0x267, 0x367, 0x467, 0x567, 0x667, 0x767, 0x867,
0x967, 0xA67, 0xB67, 0xC67, 0xD67, 0xE67, 0xF67:
RXCP Idle Cell Header Pattern**

Bit	Type	Function	Default
Bit 7	R/W	GFC[3]	0
Bit 6	R/W	GFC[2]	0
Bit 5	R/W	GFC[1]	0
Bit 4	R/W	GFC[0]	0
Bit 3	R/W	PTI[3]	0
Bit 2	R/W	PTI[2]	0
Bit 1	R/W	PTI[1]	0
Bit 0	R/W	CLP	1

GFC[3:0]:

The GFC[3:0] bits contain the pattern to match in the first, second, third, and fourth bits of the first octet of the 53-octet cell, in conjunction with the Idle Cell Header Mask Register. The IDLEPASS bit in the RXCP Configuration 2 Register must be set to logic zero to enable dropping of cells matching this pattern. Note that an all-zeros pattern must be present in the VPI and VCI fields of the idle or unassigned cell.

PTI[2:0]:

The PTI[2:0] bits contain the pattern to match in the fifth, sixth, and seventh bits of the fourth octet of the 53-octet cell, in conjunction with the Idle Cell Header Mask Register. The IDLEPASS bit in the RXCP Configuration 2 Register must be set to logic zero to enable dropping of cells matching this pattern.

CLP:

The CLP bit contains the pattern to match in the eighth bit of the fourth octet of the 53-octet cell, in conjunction with the Match Header Mask Register. The IDLEPASS bit in the RXCP Configuration 2 Register must be set to logic zero to enable dropping of cells matching this pattern.

**Register 0x068, 0x168, 0x268, 0x368, 0x468, 0x568, 0x668, 0x768, 0x868,
0x968, 0xA68, 0xB68, 0xC68, 0xD68, 0xE68, 0xF68:
RXCP Idle Cell Header Mask**

Bit	Type	Function	Default
Bit 7	R/W	MGFC[3]	1
Bit 6	R/W	MGFC[2]	1
Bit 5	R/W	MGFC[1]	1
Bit 4	R/W	MGFC[0]	1
Bit 3	R/W	MPTI[3]	1
Bit 2	R/W	MPTI[2]	1
Bit 1	R/W	MPTI[1]	1
Bit 0	R/W	MCLP	1

MGFC[3:0]:

The MGFC[3:0] bits contain the mask pattern for the first, second, third, and fourth bits of the first octet of the 53-octet cell. This mask is applied to the Idle Cell Header Pattern Register to select the bits included in the cell filter. A logic one in any bit position enables the corresponding bit in the pattern register to be compared. A logic zero causes the masking of the corresponding bit.

MPTI[3:0]:

The MPTI[3:0] bits contain the mask pattern for the fifth, sixth, and seventh bits of the fourth octet of the 53-octet cell. This mask is applied to the Idle Cell Header Pattern Register to select the bits included in the cell filter. A logic one in any bit position enables the corresponding bit in the pattern register to be compared. A logic zero causes the masking of the corresponding bit.

MCLP:

The CLP bit contains the mask pattern for the eighth bit of the fourth octet of the 53-octet cell. This mask is applied to the Idle Cell Header Pattern Register to select the bits included in the cell filter. A logic one in this bit position enables the MCLP bit in the pattern register to be compared. A logic zero causes the masking of the MCLP bit.

PRELIMINARY
S/UNI-16X155
DATASHEET
PMC-2000495

ISSUE 2

PM5382
S/UNI-16X155

SATURN USER NETWORK INTERFACE (16X155)

**Register 0x06A, 0x16A, 0x26A, 0x36A, 0x46A, 0x56A, 0x66A, 0x76A, 0x86A,
0x96A, 0xA6A, 0xB6A, 0xC6A, 0xD6A, 0xE6A, 0xF6A:
RXCP HCS Error Count**

Bit	Type	Function	Default
Bit 7	R	HCS[7]	X
Bit 6	R	HCS[6]	X
Bit 5	R	HCS[5]	X
Bit 4	R	HCS[4]	X
Bit 3	R	HCS[3]	X
Bit 2	R	HCS[2]	X
Bit 1	R	HCS[1]	X
Bit 0	R	HCS[0]	X

HCS[7:0]:

The HCS[7:0] bits indicate the number of HCS error events that occurred during the last accumulation interval. The contents of these registers are valid a maximum of 40 RCLK periods after a transfer is triggered by a write to one of RXCP's performance monitor.

The count can also be polled by writing to the S/UNI-16x155 Master Reset and Identity register (0x000). Writing to register address 0x000 loads all counter registers in all channels and APS links.

The count can also be polled by writing to the channel Master Interrupt Status register (offset 0x07). Writing to register offset 0x07 loads all counter registers in the RSOP, RLOP, RPOP, SPTB, SSTB, RXCP, TXCP, RXFP, and TXFP blocks of the channel.

**Register 0x06B, 0x16B, 0x26B, 0x36B, 0x46B, 0x56B, 0x66B, 0x76B, 0x86B,
0x96B, 0xA6B, 0xB6B, 0xC6B, 0xD6B, 0xE6B, 0xF6B:
RXCP Receive Cell Counter LSB**

Bit	Type	Function	Default
Bit 7	R	RCELL[7]	X
Bit 6	R	RCELL[6]	X
Bit 5	R	RCELL[5]	X
Bit 4	R	RCELL[4]	X
Bit 3	R	RCELL[3]	X
Bit 2	R	RCELL[2]	X
Bit 1	R	RCELL[1]	X
Bit 0	R	RCELL[0]	X

**Register 0x06C, 0x16C, 0x26C, 0x36C, 0x46C, 0x56C, 0x66C, 0x76C, 0x86C,
0x96C, 0xA6C, 0xB6C, 0xC6C, 0xD6C, 0xE6C, 0xF6C:
RXCP Receive Cell Counter**

Bit	Type	Function	Default
Bit 7	R	RCELL[15]	X
Bit 6	R	RCELL[14]	X
Bit 5	R	RCELL[13]	X
Bit 4	R	RCELL[12]	X
Bit 3	R	RCELL[11]	X
Bit 2	R	RCELL[10]	X
Bit 1	R	RCELL[9]	X
Bit 0	R	RCELL[8]	X

**Register 0x06D, 0x16D, 0x26D, 0x36D, 0x46D, 0x56D, 0x66D, 0x76D, 0x86D,
0x96D, 0xA6D, 0xB6D, 0xC6D, 0xD6D, 0xE6D, 0xF6D:
RXCP Receive Cell Counter MSB**

Bit	Type	Function	Default
Bit 7	R	RCELL[23]	X
Bit 6	R	RCELL[22]	X
Bit 5	R	RCELL[21]	X
Bit 4	R	RCELL[20]	X
Bit 3	R	RCELL[19]	X
Bit 2	R	RCELL[18]	X
Bit 1	R	RCELL[17]	X
Bit 0	R	RCELL[16]	X

RCELL[23:0]:

The RCELL[23:0] bits indicate the number of cells received and written into the receive FIFO during the last accumulation interval. Cells received and filtered due to HCS errors or Idle cell matches are not counted. The counter should be polled every second to avoid saturation. The contents of these registers are valid a maximum of 67 RCLK periods after a transfer is triggered by a write to one of RXCP's performance monitor counters.

The count can also be polled by writing to the S/UNI-16x155 Master Reset and Identity register (0x000). Writing to register address 0x000 loads all counter registers in all channels and APS links.

The count can also be polled by writing to the channel Master Interrupt Status register (offset 0x07). Writing to register offset 0x07 loads all counter registers in the RSOP, RLOP, RPOP, SPTB, SSTB, RXCP, TXCP, RXFP, and TXFP blocks of the channel.

**Register 0x06E, 0x16E, 0x26E, 0x36E, 0x46E, 0x56E, 0x66E, 0x76E, 0x86E,
0x96E, 0xA6E, 0xB6E, 0xC6E, 0xD6E, 0xE6E, 0xF6E:
RXCP Idle Cell Counter LSB**

Bit	Type	Function	Default
Bit 7	R	ICELL[7]	X
Bit 6	R	ICELL[6]	X
Bit 5	R	ICELL[5]	X
Bit 4	R	ICELL[4]	X
Bit 3	R	ICELL[3]	X
Bit 2	R	ICELL[2]	X
Bit 1	R	ICELL[1]	X
Bit 0	R	ICELL[0]	X

**Register 0x06F, 0x16F, 0x26F, 0x36F, 0x46F, 0x56F, 0x66F, 0x76F, 0x86F,
0x96F, 0xA6F, 0xB6F, 0xC6F, 0xD6F, 0xE6F, 0xF6F:
RXCP Idle Cell Counter**

Bit	Type	Function	Default
Bit 7	R	ICELL[15]	X
Bit 6	R	ICELL[14]	X
Bit 5	R	ICELL[13]	X
Bit 4	R	ICELL[12]	X
Bit 3	R	ICELL[11]	X
Bit 2	R	ICELL[10]	X
Bit 1	R	ICELL[9]	X
Bit 0	R	ICELL[8]	X

**Register 0x070, 0x170, 0x270, 0x370, 0x470, 0x570, 0x670, 0x770, 0x870,
0x970, 0xA70, 0xB70, 0xC70, 0xD70, 0xE70, 0xF70:
RXCP Idle Cell Counter MSB**

Bit	Type	Function	Default
Bit 7	R	ICELL[23]	X
Bit 6	R	ICELL[22]	X
Bit 5	R	ICELL[21]	X
Bit 4	R	ICELL[20]	X
Bit 3	R	ICELL[19]	X
Bit 2	R	ICELL[18]	X
Bit 1	R	ICELL[17]	X
Bit 0	R	ICELL[16]	X

ICELL[23:0]:

The ICELL[23:0] bits indicate the number of idle cells received during the last accumulation interval. The counter should be polled every second to avoid saturation. The contents of these registers are valid a maximum of 67 RCLK periods after a transfer is triggered by a write to one of RXCP's performance monitor counters.

The count can also be polled by writing to the S/UNI-16x155 Master Reset and Identity register (0x000). Writing to register address 0x000 loads all counter registers in all channels and APS links.

The count can also be polled by writing to the channel Master Interrupt Status register (offset 0x07). Writing to register offset 0x07 loads all counter registers in the RSOP, RLOP, RPOP, SPTB, SSTB, RXCP, TXCP, RXFP, and TXFP blocks of the channel.

**Register 0x080, 0x180, 0x280, 0x380, 0x480, 0x580, 0x680, 0x780, 0x880,
0x980, 0xA80, 0xB80, 0xC80, 0xD80, 0xE80, 0xF80:
TXCP Configuration 1**

Bit	Type	Function	Default
Bit 7	R/W		0
Bit 6	R/W		0
Bit 5	R/W	HSCR	0
Bit 4	R/W	Reserved	0
Bit 3	R/W	HCSB	0
Bit 2	R/W	HCSADD	1
Bit 1	R/W	DSCR	0
Bit 0	R/W	FIFORST	0

FIFORST:

The FIFORST bit is used to reset the channel four cell transmit buffer. When FIFORST is set to logic zero, the buffer operates normally. When FIFORST is set to logic one, the buffer is immediately emptied and ignores writes. The buffer remains empty and continues to ignore writes until a logic zero is written to FIFORST. Null/unassigned cells are transmitted until a subsequent cell is written to the buffer.

The FIFORST must be set high before the per-channel reset in the TUL3 is asserted. The FIFORST must be set low after the per-channel reset in the TUL3 is deasserted.

DSCR:

The DSCR bit controls the scrambling of the cell payload. When DSCR is a logic one, cell payload scrambling is disabled. When DSCR is a logic zero, payload scrambling is enabled.

HCSADD:

The HCSADD bit controls the addition of the coset polynomial, $x^6+x^4+x^2+1$, to the HCS octet prior to insertion in the synchronous payload envelope. When HCSADD is a logic one, the polynomial is added, and the resulting HCS is inserted. When HCSADD is a logic zero, the polynomial is not added, and the unmodified HCS is inserted. HCSADD takes effect unconditionally

regardless of whether a null/unassigned cell is being transmitted or whether the HCS octet has been read from the FIFO.

HCSB:

The active low HCSB bit enables the internal generation and insertion of the HCS octet into the transmit cell stream. When HCSB is logic zero, the HCS is generated and inserted internally. HSCR:

The Header Scramble enable bit, HSCR, enables scrambling of the ATM five octet header along with the payload. When set to logic one, the ATM header and payload are both scrambled. When set to logic zero, the header is left unscrambled and payload scrambling is determined by the DSCR bit.

Reserved:

The reserved bits must be programmed to logic zero for proper operation.

**Register 0x081, 0x181, 0x281, 0x381, 0x481, 0x581, 0x681, 0x781, 0x881,
0x981, 0xA81, 0xB81, 0xC81, 0xD81, 0xE81, 0xF81:
TXCP Configuration 2**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4	R/W	Reserved	0
Bit 3	R/W	Reserved	0
Bit 2	R/W	Reserved	0
Bit 1	R/W	DHCS	0
Bit 0	R/W	HCSCTLEB	0

HCSCTLEB:

The active low HCS control enable, HCSCTLEB bit enables the XORing of the HCS Control byte with the generated HCS. When set to logic zero, the HCS Control byte provided in the third word of the 27 word data structure is XORed with the generated HCS. When set to logic one, XORing is disabled and the HCS Control byte is ignored.

For normal operation, the HCS Control byte in the ATM cell structure transferred on the system interface should always be 0x00. If not, the HCSCTLEB register should be set to logic one to prevent corruption of the HCS byte.

DHCS:

The DHCS bit controls the insertion of HCS errors for diagnostic purposes. When DHCS is set to logic one, the HCS octet is inverted prior to insertion in the synchronous payload envelope. DHCS takes effect unconditionally regardless of whether a null/unassigned cell is being transmitted or whether the HCS octet has been read from the FIFO. DHCS occurs after any error insertion caused by the Control Byte in the 27-word data structure.

**Register 0x082, 0x182, 0x282, 0x382, 0x482, 0x582, 0x682, 0x782, 0x882,
0x982, 0xA82, 0xB82, 0xC82, 0xD82, 0xE82, 0xF82:
TXCP Cell Count Status**

Bit	Type	Function	Default
Bit 7	R/W	XFERE	0
Bit 6	R	XFERI	X
Bit 5	R	OVR	X
Bit 4		Unused	X
Bit 3	R/W	Reserved	1
Bit 2	R/W	Reserved	0
Bit 1	R/W	Reserved	0
Bit 0	R/W	Reserved	0

XFERI:

The XFERI bit indicates that a transfer of Transmit Cell Count data has occurred. A logic one in this bit position indicates that the Transmit Cell Count registers have been updated. This update is initiated by writing to one of the Transmit Cell Count register locations, to the S/UNI-16x155 Master Reset and Identity register or to the channel Master Interrupt Status register. XFERI is set low when this register is read.

OVR:

The OVR bit is the overrun status of the Transmit Cell Count registers. A logic one in this bit position indicates that a previous transfer (indicated by XFERI being logic one) has not been acknowledged before the next accumulation interval has occurred and that the contents of the Transmit Cell Count registers have been overwritten. OVR is set low when this register is read.

XFERE:

The XFERE bit enables the generation of an interrupt when an accumulation interval is completed and new values are stored in the Transmit Cell Count registers. When XFERE is set high, the interrupt is enabled.

Reserved:

These bits should be set to their default values for proper operation.

**Register 0x083, 0x183, 0x283, 0x383, 0x483, 0x583, 0x683, 0x783, 0x883,
0x983, 0xA83, 0xB83, 0xC83, 0xD83, 0xE83, 0xF83:
TXCP Interrupt Enable/Status**

Bit	Type	Function	Default
Bit 7	R/W	Reserved	0
Bit 6	R/W	Reserved	0
Bit 5	R/W	Reserved	0
Bit 4		Unused	X
Bit 3		Unused	X
Bit 2	R	Reserved	X
Bit 1	R	Reserved	X
Bit 0	R	Reserved	X

**Register 0x084, 0x184, 0x284, 0x384, 0x484, 0x584, 0x684, 0x784, 0x884,
0x984, 0xA84, 0xB84, 0xC84, 0xD84, 0xE84, 0xF84:
TXCP Idle Cell Header Control**

Bit	Type	Function	Default
Bit 7	R/W	GFC[3]	0
Bit 6	R/W	GFC[2]	0
Bit 5	R/W	GFC[1]	0
Bit 4	R/W	GFC[0]	0
Bit 3	R/W	PTI[2]	0
Bit 2	R/W	PTI[1]	0
Bit 1	R/W	PTI[0]	0
Bit 0	R/W	CLP	1

CLP:

The CLP bit contains the eighth bit position of the fourth octet of the idle/unassigned cell pattern. Cell rate decoupling is accomplished by transmitting idle cells when the TXCP detects that no outstanding cells exist in the transmit FIFO.

PTI[3:0]:

The PTI[3:0] bits contains the fifth, sixth, and seventh bit positions of the fourth octet of the idle/unassigned cell pattern. Idle cells are transmitted when the TXCP detects that no outstanding cells exist in the transmit FIFO.

GFC[3:0]:

The GFC[3:0] bits contain the first, second, third, and fourth bit positions of the first octet of the idle/unassigned cell pattern. Idle/unassigned cells are transmitted when the TXCP detects that no outstanding cells exist in the transmit FIFO. The all zeros pattern is transmitted in the VCI and VPI fields of the idle cell.

**Register 0x085, 0x185, 0x285, 0x385, 0x485, 0x585, 0x685, 0x785, 0x885,
0x985, 0xA85, 0xB85, 0xC85, 0xD85, 0xE85, 0xF85:
TXCP Idle Cell Payload Control**

Bit	Type	Function	Default
Bit 7	R/W	PAYLD[7]	0
Bit 6	R/W	PAYLD[6]	1
Bit 5	R/W	PAYLD[5]	1
Bit 4	R/W	PAYLD[4]	0
Bit 3	R/W	PAYLD[3]	1
Bit 2	R/W	PAYLD[2]	0
Bit 1	R/W	PAYLD[1]	1
Bit 0	R/W	PAYLD[0]	0

PAYLD[7:0]:

The PAYLD[7:0] bits contain the pattern inserted in the idle cell payload. Idle cells are inserted when the TXCP detects that the transmit FIFO contains no outstanding cells. PAYLD[7] is the most significant bit and is the first bit transmitted. PAYLD[0] is the least significant bit.

**Register 0x086, 0x186, 0x286, 0x386, 0x486, 0x586, 0x686, 0x786, 0x886,
0x986, 0xA86, 0xB86, 0xC86, 0xD86, 0xE86, 0xF86:
TXCP Transmit Cell Count LSB**

Bit	Type	Function	Default
Bit 7	R	TCELL[7]	X
Bit 6	R	TCELL[6]	X
Bit 5	R	TCELL[5]	X
Bit 4	R	TCELL[4]	X
Bit 3	R	TCELL[3]	X
Bit 2	R	TCELL[2]	X
Bit 1	R	TCELL[1]	X
Bit 0	R	TCELL[0]	X

**Register 0x087, 0x187, 0x287, 0x387, 0x487, 0x587, 0x687, 0x787, 0x887,
0x987, 0xA87, 0xB87, 0xC87, 0xD87, 0xE87, 0xF87:
TXCP Transmit Cell Count**

Bit	Type	Function	Default
Bit 7	R	TCELL[15]	X
Bit 6	R	TCELL[14]	X
Bit 5	R	TCELL[13]	X
Bit 4	R	TCELL[12]	X
Bit 3	R	TCELL[11]	X
Bit 2	R	TCELL[10]	X
Bit 1	R	TCELL[9]	X
Bit 0	R	TCELL[8]	X

**Register 0x088, 0x188, 0x288, 0x388, 0x488, 0x588, 0x688, 0x788, 0x888,
0x988, 0xA88, 0xB88, 0xC88, 0xD88, 0xE88, 0xF88:
TXCP Transmit Cell Count MSB**

Bit	Type	Function	Default
Bit 7	R	TCELL[23]	X
Bit 6	R	TCELL[22]	X
Bit 5	R	TCELL[21]	X
Bit 4	R	TCELL[20]	X
Bit 3	R	TCELL[19]	X
Bit 2	R	TCELL[18]	X
Bit 1	R	TCELL[17]	X
Bit 0	R	TCELL[16]	X

TCELL[23:0]:

The TCELL[23:0] bits indicate the number of cells read from the transmit FIFO and inserted into the transmission stream during the last accumulation interval. Idle cells inserted into the transmission stream are not counted. A write to any one of the TXCP Transmit Cell Counter registers loads the registers with the current counter value and resets the internal count to zero.

The count can also be polled by writing to the S/UNI-16x155 Master Reset and Identity register (0x000). Writing to register address 0x000 loads all counter registers in all channels and APS links.

The count can also be polled by writing to the channel Master Interrupt Status register (offset 0x07). Writing to register offset 0x07 loads all counter registers in the RSOP, RLOP, RPOP, SPTB, SSTB, RXCP, TXCP, RXFP, and TXFP blocks of the channel.

**Register 0x094, 0x194, 0x294, 0x394, 0x494, 0x594, 0x694, 0x794, 0x894,
0x994, 0xA94, 0xB94, 0xC94, 0xD94, 0xE94, 0xF94:**

Receive Cell/Packet Counter LSB

Bit	Type	Function	Default
Bit 7	R	RCNT[7]	X
Bit 6	R	RCNT[6]	X
Bit 5	R	RCNT[5]	X
Bit 4	R	RCNT[4]	X
Bit 3	R	RCNT[3]	X
Bit 2	R	RCNT[2]	X
Bit 1	R	RCNT[1]	X
Bit 0	R	RCNT[0]	X

**Register 0x095, 0x195, 0x295, 0x395, 0x495, 0x595, 0x695, 0x795, 0x895,
0x995, 0xA95, 0xB95, 0xC95, 0xD95, 0xE95, 0xF95:**

Receive Cell/Packet Counter

Bit	Type	Function	Default
Bit 7	R	RCNT[15]	X
Bit 6	R	RCNT[14]	X
Bit 5	R	RCNT[13]	X
Bit 4	R	RCNT[12]	X
Bit 3	R	RCNT[11]	X
Bit 2	R	RCNT[10]	X
Bit 1	R	RCNT[9]	X
Bit 0	R	RCNT[8]	X

**Register 0x096, 0x196, 0x296, 0x396, 0x496, 0x596, 0x696, 0x796, 0x896,
0x996, 0xA96, 0xB96, 0xC96, 0xD96, 0xE96, 0xF96:**

Receive Cell/Packet Counter MSB

Bit	Type	Function	Default
Bit 7	R	RCNT[23]	X
Bit 6	R	RCNT[22]	X
Bit 5	R	RCNT[21]	X
Bit 4	R	RCNT[20]	X
Bit 3	R	RCNT[19]	X
Bit 2	R	RCNT[18]	X
Bit 1	R	RCNT[17]	X
Bit 0	R	RCNT[16]	X

RCNT[23:0]:

The RCNT[23:0] bits indicate the number of cells or packets received during the last accumulation interval. When the channel is configured for ATM traffic, the number of valid received ATM cells are counted. When the channel is configured for packet trace, the number of end of packets are counted.

This counter exists after the RXCP/RXFP FIFO allowing it to count the number of actual received items. Since the RUL3 does not drop cells or packet information, RCNT[23:0] supplies an accurate count. However, when compared to the performance counters in RXCP/RXFP, RCNT[23:0] may differ slightly due to the number of items stored in the RXCP/RXFP FIFO.

The count is polled by writing to the S/UNI-16x155 Master Reset and Identity register (0x000). Writing to register address 0x000 loads all counter registers in all channels and APS links.

The count can also be polled by writing to the channel Master Interrupt Status register (offset 0x07). Writing to register offset 0x07 loads all counter registers in the RSOP, RLOP, RPOP, SPTB, SSTB, RXCP, TXCP, RXFP, and TXFP blocks of the channel.

**Register 0x0A0, 0x1A0, 0x2A0, 0x3A0, 0x4A0, 0x5A0, 0x6A0, 0x7A0, 0x8A0,
0x9A0, 0xAA0, 0xBA0, 0xCA0, 0xDA0, 0xEA0, 0xFA0:
RXFP Configuration**

Bit	Type	Function	Default
Bit 7	R/W	Reserved	0
Bit 6	R/W	FCSPASS	0
Bit 5	R/W	Reserved	0
Bit 4	R/W	FCSSEL[1]	1
Bit 3	R/W	FCSSEL[0]	0
Bit 2	R/W	Reserved	0
Bit 1	R/W	DDSCR	1
Bit 0	R/W	FIFORST	0

FIFORST:

The FIFORST bit is used to reset the channel 256-byte receive buffer. When FIFORST is set low, the channel buffer operates normally. When FIFORST is set high, the buffer is immediately emptied and ignores writes. The buffer remains empty and continues to ignore writes until a logic zero is written to FIFORST.

The FIFORST must be set high before the per-channel FIFO reset in the RUL3 is asserted. The FIFORST must be set low after the per-channel FIFO reset in the RUL3 is deasserted.

DDSCR:

The DDSCR bit controls the descrambling of the frame payload with the polynomial $x^{43} + 1$. When DDSCR is set low, frame payload descrambling is disabled. When DDSCR is set high, payload descrambling is enabled.

FCSSEL[1:0]:

The Frame Control Sequence select (FCSSEL[1:0]) bits allow to control the FCS calculation according to the table below. The FCS is calculated over the whole packet data, after byte destuffing and descrambling.

FCSSEL[1:0]	FCS Operation
00	No FCS calculated
01	CRC-CCITT (2 bytes)
10	CRC-32 (4 bytes)
11	Reserved

FCSPASS:

FCSPASS determines if the FCS field will be passed through the system interface or stripped. When FCSPASS is set to logic one, the POS frame FCS field is written into the FIFO as part of the packet, and can thus be read through the system interface. When FCSPASS is set to logic zero, the FCS field is stripped from the POS frame.

Reserved:

The reserved bit must be programmed to logic zero for proper operation.

**Register 0x0A1, 0x1A1, 0x2A1, 0x3A1, 0x4A1, 0x5A1, 0x6A1, 0x7A1, 0x8A1,
0x9A1, 0xAA1, 0xBA1, 0xCA1, 0xDA1, 0xEA1, 0xFA1:
RXFP Configuration/Interrupt Enable**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5	R/W	MINLE	0
Bit 4	R/W	MAXLE	0
Bit 3	R/W	ABRTE	0
Bit 2	R/W	FCSE	0
Bit 1	R/W	FOVRE	0
Bit 0	R/W	Reserved	0

FOVRE:

The FOVRE bit enables the generation of an interrupt due to a channel buffer overrun error condition. When FOVRE is set high, the interrupt is enabled.

FCSE:

The FCSE bit enables the generation of an interrupt due to the detection of an FCS error. When FCSE is set high, the interrupt is enabled.

ABRTE:

The Abort Packet Enable bit enables the generation of an interrupt due to the reception of an aborted packet. When ABRTE is set high, the interrupt is enabled.

MAXLE:

The Maximum Length Packet Enable bit enables the generation of an interrupt due to the reception of an packet exceeding the programmable maximum packet length. When MAXLE is set high, the interrupt is enabled.

MINLE:

The Minimum Length Packet Enable bit enables the generation of an interrupt due to the reception of an packet that is smaller than the programmable minimum packet length. When MINLE is set high, the interrupt is enabled.

PRELIMINARY
S/UNI-16X155
DATASHEET
PMC-2000495

ISSUE 2

PM5382
S/UNI-16X155

SATURN USER NETWORK INTERFACE (16X155)

Reserved:

The reserved bit must be programmed to logic zero for proper operation.

**Register 0x0A2, 0x1A2, 0x2A2, 0x3A2, 0x4A2, 0x5A2, 0x6A2, 0x7A2, 0x8A2,
0x9A2, 0xAA2, 0xBA2, 0xCA2, 0xDA2, 0xEA2, 0xFA2:
RXFP Interrupt Status**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5	R	MINLI	X
Bit 4	R	MAXLI	X
Bit 3	R	ABRTI	X
Bit 2	R	FCSI	X
Bit 1	R	FOVRI	X
Bit 0		Unused	X

FOVRI:

The FOVRI bit indicates an interrupt due to a channel buffer overrun error condition. This interrupt can be masked using FOVRE.

FCSI:

The FCSI bit indicates an interrupt due to the detection of an FCS error. This interrupt can be masked using FCSE.

ABRTI:

The ABRTI bit indicates bit enables the generation of an interrupt due to the reception of an aborted packet. This interrupt can be masked using ABRTE.

MAXLI:

The MAXLI bit indicates an interrupt due to the reception of a packet exceeding the programmable maximum packet length. This interrupt can be masked using MAXLE.

MINLI:

The MINLI bit indicates an interrupt due to the reception of a packet that is smaller than the programmable minimum packet length. This interrupt can be masked using MINLE.

**Register 0x0A3, 0x1A3, 0x2A3, 0x3A3, 0x4A3, 0x5A3, 0x6A3, 0x7A3, 0x8A3,
0x9A3, 0xAA3, 0xBA3, 0xCA3, 0xDA3, 0xEA3, 0xFA3:
RXFP Minimum Packet Length**

Bit	Type	Function	Default
Bit 7	R/W	MINPL[7]	0
Bit 6	R/W	MINPL[6]	0
Bit 5	R/W	MINPL[5]	0
Bit 4	R/W	MINPL[4]	0
Bit 3	R/W	MINPL[3]	0
Bit 2	R/W	MINPL[2]	1
Bit 1	R/W	MINPL[1]	0
Bit 0	R/W	MINPL[0]	0

MINPL[7:0]:

The Minimum Packet Length (MINPL[7:0]) bits are used to set the minimum packet length. Packets smaller than this length are marked with an error. The packet length used here is defined as the number of bytes encapsulated into the POS frame, excluding byte stuffing and FCS bytes.

The minimum packet length supported by the RXFP is 3 bytes (0x03).

**Register 0x0A4, 0x1A4, 0x2A4, 0x3A4, 0x4A4, 0x5A4, 0x6A4, 0x7A4, 0x8A4,
0x9A4, 0xAA4, 0xBA4, 0xCA4, 0xDA4, 0xEA4, 0xFA4:
RXFP Maximum Packet Length LSB**

Bit	Type	Function	Default
Bit 7	R/W	MAXPL[7]	0
Bit 6	R/W	MAXPL[6]	0
Bit 5	R/W	MAXPL[5]	0
Bit 4	R/W	MAXPL[4]	0
Bit 3	R/W	MAXPL[3]	0
Bit 2	R/W	MAXPL[2]	0
Bit 1	R/W	MAXPL[1]	0
Bit 0	R/W	MAXPL[0]	0

**Register 0x0A5, 0x1A5, 0x2A5, 0x3A5, 0x4A5, 0x5A5, 0x6A5, 0x7A5, 0x8A5,
0x9A5, 0xAA5, 0xBA5, 0xCA5, 0xDA5, 0xEA5, 0xFA5:
RXFP Maximum Packet Length MSB**

Bit	Type	Function	Default
Bit 7	R/W	MAXPL[15]	0
Bit 6	R/W	MAXPL[14]	0
Bit 5	R/W	MAXPL[13]	0
Bit 4	R/W	MAXPL[12]	0
Bit 3	R/W	MAXPL[11]	0
Bit 2	R/W	MAXPL[10]	1
Bit 1	R/W	MAXPL[9]	1
Bit 0	R/W	MAXPL[8]	0

MAXPL[15:0]:

The Maximum Packet Length (MAXPL[15:0]) bits are used to set the maximum packet length. Packets larger than this length are marked with an error. The packet length used here is defined as the number of bytes encapsulated into the POS frame, excluding byte stuffing and FCS bytes.

PRELIMINARY
S/UNI-16X155
DATASHEET
PMC-2000495

ISSUE 2

SATURN USER NETWORK INTERFACE (16X155)

PM5382
S/UNI-16X155

The maximum packet length supported by the RXFP is 65534 bytes (0xFFFF).

**Register 0x0A6, 0x1A6, 0x2A6, 0x3A6, 0x4A6, 0x5A6, 0x6A6, 0x7A6, 0x8A6,
0x9A6, 0xAA6, 0xBA6, 0xCA6, 0xDA6, 0xEA6, 0xFA6:
RXFP Receive Initiation Level**

Bit	Type	Function	Default
Bit 7	R/W	Reserved	0
Bit 6	R/W	Reserved	0
Bit 5	R/W	Reserved	0
Bit 4	R/W	Reserved	0
Bit 3	R/W	RIL[3]	1
Bit 2	R/W	RIL[2]	1
Bit 1	R/W	RIL[1]	0
Bit 0	R/W	RIL[0]	0

RIL[3:0]:

The Reception Initiation Level (RIL[3:0]) bits are used to set the minimum number of bytes that must be available in the FIFO before received packets can be written into it. RIL[3:0] is only used after a FIFO overrun has been detected and FIFO writes have been suspended. This avoids restarting the reception of data too quickly after an overrun condition. If the system does not cause any FIFO overrun, then this register will not be used. RIL[3:0] breaks the FIFO in 16 sections; for example a value of 0x4 correspond to a FIFO level of 64 bytes. The value of RIL must not be too large in order to prevent repetitive FIFO overruns.

Table 11: Receive Initiation Level Values

RIL[3:0]	FIFO Fill Level	RIL[3:0]	FIFO Fill Level
0000	0	1000	128
0001	16	1001	144
0010	32	1010	160
0011	48	1011	176
0100	64	1100	192
0101	80	1101	208
0110	96	1110	224
0111	112	1111	240

**Register 0x0A8, 0x1A8, 0x2A8, 0x3A8, 0x4A8, 0x5A8, 0x6A8, 0x7A8, 0x8A8,
0x9A8, 0xAA8, 0xBA8, 0xCA8, 0xDA8, 0xEA8, 0xFA8:
RXFP Receive Byte Count LSB**

Bit	Type	Function	Default
Bit 7	R	RBYTE[7]	X
Bit 6	R	RBYTE[6]	X
Bit 5	R	RBYTE[5]	X
Bit 4	R	RBYTE[4]	X
Bit 3	R	RBYTE[3]	X
Bit 2	R	RBYTE[2]	X
Bit 1	R	RBYTE[1]	X
Bit 0	R	RBYTE[0]	X

**Register 0x0A9, 0x1A9, 0x2A9, 0x3A9, 0x4A9, 0x5A9, 0x6A9, 0x7A9, 0x8A9,
0x9A9, 0xAA9, 0xBA9, 0xCA9, 0xDA9, 0xEA9, 0xFA9:
RXFP Receive Byte Count**

Bit	Type	Function	Default
Bit 7	R	RBYTE[15]	X
Bit 6	R	RBYTE[14]	X
Bit 5	R	RBYTE[13]	X
Bit 4	R	RBYTE[12]	X
Bit 3	R	RBYTE[11]	X
Bit 2	R	RBYTE[10]	X
Bit 1	R	RBYTE[9]	X
Bit 0	R	RBYTE[8]	X

**Register 0x0AA, 0x1AA, 0x2AA, 0x3AA, 0x4AA, 0x5AA, 0x6AA, 0x7AA,
0x8AA, 0x9AA, 0xAAA, 0xBAA, 0xCAA, 0xDAA, 0xEAA, 0xFAA:
RXFP Receive Byte Count**

Bit	Type	Function	Default
Bit 7	R	RBYTE[23]	X
Bit 6	R	RBYTE[22]	X
Bit 5	R	RBYTE[21]	X
Bit 4	R	RBYTE[20]	X
Bit 3	R	RBYTE[19]	X
Bit 2	R	RBYTE[18]	X
Bit 1	R	RBYTE[17]	X
Bit 0	R	RBYTE[16]	X

**Register 0x0AB, 0x1AB, 0x2AB, 0x3AB, 0x4AB, 0x5AB, 0x6AB, 0x7AB,
0x8AB, 0x9AB, 0xAAB, 0xBAB, 0xCAB, 0xDAB, 0xEAB, 0xFAB:
RXFP Receive Byte Count MSB**

Bit	Type	Function	Default
Bit 7	R	RBYTE[31]	X
Bit 6	R	RBYTE[30]	X
Bit 5	R	RBYTE[29]	X
Bit 4	R	RBYTE[28]	X
Bit 3	R	RBYTE[27]	X
Bit 2	R	RBYTE[26]	X
Bit 1	R	RBYTE[25]	X
Bit 0	R	RBYTE[24]	X

RBYTE[31:0]:

The RBYTE[31:0] bits indicate the number of bytes received during the last accumulation interval. A write to any one of the RXFP Receive Byte Counter registers loads the registers with the current counter value and resets the internal counter to zero.

The count can also be polled by writing to the S/UNI-16x155 Master Reset and Identity register (0x000). Writing to register address 0x000 loads all counter registers in all channels and APS links.

The count can also be polled by writing to the channel Master Interrupt Status register (offset 0x07). Writing to register offset 0x07 loads all counter registers in the RSOP, RLOP, RPOP, SPTB, SSTB, RXCP, TXCP, RXFP, and TXFP blocks of the channel.

**Register 0x0AC, 0x1AC, 0x2AC, 0x3AC, 0x4AC, 0x5AC, 0x6AC, 0x7AC,
0x8AC, 0x9AC, 0xAAC, 0xBAC, 0xCAC, 0xDAC, 0xEAC, 0xFAC:
RXFP Receive Frame Count LSB**

Bit	Type	Function	Default
Bit 7	R	RFRAME[7]	X
Bit 6	R	RFRAME[6]	X
Bit 5	R	RFRAME[5]	X
Bit 4	R	RFRAME[4]	X
Bit 3	R	RFRAME[3]	X
Bit 2	R	RFRAME[2]	X
Bit 1	R	RFRAME[1]	X
Bit 0	R	RFRAME[0]	X

**Register 0x0AD, 0x1AD, 0x2AD, 0x3AD, 0x4AD, 0x5AD, 0x6AD, 0x7AD,
0x8AD, 0x9AD, 0xAAD, 0xBAD, 0xCAD, 0xDAD, 0xEAD, 0xFAD:
RXFP Receive Frame Count**

Bit	Type	Function	Default
Bit 7	R	RFRAME[15]	X
Bit 6	R	RFRAME[14]	X
Bit 5	R	RFRAME[13]	X
Bit 4	R	RFRAME[12]	X
Bit 3	R	RFRAME[11]	X
Bit 2	R	RFRAME[10]	X
Bit 1	R	RFRAME[9]	X
Bit 0	R	RFRAME[8]	X

**Register 0x0AE, 0x1AE, 0x2AE, 0x3AE, 0x4AE, 0x5AE, 0x6AE, 0x7AE,
0x8AE, 0x9AE, 0xAAE, 0xBAE, 0xCAE, 0xDAE, 0xEAЕ, 0xFAЕ:
RXFP Receive Frame Count MSB**

Bit	Type	Function	Default
Bit 7	R	RFRAME[23]	X
Bit 6	R	RFRAME[22]	X
Bit 5	R	RFRAME[21]	X
Bit 4	R	RFRAME[20]	X
Bit 3	R	RFRAME[19]	X
Bit 2	R	RFRAME[18]	X
Bit 1	R	RFRAME[17]	X
Bit 0	R	RFRAME[16]	X

RFRAME[23:0]:

The RFRAME[23:0] bits indicate the number of received POS frames during the last accumulation interval. A write to any one of the RXFP Receive Frame Counter registers loads the registers with the current counter value and resets the internal counter to zero. To determine the number of packets that have been written into the FIFO, the RCNT registers may be used.

The count can also be polled by writing to the S/UNI-16x155 Master Reset and Identity register (0x000). Writing to register address 0x000 loads all counter registers in all channels and APS links.

The count can also be polled by writing to the channel Master Interrupt Status register (offset 0x07). Writing to register offset 0x07 loads all counter registers in the RSOP, RLOP, RPOP, SPTB, SSTB, RXCP, TXCP, RXFP, and TXFP blocks of the channel.

**Register 0x0AF, 0x1AF, 0x2AF, 0x3AF, 0x4AF, 0x5AF, 0x6AF, 0x7AF, 0x8AF,
0x9AF, 0xAAF, 0xBAF, 0xCAF, 0xDAF, 0xEAFA, 0xF0F:**
RXFP Receive Aborted Frame Count LSB

Bit	Type	Function	Default
Bit 7	R	RABRF[7]	X
Bit 6	R	RABRF[6]	X
Bit 5	R	RABRF[5]	X
Bit 4	R	RABRF[4]	X
Bit 3	R	RABRF[3]	X
Bit 2	R	RABRF[2]	X
Bit 1	R	RABRF[1]	X
Bit 0	R	RABRF[0]	X

**Register 0x0B0, 0x1B0, 0x2B0, 0x3B0, 0x4B0, 0x5B0, 0x6B0, 0x7B0, 0x8B0,
0x9B0, 0xAB0, 0xBB0, 0xCB0, 0xDB0, 0xEB0, 0xFB0:**
RXFP Receive Aborted Frame Count MSB

Bit	Type	Function	Default
Bit 7	R	RABRF[15]	X
Bit 6	R	RABRF[14]	X
Bit 5	R	RABRF[13]	X
Bit 4	R	RABRF[12]	X
Bit 3	R	RABRF[11]	X
Bit 2	R	RABRF[10]	X
Bit 1	R	RABRF[9]	X
Bit 0	R	RABRF[8]	X

RABRF[15:0]:

The RABRF[15:0] bits indicate the number of aborted POS frames received during the last accumulation interval. A write to any one of the RXFP Receive Aborted Frame Counter registers loads the registers with the current counter value and resets the internal counter to zero.

The count can also be polled by writing to the S/UNI-16x155 Master Reset and Identity register (0x000). Writing to register address 0x000 loads all counter registers in all channels and APS links.

The count can also be polled by writing to the channel Master Interrupt Status register (offset 0x07). Writing to register offset 0x07 loads all counter registers in the RSOP, RLOP, RPOP, SPTB, SSTB, RXCP, TXCP, RXFP, and TXFP blocks of the channel.

**Register 0x0B1, 0x1B1, 0x2B1, 0x3B1, 0x4B1, 0x5B1, 0x6B1, 0x7B1, 0x8B1,
0x9B1, 0xAB1, 0xBB1, 0xCB1, 0xDB1, 0xEB1, 0xFB1:
RXFP Receive FCS Error Frame Count LSB**

Bit	Type	Function	Default
Bit 7	R	RFCSEF[7]	X
Bit 6	R	RFCSEF[6]	X
Bit 5	R	RFCSEF[5]	X
Bit 4	R	RFCSEF[4]	X
Bit 3	R	RFCSEF[3]	X
Bit 2	R	RFCSEF[2]	X
Bit 1	R	RFCSEF[1]	X
Bit 0	R	RFCSEF[0]	X

**Register 0x0B2, 0x1B2, 0x2B2, 0x3B2, 0x4B2, 0x5B2, 0x6B2, 0x7B2, 0x8B2,
0x9B2, 0xAB2, 0xBB2, 0xCB2, 0xDB2, 0xEB2, 0xFB2:
RXFP Receive FCS Error Frame Count MSB**

Bit	Type	Function	Default
Bit 7	R	RFCSEF[15]	X
Bit 6	R	RFCSEF[14]	X
Bit 5	R	RFCSEF[13]	X
Bit 4	R	RFCSEF[12]	X
Bit 3	R	RFCSEF[11]	X
Bit 2	R	RFCSEF[10]	X
Bit 1	R	RFCSEF[9]	X
Bit 0	R	RFCSEF[8]	X

RFCSEF[15:0]:

The RFCSEF[15:0] bits indicate the number of POS frames received with an FCS error during the last accumulation interval. A write to any one of the RXFP Receive FCS Error Frame Counter registers loads the registers with the current counter value and resets the internal counter to zero.

The count can also be polled by writing to the S/UNI-16x155 Master Reset and Identity register (0x000). Writing to register address 0x000 loads all counter registers in all channels and APS links.

The count can also be polled by writing to the channel Master Interrupt Status register (offset 0x07). Writing to register offset 0x07 loads all counter registers in the RSOP, RLOP, RPOP, SPTB, SSTB, RXCP, TXCP, RXFP, and TXFP blocks of the channel.

**Register 0x0B3, 0x1B3, 0x2B3, 0x3B3, 0x4B3, 0x5B3, 0x6B3, 0x7B3, 0x8B3,
0x9B3, 0xAB3, 0xBB3, 0xCB3, 0xDB3, 0xEB3, 0xFB3:
RXFP Receive Minimum Length Error Frame Count LSB**

Bit	Type	Function	Default
Bit 7	R	RMINLF[7]	X
Bit 6	R	RMINLF[6]	X
Bit 5	R	RMINLF[5]	X
Bit 4	R	RMINLF[4]	X
Bit 3	R	RMINLF[3]	X
Bit 2	R	RMINLF[2]	X
Bit 1	R	RMINLF[1]	X
Bit 0	R	RMINLF[0]	X

**Register 0x0B4, 0x1B4, 0x2B4, 0x3B4, 0x4B4, 0x5B4, 0x6B4, 0x7B4, 0x8B4,
0x9B4, 0xAB4, 0xBB4, 0xCB4, 0xDB4, 0xEB4, 0xFB4:
RXFP Receive Minimum Length Error Frame Counter MSB**

Bit	Type	Function	Default
Bit 7	R	RMINLF[15]	X
Bit 6	R	RMINLF[14]	X
Bit 5	R	RMINLF[13]	X
Bit 4	R	RMINLF[12]	X
Bit 3	R	RMINLF[11]	X
Bit 2	R	RMINLF[10]	X
Bit 1	R	RMINLF[9]	X
Bit 0	R	RMINLF[8]	X

RMINLF[15:0]:

The RMINLF[15:0] bits indicate the number of minimum packet length POS frames received during the last accumulation interval. A write to any one of the RXFP Minimum Length Error Frame Counter registers loads the registers with the current counter value and resets the internal counter to zero.

The count can also be polled by writing to the S/UNI-16x155 Master Reset and Identity register (0x000). Writing to register address 0x000 loads all counter registers in all channels and APS links.

The count can also be polled by writing to the channel Master Interrupt Status register (offset 0x07). Writing to register offset 0x07 loads all counter registers in the RSOP, RLOP, RPOP, SPTB, SSTB, RXCP, TXCP, RXFP, and TXFP blocks of the channel.

**Register 0x0B5, 0x1B5, 0x2B5, 0x3B5, 0x4B5, 0x5B5, 0x6B5, 0x7B5, 0x8B5,
0x9B5, 0xAB5, 0xBB5, 0xCB5, 0xDB5, 0xEB5, 0xFB5:
RXFP Receive Maximum Length Error Frame Counter LSB**

Bit	Type	Function	Default
Bit 7	R	RMAXLF[7]	X
Bit 6	R	RMAXLF[6]	X
Bit 5	R	RMAXLF[5]	X
Bit 4	R	RMAXLF[4]	X
Bit 3	R	RMAXLF[3]	X
Bit 2	R	RMAXLF[2]	X
Bit 1	R	RMAXLF[1]	X
Bit 0	R	RMAXLF[0]	X

**Register 0x0B6, 0x1B6, 0x2B6, 0x3B6, 0x4B6, 0x5B6, 0x6B6, 0x7B6, 0x8B6,
0x9B6, 0xAB6, 0xBB6, 0xCB6, 0xDB6, 0xEB6, 0xFB6:
RXFP Receive Maximum Length Error Frame Counter MSB**

Bit	Type	Function	Default
Bit 7	R	RMAXLF[15]	X
Bit 6	R	RMAXLF[14]	X
Bit 5	R	RMAXLF[13]	X
Bit 4	R	RMAXLF[12]	X
Bit 3	R	RMAXLF[11]	X
Bit 2	R	RMAXLF[10]	X
Bit 1	R	RMAXLF[9]	X
Bit 0	R	RMAXLF[8]	X

RMAXLF[15:0]:

The RMAXLF[15:0] bits indicate the number of POS frames exceeding the maximum packet length that were received during the last accumulation interval. A write to any one of the RXFP Receive Maximum Length Error Frame Counter registers loads the registers with the current counter value and resets the internal counter to zero.

The count can also be polled by writing to the S/UNI-16x155 Master Reset and Identity register (0x000). Writing to register address 0x000 loads all counter registers in all channels and APS links.

The count can also be polled by writing to the channel Master Interrupt Status register (offset 0x07). Writing to register offset 0x07 loads all counter registers in the RSOP, RLOP, RPOP, SPTB, SSTB, RXCP, TXCP, RXFP, and TXFP blocks of the channel.

**Register 0x0C0, 0x1C0, 0x2C0, 0x3C0, 0x4C0, 0x5C0, 0x6C0, 0x7C0, 0x8C0,
0x9C0, 0xAC0, 0xBC0, 0xCC0, 0xDC0, 0xEC0, 0xFC0:
TXFP Interrupt Enable/Status**

Bit	Type	Function	Default
Bit 7	R/W	Reserved	0
Bit 6		Unused	X
Bit 5	R/W	FUDRE	0
Bit 4	R	FUDRI	X
Bit 3	R/W	Reserved	0
Bit 2		Unused	X
Bit 1	R/W	Reserved	0
Bit 0		Unused	X

FUDRI:

The FUDRI bit is set high when the channel buffer underruns while reading a packet data from the buffer. This bit is reset immediately after a read to this register.

FUDRE:

The FUDRE bit enables the generation of an interrupt due to a channel buffer underrun. When FUDRE is set to logic one, the interrupt is enabled and cause FUDRI and the output INTB to be asserted. When set to logic zero, FUDRI will be asserted, but not INTB.

Reserved:

The reserved bits must be programmed to logic zero for proper operation.

**Register 0x0C1, 0x1C1, 0x2C1, 0x3C1, 0x4C1, 0x5C1, 0x6C1, 0x7C1, 0x8C1,
0x9C1, 0xAC1, 0xBC1, 0xCC1, 0xDC1, 0xEC1, 0xFC1:
TXFP Configuration**

Bit	Type	Function	Default
Bit 7	R/W	XOFF	0
Bit 6	R/W	Reserved	0
Bit 5	R/W	FCSERR	0
Bit 4	R/W	FCSSEL[1]	1
Bit 3	R/W	FCSSEL[0]	0
Bit 2	R/W	Reserved	0
Bit 1	R/W	DSCR	1
Bit 0	R/W	FIFORST	0

FIFORST:

The FIFORST bit is used to reset the 256-byte transmit channel buffer. When FIFORST is set to logic zero, the channel buffer operates normally. When FIFORST is set to logic one, the buffer is emptied of all octets (including the current packet being transmitted) and ignores writes. The buffer remains empty and continues to ignore writes until a logic zero is written to FIFORST. Flags are transmitted until a subsequent packet is written to the FIFO.

The FIFORST must be set high before the per-channel FIFO reset in the TUL3 is asserted. The FIFORST must be set low after the per-channel FIFO reset in the TUL3 is deasserted.

DSCR:

The DSCR bit controls the scrambling of the POS frames. When DSCR is a logic one, scrambling is enabled. When DSCR is a logic zero, payload scrambling is disabled.

FCSSEL[1:0]:

The Frame Control Sequence select (FCSSEL[1:0]) bits allow to control the FCS calculation according to the table below. The FCS is calculated over the whole packet data, before byte stuffing and scrambling.

FCSSEL[1:0]	FCS Operation
00	No FCS inserted
01	CRC-CCITT (2 bytes)
10	CRC-32 (4 bytes)
11	Reserved

FCSERR:

The FCSERR bit controls the insertion of FCS errors for diagnostic purposes. When FCSERR is set to logic one, if FCS insertion is enabled, the FCS octets are inverted prior to insertion in the POS frame. When FCSERR is set low, the FCS is inserted normally.

XOFF:

The XOFF serves as a transmission enable bit. When XOFF is set to logic zero, POS frames are transmitted normally. When XOFF is set to logic one, the current frame being transmitted is completed and then POS frame transmission is suspended. When XOFF is asserted the FIFO still accepts data and can overflow. XOFF is provided to facilitate system debugging rather than flow control, which is better achieved using inter-packet gapping.

**Register 0x0C2, 0x1C2, 0x2C2, 0x3C2, 0x4C2, 0x5C2, 0x6C2, 0x7C2, 0x8C2,
0x9C2, 0xAC2, 0xBC2, 0xCC2, 0xDC2, 0xEC2, 0xFC2:
TXFP Control**

Bit	Type	Function	Default
Bit 7	R/W	IPGAP[3]	0
Bit 6	R/W	IPGAP[2]	0
Bit 5	R/W	IPGAP[1]	1
Bit 4	R/W	IPGAP[0]	0
Bit 3	R/W	TIL[3]	0
Bit 2	R/W	TIL[2]	1
Bit 1	R/W	TIL[1]	0
Bit 0	R/W	TIL[0]	0

TIL[3:0]:

The Transmit Initiation Level (TIL[3:0]) bits are used to determine when to initiate a POS frame transmission. After the channel buffer is emptied, data transmission starts only when either there is a complete packet or that the number of bytes stored in the channel buffer equal the value of TIL[3:0] times 16.

Once initiated, the transmission will continue until the packet is transmitted or an underrun occurs. Before starting another packet, a complete packet must be in the channel buffer or the buffer fill level must exceed the level specified by TIL[3:0].

Table 12: Transmit Initiation Level Values

TIL[3:0]	FIFO Fill Level
0000	0
0001	16
0010	32
0011	48
0100	64
0101	80
0110	96
0111	112

TIL[3:0]	FIFO Fill Level
1000	128
1001	144
1010	160
1011	176
1100	192
1101	208
1110	224
1111	240

IPGAP[3:0]:

The Inter Packet Gaping (IPGAP[3:0]) bits are used to program the number of Flag Sequence characters inserted between each POS Frame. The programmed value is encoded as indicated in Table 13.

Table 13: Inter Packet Gaping Values

IPGAP[3:0]	Number of Flag
0000	1
0001	2
0010	4
0011	8
0100	16
0101	32
0110	64
0111	128

IPGAP[3:0]	Number of Flag
1000	256
1001	512
1010	1024
1011	2048
1100	4096
1101	8192
1110	16384
1111	32768

**Register 0x0C5, 0x1C5, 0x2C5, 0x3C5, 0x4C5, 0x5C5, 0x6C5, 0x7C5, 0x8C5,
0x9C5, 0xAC5, 0xBC5, 0xCC5, 0xDC5, 0xEC5, 0xFC5:
TXFP Transmit Byte Count LSB**

Bit	Type	Function	Default
Bit 7	R	TBYTE[7]	X
Bit 6	R	TBYTE[6]	X
Bit 5	R	TBYTE[5]	X
Bit 4	R	TBYTE[4]	X
Bit 3	R	TBYTE[3]	X
Bit 2	R	TBYTE[2]	X
Bit 1	R	TBYTE[1]	X
Bit 0	R	TBYTE[0]	X

**Register 0x0C6, 0x1C6, 0x2C6, 0x3C6, 0x4C6, 0x5C6, 0x6C6, 0x7C6, 0x8C6,
0x9C6, 0xAC6, 0xBC6, 0xCC6, 0xDC6, 0xEC6, 0xFC6:
TXFP Transmit Byte Count**

Bit	Type	Function	Default
Bit 7	R	TBYTE[15]	X
Bit 6	R	TBYTE[14]	X
Bit 5	R	TBYTE[13]	X
Bit 4	R	TBYTE[12]	X
Bit 3	R	TBYTE[11]	X
Bit 2	R	TBYTE[10]	X
Bit 1	R	TBYTE[9]	X
Bit 0	R	TBYTE[8]	X

**Register 0x0C7, 0x1C7, 0x2C7, 0x3C7, 0x4C7, 0x5C7, 0x6C7, 0x7C7, 0x8C7,
0x9C7, 0xAC7, 0xBC7, 0xCC7, 0xDC7, 0xEC7, 0xFC7:
TXFP Transmit Byte Count**

Bit	Type	Function	Default
Bit 7	R	TBYTE[23]	X
Bit 6	R	TBYTE[22]	X
Bit 5	R	TBYTE[21]	X
Bit 4	R	TBYTE[20]	X
Bit 3	R	TBYTE[19]	X
Bit 2	R	TBYTE[18]	X
Bit 1	R	TBYTE[17]	X
Bit 0	R	TBYTE[16]	X

**Register 0x0C8, 0x1C8, 0x2C8, 0x3C8, 0x4C8, 0x5C8, 0x6C8, 0x7C8, 0x8C8,
0x9C8, 0xAC8, 0xBC8, 0xCC8, 0xDC8, 0xEC8, 0xFC8:
TXFP Transmit Byte Count MSB**

Bit	Type	Function	Default
Bit 7	R	TBYTE[31]	X
Bit 6	R	TBYTE[30]	X
Bit 5	R	TBYTE[29]	X
Bit 4	R	TBYTE[28]	X
Bit 3	R	TBYTE[27]	X
Bit 2	R	TBYTE[26]	X
Bit 1	R	TBYTE[25]	X
Bit 0	R	TBYTE[24]	X

TBYTE[31:0]:

The TBYTE[31:0] bits indicate the number of bytes read from the transmit FIFO and transmitted during the last accumulation interval. This counter does not count bytes within aborted frames. A write to any one of the TXFP Transmit Byte Counter registers loads the registers with the current counter value and resets the internal counter to zero.

The count can also be polled by writing to the S/UNI-16x155 Master Reset and Identity register (0x000). Writing to register address 0x000 loads all counter registers in all channels and APS links.

The count can also be polled by writing to the channel Master Interrupt Status register (offset 0x07). Writing to register offset 0x07 loads all counter registers in the RSOP, RLOP, RPOP, SPTB, SSTB, RXCP, TXCP, RXFP, and TXFP blocks of the channel.

**Register 0x0C9, 0x1C9, 0x2C9, 0x3C9, 0x4C9, 0x5C9, 0x6C9, 0x7C9, 0x8C9,
0x9C9, 0xAC9, 0xBC9, 0xCC9, 0xDC9, 0xEC9, 0xFC9:
TXFP Transmit Frame Count LSB**

Bit	Type	Function	Default
Bit 7	R	TFRAME[7]	X
Bit 6	R	TFRAME[6]	X
Bit 5	R	TFRAME[5]	X
Bit 4	R	TFRAME[4]	X
Bit 3	R	TFRAME[3]	X
Bit 2	R	TFRAME[2]	X
Bit 1	R	TFRAME[1]	X
Bit 0	R	TFRAME[0]	X

**Register 0x0CA, 0x1CA, 0x2CA, 0x3CA, 0x4CA, 0x5CA, 0x6CA, 0x7CA,
0x8CA, 0x9CA, 0xACA, 0xBCA, 0xCCA, 0xDCA, 0xECA, 0xFCA:
TXFP Transmit Frame Count**

Bit	Type	Function	Default
Bit 7	R	TFRAME[15]	X
Bit 6	R	TFRAME[14]	X
Bit 5	R	TFRAME[13]	X
Bit 4	R	TFRAME[12]	X
Bit 3	R	TFRAME[11]	X
Bit 2	R	TFRAME[10]	X
Bit 1	R	TFRAME[9]	X
Bit 0	R	TFRAME[8]	X

**Register 0x0CB, 0x1CB, 0x2CB, 0x3CB, 0x4CB, 0x5CB, 0x6CB, 0x7CB,
0x8CB, 0x9CB, 0xACB, 0xBCB, 0xCCB, 0xDCB, 0xECB, 0xFCB:
TXFP Transmit Frame Count MSB**

Bit	Type	Function	Default
Bit 7	R	TFRAME[23]	X
Bit 6	R	TFRAME[22]	X
Bit 5	R	TFRAME[21]	X
Bit 4	R	TFRAME[20]	X
Bit 3	R	TFRAME[19]	X
Bit 2	R	TFRAME[18]	X
Bit 1	R	TFRAME[17]	X
Bit 0	R	TFRAME[16]	X

TFRAME[23:0]:

The TFRAME[23:0] bits indicate the number of POS frames read from the transmit FIFO and inserted into the transmission stream during the last accumulation interval. This counter does not count aborted frames. A write to any one of the TXFP Transmit Frame Counter registers loads the registers with the current counter value and resets the internal counter to zero.

The count can also be polled by writing to the S/UNI-16x155 Master Reset and Identity register (0x000). Writing to register address 0x000 loads all counter registers in all channels and APS links.

The count can also be polled by writing to the channel Master Interrupt Status register (offset 0x07). Writing to register offset 0x07 loads all counter registers in the RSOP, RLOP, RPOP, SPTB, SSTB, RXCP, TXCP, RXFP, and TXFP blocks of the channel.

**Register 0x0CC, 0x1CC, 0x2CC, 0x3CC, 0x4CC, 0x5CC, 0x6CC, 0x7CC,
0x8CC, 0x9CC, 0xACC, 0xBCC, 0xCCC, 0xDCC, 0xECC, 0xFCC:
TXFP Transmit User Aborted Frame Count LSB**

Bit	Type	Function	Default
Bit 7	R	TUSRABF[7]	X
Bit 6	R	TUSRABF[6]	X
Bit 5	R	TUSRABF[5]	X
Bit 4	R	TUSRABF[4]	X
Bit 3	R	TUSRABF[3]	X
Bit 2	R	TUSRABF[2]	X
Bit 1	R	TUSRABF[1]	X
Bit 0	R	TUSRABF[0]	X

**Register 0x0CD, 0x1CD, 0x2CD, 0x3CD, 0x4CD, 0x5CD, 0x6CD, 0x7CD,
0x8CD, 0x9CD, 0xACD, 0xBCD, 0xCCD, 0xDCD, 0xECD, 0xFCD:
TXFP Transmit User Aborted Frame Count MSB**

Bit	Type	Function	Default
Bit 7	R	TUSRABF[15]	X
Bit 6	R	TUSRABF[14]	X
Bit 5	R	TUSRABF[13]	X
Bit 4	R	TUSRABF[12]	X
Bit 3	R	TUSRABF[11]	X
Bit 2	R	TUSRABF[10]	X
Bit 1	R	TUSRABF[9]	X
Bit 0	R	TUSRABF[8]	X

TUSRABF[15:0]:

The TUSRABF[15:0] bits indicate the number of user aborted POS frames read from the transmit FIFO and inserted into the transmission stream during the last accumulation interval. User can abort frames by asserting TERR. A write to any one of the TXFP Transmit User Aborted Frame Counter registers

loads the registers with the current counter value and resets the internal counter to zero.

The count can also be polled by writing to the S/UNI-16x155 Master Reset and Identity register (0x000). Writing to register address 0x000 loads all counter registers in all channels and APS links.

The count can also be polled by writing to the channel Master Interrupt Status register (offset 0x07). Writing to register offset 0x07 loads all counter registers in the RSOP, RLOP, RPOP, SPTB, SSTB, RXCP, TXCP, RXFP, and TXFP blocks of the channel.

When the TUL3 FIFO is overrun, the corrupted packet is marked as errored. When this errored packet is transmitted with the HDLC abort sequence, the TUSRABF count in the TXFP will be incremented. The TXFP cannot distinguish between a user aborted packet and a packet aborted by the TUL3.

**Register 0x0CE, 0x1CE, 0x2CE, 0x3CE, 0x4CE, 0x5CE, 0x6CE, 0x7CE,
0x8CE, 0x9CE, 0xACE, 0xBCE, 0xCCE, 0xDCE, 0xECE, 0xFCE:
TXFP Transmit Underrun/Error Aborted Frame Count LSB**

Bit	Type	Function	Default
Bit 7	R	TFERABF[7]	X
Bit 6	R	TFERABF[6]	X
Bit 5	R	TFERABF[5]	X
Bit 4	R	TFERABF[4]	X
Bit 3	R	TFERABF[3]	X
Bit 2	R	TFERABF[2]	X
Bit 1	R	TFERABF[1]	X
Bit 0	R	TFERABF[0]	X

**Register 0x0CF, 0x1CF, 0x2CF, 0x3CF, 0x4CF, 0x5CF, 0x6CF, 0x7CF, 0x8CF,
0x9CF, 0xACF, 0xBCF, 0xCCF, 0xDCF, 0xECF, 0xFCF:
TXFP Transmit Underrun/Error Aborted Frame Count MSB**

Bit	Type	Function	Default
Bit 7	R	TFERABF[15]	X
Bit 6	R	TFERABF[14]	X
Bit 5	R	TFERABF[13]	X
Bit 4	R	TFERABF[12]	X
Bit 3	R	TFERABF[11]	X
Bit 2	R	TFERABF[10]	X
Bit 1	R	TFERABF[9]	X
Bit 0	R	TFERABF[8]	X

TRERABF[15:0]:

The TFERABF[15:0] bits indicate the number of FIFO underrun error aborted POS frames read from the transmit FIFO and inserted into the transmission stream during the last accumulation interval. FIFO underruns errors are caused when the FIFO runs empty and the last byte read was not an end of packet or also when the FIFO overruns and corrupts the end of packet/start of

packet sequence (example: when another RSOP is high when expecting an REOP). This is considered a system error and should not occur when the system works normally. A write to any one of the TXFP Transmit User Aborted Frame Counter registers loads the registers with the current counter value and resets the internal counter to zero.

The count can also be polled by writing to the S/UNI-16x155 Master Reset and Identity register (0x000). Writing to register address 0x000 loads all counter registers in all channels and APS links.

The count can also be polled by writing to the channel Master Interrupt Status register (offset 0x07). Writing to register offset 0x07 loads all counter registers in the RSOP, RLOP, RPOP, SPTB, SSTB, RXCP, TXCP, RXFP, and TXFP blocks of the channel.

**Register 0x0D0, 0x1D0, 0x2D0, 0x3D0, 0x4D0, 0x5D0, 0x6D0, 0x7D0, 0x8D0,
0x9D0, 0xAD0, 0xBD0, 0xCD0, 0xDD0, 0xED0, 0xFD0:**
WANS Configuration

Bit	Type	Function	Default
Bit 7	R/W	Reserved	0
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3	R/W	FORCEREAC	0
Bit 2	R/W	AUTOREAC	0
Bit 1	R/W	INTEN	0
Bit 0	R/W	PHACOMPEN	0

PHACOMPEN:

The Phase Comparison Enable (PHACOMPEN) bit is used to enable the phase comparison process. Setting this bit to a logic one will enable the phase comparison process. When set low, the phase and reference period counters are kept in reset state, further disabling the WANS process

INTEN:

The Interrupt Enable (INTEN) bit controls the generation of the interrupt signal. When set high, this bit allows the generation of an interrupt signal at the beginning of the Phase Detector averaging period. Setting this bit to logic zero disable the generation of the interrupts.

AUTOREAC:

The Auto Reacquisition Mode Select (AUTOREAC) bit can be used to set the WANS to automatic phase reacquisition mode. When operating in this mode, the WANS will automatically align the phase sampling point toward the middle of the Phase Counter period upon detection of two consecutive Phase Sample located on each side of the Phase Counter wrap around valueSetting this bit to logic 1 enables the automatic reacquisition mode.

FORCEREAC:

The Force Phase Reacquisition (FORCEREAC) bit can be used to force a phase reacquisition of the Phase Detector. A logic zero to logic one transition

on this bit triggers a phase reacquisition sequence of the Phase Detector. Setting this bit to logic zero allows the Phase detector to operate normally.

Reserved:

The reserved bits must be programmed to logic zero for proper operation.

**Register 0x0D1, 0x1D1, 0x2D1, 0x3D1, 0x4D1, 0x5D1, 0x6D1, 0x7D1, 0x8D1,
0x9D1, 0xAD1, 0xBD1, 0xCD1, 0xDD1, 0xED1, 0xFD1:
WANS Interrupt and Status**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3		Unused	X
Bit 2		Unused	X
Bit 1	R	RPHALGN	X
Bit 0	R	TIMI	X

TIMI:

The Timer Interrupt (TIMI) bit indicates a Timer Interrupt condition. This bit will be raised at the beginning of the Phase Detector averaging period. In addition to indicating the interrupt status, this bit can also be polled to synchronize read access to the WANS output register. This interrupt can be masked using the INTEN bit of the configuration register. A read access to the Interrupt & Status Register resets the value of this bit.

RPHALGN:

The Reference Phase Alignment (RPHALNG) bit indicates a Reference Phase Alignment event. In normal operating mode, this bit remains to logic zero. Upon the occurrence of a Reference Phase Alignment, this bit is set to logic one, indicating that the phase averaging process was aborted and that the value of the Phase Word register is frozen to the previous valid value. This bit is reset low after the completion of a valid phase averaging cycle.

**Register 0x0D2, 0x1D2, 0x2D2, 0x3D2, 0x4D2, 0x5D2, 0x6D2, 0x7D2, 0x8D2,
0x9D2, 0xAD2, 0xBD2, 0xCD2, 0xDD2, 0xED2, 0xFD2:
WANS Phase Word LSB**

Bit	Type	Function	Default
Bit 7	R	PHAWORD[7]	X
Bit 6	R	PHAWORD[6]	X
Bit 5	R	PHAWORD[5]	X
Bit 4	R	PHAWORD[4]	X
Bit 3	R	PHAWORD[3]	X
Bit 2	R	PHAWORD[2]	X
Bit 1	R	PHAWORD[1]	X
Bit 0	R	PHAWORD[0]	X

**Register 0x0D3, 0x1D3, 0x2D3, 0x3D3, 0x4D3, 0x5D3, 0x6D3, 0x7D3, 0x8D3,
0x9D3, 0xAD3, 0xBD3, 0xCD3, 0xDD3, 0xED3, 0xFD3:
WANS Phase Word**

Bit	Type	Function	Default
Bit 7	R	PHAWORD[15]	X
Bit 6	R	PHAWORD[14]	X
Bit 5	R	PHAWORD[13]	X
Bit 4	R	PHAWORD[12]	X
Bit 3	R	PHAWORD[11]	X
Bit 2	R	PHAWORD[10]	X
Bit 1	R	PHAWORD[9]	X
Bit 0	R	PHAWORD[8]	X

**Register 0x0D4, 0x1D4, 0x2D4, 0x3D4, 0x4D4, 0x5D4, 0x6D4, 0x7D4, 0x8D4,
0x9D4, 0xAD4, 0xBD4, 0xCD4, 0xDD4, 0xED4, 0xFD4:
WANS Phase Word**

Bit	Type	Function	Default
Bit 7	R	PHAWORD[23]	X
Bit 6	R	PHAWORD[22]	X
Bit 5	R	PHAWORD[21]	X
Bit 4	R	PHAWORD[20]	X
Bit 3	R	PHAWORD[19]	X
Bit 2	R	PHAWORD[18]	X
Bit 1	R	PHAWORD[17]	X
Bit 0	R	PHAWORD[16]	X

**Register 0x0D5, 0x1D5, 0x2D5, 0x3D5, 0x4D5, 0x5D5, 0x6D5, 0x7D5, 0x8D5,
0x9D5, 0xAD5, 0xBD5, 0xCD5, 0xDD5, 0xED5, 0xFD5:
WANS Phase Word MSB**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6	R	PHAWORD[30]	X
Bit 5	R	PHAWORD[29]	X
Bit 4	R	PHAWORD[28]	X
Bit 3	R	PHAWORD[27]	X
Bit 2	R	PHAWORD[26]	X
Bit 1	R	PHAWORD[25]	X
Bit 0	R	PHAWORD[24]	X

PHAWORD[30:0]:

The Phase Word (PHAWORD[30:0]) bits are the output bus of the Phase Detector. This bus outputs the result of the Phase Count Averaging function. Depending on the number of samples included in the averaging, from 0 to 15 of the LSB(s) of the PHAWORD bus may represent the fractional part of the average value while the 16 following bits hold the integer part. This value can

PRELIMINARY
S/UNI-16X155
DATASHEET
PMC-2000495

ISSUE 2

SATURN USER NETWORK INTERFACE (16X155)

PM5382
S/UNI-16X155

be used to externally implement in software the PLL filtering function and bypass the Digital Loop Filter block.

**Register 0x0D9, 0x1D9, 0x2D9, 0x3D9, 0x4D9, 0x5D9, 0x6D9, 0x7D9, 0x8D9,
0x9D9, 0xAD9, 0xBD9, 0xCD9, 0xDD9, 0xED9, 0xFD9:
WANS Reference Period LSB**

Bit	Type	Function	Default
Bit 7	R/W	REFPER[7]	0
Bit 6	R/W	REFPER[6]	0
Bit 5	R/W	REFPER[5]	0
Bit 4	R/W	REFPER[4]	0
Bit 3	R/W	REFPER[3]	0
Bit 2	R/W	REFPER[2]	0
Bit 1	R/W	REFPER[1]	0
Bit 0	R/W	REFPER[0]	0

**Register 0x0DA, 0x1DA, 0x2DA, 0x3DA, 0x4DA, 0x5DA, 0x6DA, 0x7DA,
0x8DA, 0x9DA, 0xADA, 0xBDA, 0xCDA, 0-DDA, 0EDA, 0FDA:
WANS Reference Period MSB**

Bit	Type	Function	Default
Bit 7	R/W	REFPER[15]	0
Bit 6	R/W	REFPER[14]	0
Bit 5	R/W	REFPER[13]	0
Bit 4	R/W	REFPER[12]	0
Bit 3	R/W	REFPER[11]	0
Bit 2	R/W	REFPER[10]	0
Bit 1	R/W	REFPER[9]	0
Bit 0	R/W	REFPER[8]	0

REFPER[15:0]:

The Reference Period REFPER[15:0] bits are used to program the timing reference period of the Phase Detector. These bits are used to set the end of count of the Reference Period Counter. The Reference Period Counter is reset on the next clock cycle following the detection of its end of count. The Reference Period Counter counts (Nref) is equal to the REFPER value plus 1.

**Register 0x0DB, 0x1DB, 0x2DB, 0x3DB, 0x4DB, 0x5DB, 0x6DB, 0x7DB,
0x8DB, 0x9DB, 0xADB, 0xBDB, 0xCDB, 0xDDB, 0xEDB, 0xFDB:
WANS Phase Counter Period LSB**

Bit	Type	Function	Default
Bit 7	R/W	PHCNPTR[7]	0
Bit 6	R/W	PHCNPTR[6]	0
Bit 5	R/W	PHCNPTR[5]	0
Bit 4	R/W	PHCNPTR[4]	0
Bit 3	R/W	PHCNPTR[3]	0
Bit 2	R/W	PHCNPTR[2]	0
Bit 1	R/W	PHCNPTR[1]	0
Bit 0	R/W	PHCNPTR[0]	0

**Register 0x0DC, 0x1DC, 0x2DC, 0x3DC, 0x4DC, 0x5DC, 0x6DC, 0x7DC,
0x8DC, 0x9DC, 0xADC, 0xBDC, 0xCDC, 0xDDC, 0xEDC, 0xFDC:
WANS Phase Counter Period MSB**

Bit	Type	Function	Default
Bit 7	R/W	PHCNPTR[15]	0
Bit 6	R/W	PHCNPTR[14]	0
Bit 5	R/W	PHCNPTR[13]	0
Bit 4	R/W	PHCNPTR[12]	0
Bit 3	R/W	PHCNPTR[11]	0
Bit 2	R/W	PHCNPTR[10]	0
Bit 1	R/W	PHCNPTR[9]	0
Bit 0	R/W	PHCNPTR[8]	0

PHCNPTR[15:0]:

The Phase Counter Period (PHCNPTR15:0) bits are used to program the Phase Counter period of the Phase Detector. These bits are used to set the end of count of the Phase Counter. The Phase Counter is reset on the next clock cycle following the detection of its end of count. The Phase Counter count (Nphcnt) is equal to the PHCNPTR value plus 1.

PRELIMINARY
S/UNI-16X155
DATASHEET
PMC-2000495

ISSUE 2

SATURN USER NETWORK INTERFACE (16X155)

PM5382
S/UNI-16X155

For the system to operate properly, Nphcnt need to be greater than 1023.

**Register 0x0DD, 0x1DD, 0x2DD, 0x3DD, 0x4DD, 0x5DD, 0x6DD, 0x7DD,
0x8DD, 0x9DD, 0xADD, 0xBDD, 0xCDD, 0xDDD, 0xEDD, 0xFDD:
WANS Phase Average Period**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3	R/W	PHAVGPER[3]	0
Bit 2	R/W	PHAVGPER[2]	0
Bit 1	R/W	PHAVGPER[1]	0
Bit 0	R/W	PHAVGPER[0]	0

PHAVGPER[3:0]:

The Phase Average Period (FRACQPER[3:0]) bits are used to set the number of consecutive valid Phase Samples accumulated together to form the Phase Word. The number of samples is expressed as a power of 2, i.e.:

$$N_{\text{fracq}} = 2^{\text{FRACQPER}}$$

**Register 0x0E0, 0x1E0, 0x2E0, 0x3E0, 0x4E0, 0x5E0, 0x6E0, 0x7E0, 0x8E0,
0x9E0, 0xAE0, 0xBE0, 0xCE0, 0xDE0, 0xEE0, 0xFE0:
RASE Interrupt Enable**

Bit	Type	Function	Default
Bit 7	R/W	PSBFE	0
Bit 6	R/W	COAPSE	0
Bit 5	R/W	Z1/S1E	0
Bit 4	R/W	SFBERE	0
Bit 3	R/W	SDBERE	0
Bit 2		Unused	X
Bit 1		Unused	X
Bit 0		Unused	X

SDBERE:

The SDBERE bit is the interrupt enable for the signal degrade threshold alarm. When SDBERE is a logic one, an interrupt is generated when the SD alarm is declared or removed.

SFBERE:

The SFBERE bit is the interrupt enable for the signal fail threshold alarm. When SFBERE is a logic one, an interrupt is generated when the SF alarm is declared or removed.

Z1/S1E:

The Z1/S1 interrupt enable is an interrupt mask for changes in the received synchronization status. When Z1/S1E is a logic one, an interrupt is generated when a new synchronization status message is extracted into the Receive Z1/S1 register.

COAPSE:

The COAPS interrupt enable is an interrupt mask for changes in the received APS code. When COAPSE is a logic one, an interrupt is generated when a new K1/K2 code value is extracted into the RASE Receive K1 and RASE Receive K2 registers.

PSBFE:

The PSBF interrupt enable is an interrupt mask for protection switch byte failure alarms. When PSBFE is a logic one, an interrupt is generated when PSBF is declared or removed.

**Register 0x0E1, 0x1E1, 0x2E1, 0x3E1, 0x4E1, 0x5E1, 0x6E1, 0x7E1, 0x8E1,
0x9E1, 0xAE1, 0xBE1, 0xCE1, 0xDE1, 0xEE1, 0xFE1:
RASE Interrupt Status**

Bit	Type	Function	Default
Bit 7	R	PSBFI	X
Bit 6	R	COAPSI	X
Bit 5	R	Z1/S1I	X
Bit 4	R	SFBERI	X
Bit 3	R	SDBERI	X
Bit 2	R	SFBERV	X
Bit 1	R	SDBERV	X
Bit 0	R	PSBFV	X

PSBFV:

The PSBFV bit indicates the protection switching byte failure alarm state. The alarm is declared (PSBFV is set high) when twelve successive frames have been received without three consecutive frames containing identical K1 bytes. The alarm is removed (PSBFV is set low) when three consecutive frames containing identical K1 bytes have been received.

SDBERV:

The SDBERV bit indicates the signal degrade threshold crossing alarm state. The alarm is declared (SDBERV is set high) when the bit error rate exceeds the threshold programmed in the RASE SD Declaring Threshold registers. The alarm is removed (SDBERV is set low) when the bit error rate is below the threshold programmed in the RASE SD Clearing Threshold registers.

SFBERV:

The SFBERV bit indicates the signal failure threshold crossing alarm state. The alarm is declared (SFBERV is set high) when the bit error rate exceeds the threshold programmed in the RASE SF Declaring Threshold registers. The alarm is removed (SFBERV is set low) when the bit error rate is below the threshold programmed in the RASE SF Clearing Threshold registers.

SDBERI:

The SDBERI bit is set high when the signal degrade threshold crossing alarm is declared or removed. This bit is cleared when the RASE Interrupt Status register is read.

SFBERI:

The SFBERI bit is set high when the signal failure threshold crossing alarm is declared or removed. This bit is cleared when the RASE Interrupt Status register is read.

Z1/S1I:

The Z1/S1I bit is set high when a new synchronization status message has been extracted into the RASE Receive Z1/S1 register. This bit is cleared when the RASE Interrupt Status register is read.

COAPSI:

The COAPSI bit is set high when a new APS code value has been extracted into the RASE Receive K1 and RASE Receive K2 registers. This bit is cleared when the RASE Interrupt Status register is read.

PSBFI:

The PSBFI bit is set high when the protection switching byte failure alarm is declared or removed. This bit is cleared when the RASE Interrupt Status register is read.

**Register 0x0E2, 0x1E2, 0x2E2, 0x3E2, 0x4E2, 0x5E2, 0x6E2, 0x7E2, 0x8E2,
0x9E2, 0xAE2, 0xBE2, 0xCE2, 0xDE2, 0xEE2, 0xFE2:
RASE Configuration/Control**

Bit	Type	Function	Default
Bit 7	R/W	Z1/S1_CAP	0
Bit 6	R/W	SFBERTEN	0
Bit 5	R/W	SFSMODE	0
Bit 4	R/W	SFCMODE	0
Bit 3	R/W	SDBERTEN	0
Bit 2	R/W	SDSMODE	0
Bit 1	R/W	SDCMODE	0
Bit 0	R/W	Reserved	0

SDCMODE:

The SDCMODE alarm bit selects the RASE window size to use for clearing the SD alarm. When SDCMODE is a logic zero the RASE clears the SD alarm using the same window size used for declaration. When SDCMODE is a logic one the RASE clears the SD alarm using a window size that is 8 times longer than the alarm declaration window size. The declaration window size is determined by the RASE SD Accumulation Period registers.

SDSMODE:

The SDSMODE bit selects the RASE saturation mode. When SDSMODE is a logic zero the RASE limits the number of B2 errors accumulated in one frame period to the RASE SD Saturation Threshold register value. When SDSMODE is a logic one the RASE limits the number of B2 errors accumulated in one window subtotal accumulation period to the RASE SD Saturation Threshold register value. Note that the number of frames in a window subtotal accumulation period is determined by the RASE SD Accumulation Period register value.

SDBERTEN:

The SDBERTEN bit selects automatic monitoring of line bit error rate threshold events by the RASE. When SDBERTEN is a logic one, the RASE continuously monitors line BIP errors over a period defined in the RASE configuration registers. When SDBERTEN is a logic zero, the RASE BIP

accumulation logic is disabled, and the RASE logic is reset to the declaration monitoring state.

All RASE accumulation period and threshold registers should be set up before SDBERTEN is written.

SFCMODE:

The SFCMODE alarm bit selects the RASE window size to use for clearing the SF alarm. When SFCMODE is a logic zero the RASE clears the SF alarm using the same window size used for declaration. When SFCMODE is a logic one the RASE clears the SF alarm using a window size that is 8 times longer than the alarm declaration window size. The declaration window size is determined by the RASE SF Accumulation Period registers.

SFSMODE:

The SFSMODE bit selects the RASE saturation mode. When SFSMODE is a logic zero the RASE limits the number of B2 errors accumulated in one frame period to the RASE SF Saturation Threshold register value. When SFSMODE is a logic one the RASE limits the number of B2 errors accumulated in one window subtotal accumulation period to the RASE SF Saturation Threshold register value. Note that the number of frames in a window subtotal accumulation period is determined by the RASE SF Accumulation Period register value.

SFBERTEN:

The SFBERTEN bit enables automatic monitoring of line bit error rate threshold events by the RASE. When SFBERTEN is a logic one, the RASE continuously monitors line BIP errors over a period defined in the RASE configuration registers. When SFBERTEN is a logic zero, the RASE BIP accumulation logic is disabled, and the RASE logic is reset to the declaration monitoring state.

All RASE accumulation period and threshold registers should be set up before SFBERTEN is written.

Z1/S1_CAP:

The Z1/S1_CAP bit enables the Z1/S1 Capture algorithm. When Z1/S1_CAP is a logic one, the Z1/S1 clock synchronization status message nibble must have the same value for eight consecutive frames before writing the new value into the RASE Receive Z1/S1 register. When Z1/S1_CAP is logic zero, the Z1/S1 nibble value is written directly into the RASE Receive Z1/S1 register.

PRELIMINARY
S/UNI-16X155
DATASHEET
PMC-2000495

ISSUE 2

PM5382
S/UNI-16X155

SATURN USER NETWORK INTERFACE (16X155)

Reserved:

The reserved bits must be programmed to logic zero for proper operation.

**Register 0x0E3, 0x1E3, 0x2E3, 0x3E3, 0x4E3, 0x5E3, 0x6E3, 0x7E3, 0x8E3,
0x9E3, 0xAE3, 0xBE3, 0xCE3, 0xDE3, 0xEE3, 0xFE3:
RASE SF Accumulation Period LSB**

Bit	Type	Function	Default
Bit 7	R/W	SFSAP[7]	0
Bit 6	R/W	SFSAP[6]	0
Bit 5	R/W	SFSAP[5]	0
Bit 4	R/W	SFSAP[4]	0
Bit 3	R/W	SFSAP[3]	0
Bit 2	R/W	SFSAP[2]	0
Bit 1	R/W	SFSAP[1]	0
Bit 0	R/W	SFSAP[0]	0

**Register 0x0E4, 0x1E4, 0x2E4, 0x3E4, 0x4E4, 0x5E4, 0x6E4, 0x7E4, 0x8E4,
0x9E4, 0xAE4, 0xBE4, 0xCE4, 0xDE4, 0xEE4, 0xFE4:
RASE SF Accumulation Period**

Bit	Type	Function	Default
Bit 7	R/W	SFSAP[15]	0
Bit 6	R/W	SFSAP[14]	0
Bit 5	R/W	SFSAP[13]	0
Bit 4	R/W	SFSAP[12]	0
Bit 3	R/W	SFSAP[11]	0
Bit 2	R/W	SFSAP[10]	0
Bit 1	R/W	SFSAP[9]	0
Bit 0	R/W	SFSAP[8]	0

**Register 0x0E5, 0x1E5, 0x2E5, 0x3E5, 0x4E5, 0x5E5, 0x6E5, 0x7E5, 0x8E5,
0x9E5, 0xAE5, 0xBE5, 0xCE5, 0xDE5, 0xEE5, 0xFE5:
RASE SF Accumulation Period MSB**

Bit	Type	Function	Default
Bit 7	R/W	SFSAP[23]	0
Bit 6	R/W	SFSAP[22]	0
Bit 5	R/W	SFSAP[21]	0
Bit 4	R/W	SFSAP[20]	0
Bit 3	R/W	SFSAP[19]	0
Bit 2	R/W	SFSAP[18]	0
Bit 1	R/W	SFSAP[17]	0
Bit 0	R/W	SFSAP[16]	0

SFSAP[23:0]:

The SFSAP[23:0] bits represent the number of 8 KHz frames used to accumulate the B2 error subtotal. The total evaluation window to declare the SF alarm is broken into 8 subtotals, so this register value represents 1/8 of the total sliding window size. Refer to the Operations section for recommended settings.

**Register 0x0E6, 0x1E6, 0x2E6, 0x3E6, 0x4E6, 0x5E6, 0x6E6, 0x7E6, 0x8E6,
0x9E6, 0xAE6, 0xBE6, 0xCE6, 0xDE6, 0xEE6, 0xFE6:
RASE SF Saturation Threshold LSB**

Bit	Type	Function	Default
Bit 7	R/W	SFSTH[7]	0
Bit 6	R/W	SFSTH[6]	0
Bit 5	R/W	SFSTH[5]	0
Bit 4	R/W	SFSTH[4]	0
Bit 3	R/W	SFSTH[3]	0
Bit 2	R/W	SFSTH[2]	0
Bit 1	R/W	SFSTH[1]	0
Bit 0	R/W	SFSTH[0]	0

**Register 0x0E7, 0x1E7, 0x2E7, 0x3E7, 0x4E7, 0x5E7, 0x6E7, 0x7E7, 0x8E7,
0x9E7, 0xAE7, 0xBE7, 0xCE7, 0xDE7, 0xEE7, 0xFE7:
RASE SF Saturation Threshold MSB**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3	R/W	SFSTH[11]	0
Bit 2	R/W	SFSTH[10]	0
Bit 1	R/W	SFSTH[9]	0
Bit 0	R/W	SFSTH[8]	0

SFSTH[11:0]:

The SFSTH[11:0] value represents the allowable number of B2 errors that can be accumulated during an evaluation window before an SF threshold event is declared. Setting this threshold to 0xFFFF disables the saturation functionality. Refer to the Operations section for the recommended settings.

**Register 0x0E8, 0x1E8, 0x2E8, 0x3E8, 0x4E8, 0x5E8, 0x6E8, 0x7E8, 0x8E8,
0x9E8, 0xAE8, 0xBE8, 0xCE8, 0xDE8, 0xEE8, 0xFE8:
RASE SF Declaring Threshold LSB**

Bit	Type	Function	Default
Bit 7	R/W	SFDTH[7]	0
Bit 6	R/W	SFDTH[6]	0
Bit 5	R/W	SFDTH[5]	0
Bit 4	R/W	SFDTH[4]	0
Bit 3	R/W	SFDTH[3]	0
Bit 2	R/W	SFDTH[2]	0
Bit 1	R/W	SFDTH[1]	0
Bit 0	R/W	SFDTH[0]	0

**Register 0x0E9, 0x1E9, 0x2E9, 0x3E9, 0x4E9, 0x5E9, 0x6E9, 0x7E9, 0x8E9,
0x9E9, 0xAE9, 0xBE9, 0xCE9, 0xDE9, 0xEE9, 0xFE9:
RASE SF Declaring Threshold MSB**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3	R/W	SFDTH[11]	0
Bit 2	R/W	SFDTH[10]	0
Bit 1	R/W	SFDTH[9]	0
Bit 0	R/W	SFDTH[8]	0

SFDTH[11:0]:

The SFDTH[11:0] value determines the threshold for the declaration of the SF alarm. The SF alarm is declared when the number of B2 errors accumulated during an evaluation window is greater than or equal to the SFDTH[11:0] value. Refer to the Operations section for the recommended settings.

**Register 0x0EA, 0x1EA, 0x2EA, 0x3EA, 0x4EA, 0x5EA, 0x6EA, 0x7EA,
0x8EA, 0x9EA, 0xAEA, 0xBEA, 0xCEA, 0xDEA, 0xEEA, 0xFEA:
RASE SF Clearing Threshold LSB**

Bit	Type	Function	Default
Bit 7	R/W	SFCTH[7]	0
Bit 6	R/W	SFCTH[6]	0
Bit 5	R/W	SFCTH[5]	0
Bit 4	R/W	SFCTH[4]	0
Bit 3	R/W	SFCTH[3]	0
Bit 2	R/W	SFCTH[2]	0
Bit 1	R/W	SFCTH[1]	0
Bit 0	R/W	SFCTH[0]	0

**Register 0x0EB, 0x1EB, 0x2EB, 0x3EB, 0x4EB, 0x5EB, 0x6EB, 0x7EB,
0x8EB, 0x9EB, 0xAEB, 0xBEB, 0xCEB, 0xDEB, 0xEEB, 0xFEB:
RASE SF Clearing Threshold MSB**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3	R/W	SFCTH[11]	0
Bit 2	R/W	SFCTH[10]	0
Bit 1	R/W	SFCTH[9]	0
Bit 0	R/W	SFCTH[8]	0

SFCTH[11:0]:

The SFCTH[11:0] value determines the threshold for the removal of the SF alarm. The SF alarm is removed when the number of B2 errors accumulated during an evaluation window is less than the SFCTH[11:0] value. Refer to the Operations section for the recommended settings.

**Register 0x0EC, 0x1EC, 0x2EC, 0x3EC, 0x4EC, 0x5EC, 0x6EC, 0x7EC,
0x8EC, 0x9EC, 0xAEC, 0xBEC, 0xCEC, 0xDEC, 0xEEC, 0xFEC:
RASE SD Accumulation Period LSB**

Bit	Type	Function	Default
Bit 7	R/W	SDSAP[7]	0
Bit 6	R/W	SDSAP[6]	0
Bit 5	R/W	SDSAP[5]	0
Bit 4	R/W	SDSAP[4]	0
Bit 3	R/W	SDSAP[3]	0
Bit 2	R/W	SDSAP[2]	0
Bit 1	R/W	SDSAP[1]	0
Bit 0	R/W	SDSAP[0]	0

**Register 0x0ED, 0x1ED, 0x2ED, 0x3ED, 0x4ED, 0x5ED, 0x6ED, 0x7ED,
0x8ED, 0x9ED, 0xAED, 0xBED, 0xCEC, 0xDEC, 0xEEC, 0xFED:
RASE SD Accumulation Period**

Bit	Type	Function	Default
Bit 7	R/W	SDSAP[15]	0
Bit 6	R/W	SDSAP[14]	0
Bit 5	R/W	SDSAP[13]	0
Bit 4	R/W	SDSAP[12]	0
Bit 3	R/W	SDSAP[11]	0
Bit 2	R/W	SDSAP[10]	0
Bit 1	R/W	SDSAP[9]	0
Bit 0	R/W	SDSAP[8]	0

**Register 0x0EE, 0x1EE, 0x2EE, 0x3EE, 0x4EE, 0x5EE, 0x6EE, 0x7EE,
0x8EE, 0x9EE, 0xAEE, 0xBEE, 0xCEE, 0xDEE, 0xEEE, 0xFEE:
RASE SD Accumulation Period MSB**

Bit	Type	Function	Default
Bit 7	R/W	SDSAP[23]	0
Bit 6	R/W	SDSAP[22]	0
Bit 5	R/W	SDSAP[21]	0
Bit 4	R/W	SDSAP[20]	0
Bit 3	R/W	SDSAP[19]	0
Bit 2	R/W	SDSAP[18]	0
Bit 1	R/W	SDSAP[17]	0
Bit 0	R/W	SDSAP[16]	0

SDSAP[23:0]:

The SDSAP[23:0] bits represent the number of 8 KHz frames used to accumulate the B2 error subtotal. The total evaluation window to declare the SD alarm is broken into 8 subtotals, so this register value represents 1/8 of the total sliding window size. Refer to the Operations section for recommended settings.

**Register 0x0EF, 0x1EF, 0x2EF, 0x3EF, 0x4EF, 0x5EF, 0x6EF, 0x7EF, 0x8EF,
0x9EF, 0xAEF, 0xBEF, 0xCEF, 0xDEF, 0xEEF, 0xFEF:
RASE SD Saturation Threshold LSB**

Bit	Type	Function	Default
Bit 7	R/W	SDSTH[7]	0
Bit 6	R/W	SDSTH[6]	0
Bit 5	R/W	SDSTH[5]	0
Bit 4	R/W	SDSTH[4]	0
Bit 3	R/W	SDSTH[3]	0
Bit 2	R/W	SDSTH[2]	0
Bit 1	R/W	SDSTH[1]	0
Bit 0	R/W	SDSTH[0]	0

**Register 0x0F0, 0x1F0, 0x2F0, 0x3F0, 0x4F0, 0x5F0, 0x6F0, 0x7F0, 0x8F0,
0x9F0, 0xAF0, 0xBF0, 0xCF0, 0xDF0, 0xEF0, 0xFF0:
RASE SD Saturation Threshold MSB**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3	R/W	SDSTH[11]	0
Bit 2	R/W	SDSTH[10]	0
Bit 1	R/W	SDSTH[9]	0
Bit 0	R/W	SDSTH[8]	0

SDSTH[11:0]:

The SDSTH[11:0] value represents the allowable number of B2 errors that can be accumulated during an evaluation window before an SD threshold event is declared. Setting this threshold to 0xFFFF disables the saturation functionality. Refer to the Operations section for the recommended settings.

**Register 0x0F1, 0x1F1, 0x2F1, 0x3F1, 0x4F1, 0x5F1, 0x6F1, 0x7F1, 0x8F1,
0x9F1, 0xAF1, 0xBF1, 0xCF1, 0xDF1, 0xEF1, 0xFF1:
RASE SD Declaring Threshold LSB**

Bit	Type	Function	Default
Bit 7	R/W	SDDTH[7]	0
Bit 6	R/W	SDDTH[6]	0
Bit 5	R/W	SDDTH[5]	0
Bit 4	R/W	SDDTH[4]	0
Bit 3	R/W	SDDTH[3]	0
Bit 2	R/W	SDDTH[2]	0
Bit 1	R/W	SDDTH[1]	0
Bit 0	R/W	SDDTH[0]	0

**Register 0x0F2, 0x1F2, 0x2F2, 0x3F2, 0x4F2, 0x5F2, 0x6F2, 0x7F2, 0x8F2,
0x9F2, 0xAF2, 0xBF2, 0xCF2, 0xDF2, 0xEF2, 0xFF2:
RASE SD Declaring Threshold MSB**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3	R/W	SDDTH[11]	0
Bit 2	R/W	SDDTH[10]	0
Bit 1	R/W	SDDTH[9]	0
Bit 0	R/W	SDDTH[8]	0

SDDTH[11:0]:

The SDDTH[11:0] value determines the threshold for the declaration of the SD alarm. The SD alarm is declared when the number of B2 errors accumulated during an evaluation window is greater than or equal to the SDDTH[11:0] value. Refer to the Operations section for the recommended settings.

**Register 0x0F3, 0x1F3, 0x2F3, 0x3F3, 0x4F3, 0x5F3, 0x6F3, 0x7F3, 0x8F3,
0x9F3, 0xAF3, 0xBF3, 0xCF3, 0xDF3, 0xEF3, 0xFF3:
RASE SD Clearing Threshold LSB**

Bit	Type	Function	Default
Bit 7	R/W	SDCTH[7]	0
Bit 6	R/W	SDCTH[6]	0
Bit 5	R/W	SDCTH[5]	0
Bit 4	R/W	SDCTH[4]	0
Bit 3	R/W	SDCTH[3]	0
Bit 2	R/W	SDCTH[2]	0
Bit 1	R/W	SDCTH[1]	0
Bit 0	R/W	SDCTH[0]	0

**Register 0x0F4, 0x1F4, 0x2F4, 0x3F4, 0x4F4, 0x5F4, 0x6F4, 0x7F4, 0x8F4,
0x9F4, 0xAF4, 0xBF4, 0xCF4, 0xDF4, 0xEF4, 0xFF4:
RASE SD Clearing Threshold MSB**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3	R/W	SDCTH[11]	0
Bit 2	R/W	SDCTH[10]	0
Bit 1	R/W	SDCTH[9]	0
Bit 0	R/W	SDCTH[8]	0

SDCTH[11:0]:

The SDCTH[11:0] value determines the threshold for the removal of the SD alarm. The SD alarm is removed when the number of B2 errors accumulated during an evaluation window is less than the SDCTH[11:0] value. Refer to the Operations section for the recommended settings.

**Register 0x0F5, 0x1F5, 0x2F5, 0x3F5, 0x4F5, 0x5F5, 0x6F5, 0x7F5, 0x8F5,
0x9F5, 0xAF5, 0xBF5, 0xCF5, 0xDF5, 0xEF5, 0xFF5:
RASE Receive K1**

Bit	Type	Function	Default
Bit 7	R	K1[7]	X
Bit 6	R	K1[6]	X
Bit 5	R	K1[5]	X
Bit 4	R	K1[4]	X
Bit 3	R	K1[3]	X
Bit 2	R	K1[2]	X
Bit 1	R	K1[1]	X
Bit 0	R	K1[0]	X

K1[7:0]:

The K1[7:0] bits contain the current K1 code value. The contents of this register are updated when a new K1 code value (different from the current K1 code value) has been received for three consecutive frames. An interrupt may be generated when a new code value is received (using the COAPSE bit in the RASE Interrupt Enable Register). K1[7] is the most significant bit corresponding to bit 1, the first bit received. K1[0] is the least significant bit, corresponding to bit 8, the last bit received.

**Register 0x0F6, 0x1F6, 0x2F6, 0x3F6, 0x4F6, 0x5F6, 0x6F6, 0x7F6, 0x8F6,
0x9F6, 0xAF6, 0xBF6, 0xCF6, 0xDF6, 0xEF6, 0xFF6:
RASE Receive K2**

Bit	Type	Function	Default
Bit 7	R	K2[7]	X
Bit 6	R	K2[6]	X
Bit 5	R	K2[5]	X
Bit 4	R	K2[4]	X
Bit 3	R	K2[3]	X
Bit 2	R	K2[2]	X
Bit 1	R	K2[1]	X
Bit 0	R	K2[0]	X

K2[7:0]:

The K2[7:0] bits contain the current K2 code value. The contents of this register are updated when a new K2 code value (different from the current K2 code value) has been received for three consecutive frames. An interrupt may be generated when a new code value is received (using the COAPSE bit in the RASE Interrupt Enable Register). K2[7] is the most significant bit corresponding to bit 1, the first bit received. K2[0] is the least significant bit, corresponding to bit 8, the last bit received.

**Register 0x0F7, 0x1F7, 0x2F7, 0x3F7, 0x4F7, 0x5F7, 0x6F7, 0x7F7, 0x8F7,
0x9F7, 0xAF7, 0xBF7, 0xCF7, 0xDF7, 0xEF7, 0xFF7:
RASE Receive Z1/S1**

Bit	Type	Function	Default
Bit 7	R	Z1/S1[7]	X
Bit 6	R	Z1/S1[6]	X
Bit 5	R	Z1/S1[5]	X
Bit 4	R	Z1/S1[4]	X
Bit 3	R	Z1/S1[3]	X
Bit 2	R	Z1/S1[2]	X
Bit 1	R	Z1/S1[1]	X
Bit 0	R	Z1/S1[0]	X

Z1/S1[3:0]:

The lower nibble of the first Z1/S1 byte contained in the receive stream is extracted into this register. The Z1/S1 byte is used to carry synchronization status messages between line terminating network elements. Z1/S1[3] is the most significant bit corresponding to bit 5, the first bit received. Z1/S1[0] is the least significant bit, corresponding to bit 8, the last bit received. An interrupt may be generated when a byte value is received that differs from the value extracted in the previous frame (using the Z1/S1E bit in the RASE Interrupt Enable Register). In addition, debouncing can be performed where the register is not loaded until eight of the same consecutive nibbles are received. Debouncing is controlled using the Z1/S1_CAP bit in the RASE Configuration/Control register.

Z1/S1[7:4]:

The upper nibble of the first Z1/S1 byte contained in the receive stream is extracted into this register. No interrupt is asserted on the change of this nibble. In addition, when the Z1/S1_CAP bit in the RASE Configuration/Control register selects debouncing, the upper nibble is only updated when eight of the same consecutive lower nibbles are received.

**Register 0x0FC, 0x1FC, 0x2FC, 0x3FC, 0x4FC, 0x5FC, 0x6FC, 0x7FC,
0x8FC, 0x9FC, 0xAFC, 0xBFC, 0xCFC, 0xDFC, 0xEFC, 0xFFC:
Channel Concatenation Status and Enable**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5	R	AISCV	X
Bit 4	R	LOPCV	X
Bit 3		Unused	X
Bit 2		Unused	X
Bit 1	R/W	AISCE	0
Bit 0	R/W	LOPCE	0

LOPCE:

The LOPCE bit is the interrupt enable for the Loss of Pointer Concatenation event. When LOPCE is a logic one, an interrupt is generated when the state of the Loss of Pointer Concatenation indicator changes.

AISCE:

The AISCE bit is the interrupt enable for the Pointer AIS event. When AISCE is a logic one, an interrupt is generated when the state of the Pointer AIS indicator changes.

LOPCV:

The LOPCV bit is the Loss of Pointer Concatenation indicator. When LOPCV is logic one, the STS-3c/STM-1 pointers do not indicate a concatenated payload. When LOPCV and AISCV are both logic zero, a STS-3c/STM-1 payload is indicated.

AISCV:

The AISCV bit is the Pointer AIS indicator. When AISCV is logic one, the STS-3c/STM-1 pointer indicate a pointer AIS condition. When LOPC and AISCV are both logic zero, a STS-3c/STM-1 payload is indicated.

**Register 0x0FD, 0x1FD, 0x2FD, 0x3FD, 0x4FD, 0x5FD, 0x6FD, 0x7FD,
0x8FD, 0x9FD, 0xAFD, 0xBFD, 0xCFD, 0xDFD, 0xEFD, 0xFFD:
Channel Concatenation Interrupt Status**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3		Unused	X
Bit 2		Unused	X
Bit 1	R	AISCI	X
Bit 0	R	LOPCI	X

LOPCI:

A logic one on the LOPCI bit indicates that a transition has occurred on the Loss of Pointer Concatenation indicator. This bit is cleared when this register is read.

AISCI:

A logic one on the AISCI bit indicates that a transition has occurred on the Pointer AIS indicator. This bit is cleared when this register is read.

**Register 0x0FE, 0x1FE, 0x2FE, 0x3FE, 0x4FE, 0x5FE, 0x6FE, 0x7FE, 0x8FE,
0x9FE, 0xAFE, 0xBFE, 0xCFE, 0xDFE, 0xEFE, 0xFFE:
Channel Serial Interface Configuration**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5	R/W	Reserved	0
Bit 4	R/W	Reserved	0
Bit 3	R/W	Reserved	0
Bit 2	R/W	Reserved	0
Bit 1	R/W	TXDINV	0
Bit 0	R/W	RXDINV	0

RXDINV:

The receive inversion RXDINV controls the polarity of the receive data. When RXDINV is set high, the polarity of the RXD+/- is inverted. When RXDINV is set low, the RXD+/- inputs operate normally.

TXDINV:

The transmit inversion TXDINV controls the polarity of the transmit data. When TXDINV is set high, the polarity of the TXD+/- is inverted. when TXDINV is set low, the TXD+/- outputs operate normally.

**Register 0x0FF, 0x1FF, 0x2FF, 0x3FF, 0x4FF, 0x5FF, 0x6FF, 0x7FF, 0x8FF,
0x9FF, 0xAFF, 0xBFF, 0xCFF, 0xDFF, 0xEFF, 0xFFFF:
Channel Clock Monitors**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3	R	RCLKA	X
Bit 2	R	TCLKA	X
Bit 1	R	RFCLKA	X
Bit 0	R	TFCLKA	X

This register provides activity monitoring of the channel clocks. When a monitored clock signal makes a low to high transition, the corresponding register bit is set high. The bit will remain high until this register is read, at which point, all the bits in this register are cleared. A lack of transitions is indicated by the corresponding register bit reading low. This register should be read at periodic intervals to detect clock failures.

TFCLKA:

The TFCLK active (TFCLKA) bit monitors for low to high transition on the channel's TFCLK internal clock. TFCLKA is set high on a rising edge of Level 2 TFCLK and is set low when this register is read.

RFCLKA:

The RFCLK active (RFCLKA) bit monitors for low to high transition on the channel's RFCLK internal clock. RFCLKA is set high on a rising edge of Level 2 RFCLK and is set low when this register is read.

RCLKA:

The RCLK active (RCLKA) bit monitors for low to high transition on the channel's RCLK receive line rate clock. RCLKA is set high on a rising edge of channel RCLK and is set low when this register is read.

TCLKA:

The TCLK active (TCLKA) bit monitors for low to high transition on the channel's TCLK transmit line rate clock. TCLKA is set high on a rising edge of TCLK and is set low when this register is read.

Register 0x1000: S/UNI-16x155 Clock Source Configuration

Bit	Type	Function	Default
Bit 7	R/W	RSEL[3]	0
Bit 6	R/W	RSEL[2]	0
Bit 5	R/W	RSEL[1]	0
Bit 4	R/W	RSEL[0]	0
Bit 3	R/W	TSEL[3]	0
Bit 2	R/W	TSEL[2]	0
Bit 1	R/W	TSEL[1]	0
Bit 0	R/W	TSEL[0]	0

This register configures the clock sources for the RCLK and TCLK interfaces.

TSEL[3:0]:

The TSEL[3:0] bits are used to select the channel that drives the TCLK and TFPO output pins of the S/UNI-16x155. The value specified by TSEL[3:0] is the channel that controls the TCLK and TFPO outputs.

Since the TFPI input is sampled by the rising edge of TCLK, the TFPI input is affected by TSEL[3:0] configuration. A channel may use TFPI input (TFPEN register in the channel's Master Configuration #1 register is set high) only if the channel's TCLK is frequency locked to the TCLK of the channel selected by TSEL[3:0]. In general, channel's operating in loop timed must set TFPEN low.

RSEL[3:0]

The RSEL[3:0] bits are used to select the channel that drives the RCLK and RFPO output pins of the S/UNI-16x155. The value specified by RSEL[3:0] is the channel that controls the RCLK and RFPO outputs.

Register 0x1001: S/UNI-16x155 DCC Interface Configuration #1

Bit	Type	Function	Default
Bit 7	R/W	DCCSEL[7]	0
Bit 6	R/W	DCCSEL[6]	0
Bit 5	R/W	DCCSEL[5]	0
Bit 4	R/W	DCCSEL[4]	0
Bit 3	R/W	DCCSEL[3]	0
Bit 2	R/W	DCCSEL[2]	0
Bit 1	R/W	DCCSEL[1]	0
Bit 0	R/W	DCCSEL[0]	0

Register 0x1002: S/UNI-16x155 DCC Interface Configuration #2

Bit	Type	Function	Default
Bit 7	R/W	DCCSEL[15]	0
Bit 6	R/W	DCCSEL[14]	0
Bit 5	R/W	DCCSEL[13]	0
Bit 4	R/W	DCCSEL[12]	0
Bit 3	R/W	DCCSEL[11]	0
Bit 2	R/W	DCCSEL[10]	0
Bit 1	R/W	DCCSEL[9]	0
Bit 0	R/W	DCCSEL[8]	0

This register configures the DCC interfaces for section or line DCC operation for each channel.

DCCSEL[15:0]:

The DCC mode select determines if the DCC interfaces (RDCC[15:0] and TDCC[15:0]) are configured for section or line DCC operation. When DCCSEL[x] is high, the associated channel DCC interface is configured for section DCC. When DCCSEL[x] is low, the associated channel DCC interface is configured for line DCC.

Register 0x1004: APS Configuration and Status

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4	R/W	FERRE	0
Bit 3		Unused	X
Bit 2	R/W	DRUBW	0
Bit 1	R/W	TAPS55	0
Bit 0	R	APSTIP	0

This register controls the APS serial interfaces. Specifically, the RAOP, TAOP and RAPS blocks used for APS functionality.

APSTIP:

The APSTIP bit is set to a logic one when the APS performance monitor registers are being loaded. Writing to the APS Interrupt Status register (0x1006) initiates an accumulation interval transfer and loads all the performance monitor registers in the RAOP blocks.

Writing to the S/UNI-16x155 Master Reset and Identity register (0x000) will also cause the APS performance monitor registers to be loaded.

APSTIP remains high while the transfer is in progress, and is set to a logic zero when the transfer is complete. APSTIPO can be polled by a microprocessor to determine when the accumulation interval transfer is complete.

TAPS55:

The force transmit APS (TAPS55) forces the transmit APS serial interfaces to transmit a constant 1/0 pattern. When TAPS55 is set high, the transmit APS serial interfaces are forced to a constant alternating value. When TAPS55 is set low, the transmit APS serial interfaces operated normally.

This feature is used for analog testing of the APS interfaces only.

FERRE:

The FIFO error interrupt enable controls the assertion of the INTB output when one of the FERRI[3:0] bits are high. When FERRE is set high, an interrupt is generated upon assertion of one or more of the FERRI[3:0] registers. When FERRE is set low, changes in the FERRI[3:0] status do not generate an interrupt.

DRUBW:

The DRU bandwidth (DRUBW) control configures the bandwidth of the APS data recovery units. When DRUBW is set high, the DRU bandwidth is decreased, improving high frequency jitter rejection. When DRUBW is set low, the DRU bandwidth is increased, improving high frequency jitter tracking.

Register 0x1005: APS FIFO Configuration and Status

Bit	Type	Function	Default
Bit 7	R/W	FRST[3]	0
Bit 6	R/W	FRST[2]	0
Bit 5	R/W	FRST[1]	0
Bit 4	R/W	FRST[0]	0
Bit 3	R	FERR[3]	X
Bit 2	R	FERR[2]	X
Bit 1	R	FERR[1]	X
Bit 0	R	FERR[0]	X

This register reports the status of the RAPS 16-byte APS FIFO between the APS serial data recovery block and the APS framer (SIPO) which handles low frequency wander of the APS serial links.

FERR[3:0]:

The FIFO error status bits (FERR[3:0]) indicates that the 16-byte APS FIFOs have overrun or underrun. The FERR[x] bit is set high when the corresponding APS link FIFO corrupts the data stream due to a FIFO overrun or underrun. The FERR[3:0] bits are clear when the register is read, thus acknowledging the error has occurred.

FRST[3:0]:

The FIFO reset registers (FRST[3:0]) are used to reset the 16-byte APS FIFOs. When a FRST[x] bit is set high, the corresponding APS FIFO is held in reset. While in reset data may pass through, however there will be data corruption if a small amount of jitter is applied at the APS input. The FIFO is held in reset until the FRST[x] is set low.

When the FIFO reset, the FIFO initialized such that the FIFO is centered (that is, the fill level of the FIFO is 8 bytes).

Register 0x1006: APS Interrupt Status #1

Bit	Type	Function	Default
Bit 7	R	RAPSI[3]	X
Bit 6	R	RAPSI[2]	X
Bit 5	R	RAPSI[1]	X
Bit 4	R	RAPSI[0]	X
Bit 3	R	RAOPI[3]	X
Bit 2	R	RAOPI[3]	X
Bit 1	R	RAOPI[3]	X
Bit 0	R	RAOPI[3]	X

When the interrupt output INTB goes low, this register allows the source of the active interrupt to be identified down to the block level for the APS interfaces. Further register accesses are required for the block in question to determine the cause of an active interrupt and to acknowledge the interrupt source.

RAOPI[3:0]:

A RSOPI[x] bit is high when an interrupt request is active from the corresponding RAOP block. The RSOP interrupt sources are enabled in each of the RAOP Control/Interrupt Enable Register.

RAPSI[3:0]:

An RAPSI[x] bit is high when an interrupt request is active from the corresponding RAPS block. The RAPS interrupt sources are enabled in each of the RAPS Interrupt Control/Status Register.

Register 0x1007: APS Interrupt Status #2

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3	R	FERRI[3]	X
Bit 2	R	FERRI[2]	X
Bit 1	R	FERRI[1]	X
Bit 0	R	FERRI[0]	X

When the interrupt output INTB goes low, this register allows the source of the active interrupt to be identified down to the block level for the APS interfaces. Further register accesses are required for the block in question to determine the cause of an active interrupt and to acknowledge the interrupt source..

FERRI[3:0]:

The FERRI[x] bit is high when an interrupt request is active from a given APS channel FIFO logic. The APS FIFO interrupt sources are enabled in the APS Configuration and Status register.

Register 0x1008: APS Reset Control

Bit	Type	Function	Default
Bit 7	R/W	RXAPRST[3]	0
Bit 6	R/W	RXAPRST[2]	0
Bit 5	R/W	RXAPRST[1]	0
Bit 4	R/W	RXAPRST[0]	0
Bit 3	R/W	TXAPRST[3]	0
Bit 2	R/W	TXAPRST[2]	0
Bit 1	R/W	TXAPRST[1]	0
Bit 0	R/W	TXAPRST[0]	0

When the interrupt output INTB goes low, this register allows the source of the active interrupt to be identified down to the block level for the APS interfaces. Further register accesses are required for the block in question to determine the cause of an active interrupt and to acknowledge the interrupt source..

TXAPRST[3:0]:

The TXAPRST[3:0] bits allow the transmit APS serial interfaces to be reset under software control. If the TXAPRST[x] bit is a logic one, the associated transmit APS interface (TAOP and associated logic) is held in reset. This bit is not self-clearing. Therefore, a logic zero must be written to bring the channel out of reset.

Holding the channel in a reset state places it into a low power, stand-by mode. A hardware reset or top level reset using RESET clears the TXAPRST[3:0] bits, thus negating the software reset. Otherwise, the effect of the software reset is equivalent to that of a hardware reset.

Resetting transmit APS interface #0 (TXAPRST[0] is set high) may cause the other three links to switch to a new A1/A2 frame alignment. This will cause an out-of-frame (OOF) failure across all APS interfaces.

RXAPRST[3:0]:

The RXAPRST[3:0] bits allow the receive APS serial interfaces to be reset under software control. If the RXAPRST[x] bit is a logic one, the associated receive APS interface (RAOP, RAPS and associated logic) is held in reset. This bit is not self-clearing. Therefore, a logic zero must be written to bring the channel out of reset.

Holding the channel in a reset state places it into a low power, stand-by mode. A hardware reset or top level reset using RESET clears the RXAPSRST[3:0] bits, thus negating the software reset. Otherwise, the effect of the software reset is equivalent to that of a hardware reset.

Register 0x1010: TUL3 Interface Configuration

Bit	Type	Function	Default
Bit 7	R	L3MODE	X
Bit 6	R/W	L3MODEINV	0
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3		Unused	X
Bit 2	R/W	TPRTYP	0
Bit 1	R/W	TCA_TPA_INV	0
Bit 0	R/W	FIFORST	1

FIFORST:

The FIFORST bit is used to reset the system interface channel transmit FIFOs. When FIFORST is set low, the channel transmit FIFOs operate normally. When FIFORST is set high, the channel transmit FIFOs are immediately emptied. The channel FIFOs remain empty and continue to ignore writes operations until a logic zero is written to FIFORST.

The TCA/PTPA and STPA outputs will be low when FIFORST is set high to prevent a Level 3 layer device from attempting to write data into the FIFOs.

TCA_TPA_INV:

The TCA_TPA_INV bit is used to invert the polarity of the TCA/PTPA and STPA outputs. When TCA_TPA_INV is set low, the TCA_PTPA and STPA outputs operate normally. When TCA_TPA_INV is set high, the polarity of the control signals inverts. Therefore, when TCA_TPA_INV is set high, a full channel FIFO is identified by TCA_PTPA set high.

TPRTYP:

The TPRTYP bit selects even or odd parity for the TPRTY output on the transmit Level 3 interface. When TPRTYP is set high, the TPRTY input is the even parity for inputs TDAT[31:0]. When TPRTYP is set low, the TPRTY input is odd parity for inputs TDAT[31:0].

L3MODEINV:

The L3MODE invert register bit provides a method to override the POS_ATMB input using software in the transmit direction. The value of the POS_ATMB input is logically XOR'ed with the value of the L3MODEINV register bit to determine the mode of the transmit Level 3 interface.

When L3MODEINV is high and POS_ATMB is low, the S/UNI-16x155 implements a transmit POS-PHY Level 3 interface. When L3MODEINV is high and POS_ATMB is high, the S/UNI-16x155 implements a transmit UTOPIA Level 3 interface. When L3MODEINV is low, the POS_ATMB input operates normally.

L3MODE:

The L3MODE register bit reflects the polarity of the POS_ATMB input. When the POS_ATMB input is set low, the L3MODE register bit is low. When the POS_ATMB input is set high, the L3MODE register bit is high.

When L3MODE is low, the S/UNI-16x155 is configured for UTOPIA Level 3 operation. When L3MODE is high, the S/UNI-16x155 is configured for POS-PHY Level 3 operation.

Register 0x1011: TUL3 Interrupt Status/Enable 1

Bit	Type	Function	Default
Bit 7	R/W	CAME	0
Bit 6	R/W	FOVRE	0
Bit 5	R/W	TPRTYE	0
Bit 4	R/W	TSOCE	0
Bit 3	R	CAMI	X
Bit 2	R	FOVRI	X
Bit 1	R	TPRTYI	X
Bit 0	R	TSOCI	X

TSOCI:

The TSOCI register functions as a start of cell re-alignment interrupt.

During Utopia level 3 operation, this interrupt is set high when the TSOC input is sampled high during any position other than the first word of the ATM cell structure on TDAT[31:0].

During POS-PHY Level 3 operation, this interrupt is set high when an ATM cell is shorter or longer than specified by CELLFORM. Any partial cell structure already written into the FIFO is discarded when a new cell structure alignment is detected. However, since TMOD is ignored during the last word of the ATM cell structure, invalid ATM cell structures 1, 2 or 3 bytes shorter than required will not cause TSOCI to assert.

If TENB is de-asserted during a cell transfer (protocol violation) and then re-asserted during the same cell transfer, the current cell is dropped and TSOCI is asserted. However if TENB does not subsequently remain asserted until the next TSOC, no indication of dropped cell is raised. Only with back to back transfers to the same phy will there be an indication of dropped cell raised. Although no TSOCI is asserted, cell counter values are updated correctly.

The TSOCI register bit is cleared immediately after it is read, thus acknowledging the event has been recorded.

TPRTYI:

The parity error interrupt indicates if a parity error was detected on the TDAT[31:0] input bus. TPRTYI is set high whenever a parity error occurs on

the TDAT[31:0] bus. The TRPTYI register bit is cleared immediately after it is read, thus acknowledging the event has been recorded.

FOVRI:

The FIFO overflow interrupt is set high when a write into the channel FIFO is attempted while the FIFO is full. Overrunning the FIFO is considered a system error and should not occur. The FOVRI register bit is cleared immediately after it is read, thus acknowledging the event has been recorded.

Due to an internal error in tracking FIFO overflow conditions, overflowing the TUL3 may cause continuous corrupted ATM cells being transmitted by the device. However, sending one ATM cell without overflowing the TUL3 FIFO will cause the FIFO to heal and operate properly. This problem occurs on channels configured for ATM cell traffic (both UTOPIA Level 3 and POS-PHY Level 3 modes). When the TUL3 TSB is in overflow condition packets may be merged without asserting FERR

CAMI:

The POS-PHY Level 3 channel address mismatch interrupt is set high when the value of TDAT[31:24] does not match the associated value of ATM[7:0] or POS[7:0] during in-band addressing. This interrupt allows the interface to detect when ATM data is being written to a channel configured for POS traffic or when POS data is being written to a channel configured for ATM traffic.

When TENB is asserted, TXS assertion is ignored. CAMI may assert when TENB is asserted and TSX is asserted, indicating that the TSX assertion is being ignored. CAMI will not assert if a valid channel address exists on the bus when TSX and TENB are both asserted.

The CAMI register bit is cleared immediately after it is read, thus acknowledging the event has been recorded.

TSOCE

The start of cell re-alignment interrupt enable controls the assertion of the INTB output when TSOCE is high. When TSOCE is set high, an interrupt is generated upon assertion event of the TSOCE register. When TSOCE is set low, changes in the TSOCE status do not generate an interrupt.

TPRTYE:

The parity error interrupt enable controls the assertion of the INTB output when TPRTYE is high. When TPRTYE is set high, an interrupt is generated upon assertion event of the TPRTYE register. When TPRTYE is set low, changes in the TPRTYE status do not generate an interrupt.

FOVRE:

The FIFO overflow interrupt enable controls the assertion of the INTB output when FOVRI is high. When FOVRE is set high, an interrupt is generated upon assertion event of the FOVRI register. When FOVRE is set low, changes in the FOVRI status do not generate an interrupt.

CAME:

The FIFO channel address mismatch interrupt enable controls the assertion of the INTB output when CAMI is high. When CAME is set high, an interrupt is generated upon assertion event of the CAMI register. When CAME is set low, changes in the CAMI status do not generate an interrupt.

Register 0x1012: TUL3 Interrupt Status/Enable 2

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5	R/W	UNPROVE	0
Bit 4	R/W	TXOPE	0
Bit 3		Unused	X
Bit 2		Unused	X
Bit 1	R	UNPROVI	X
Bit 0	R	TXOPI	X

TXOPI:

The start or end of packet interrupt is set high when either TSOP or TEOP is not asserted with the first or last word of a POS-PHY packet, respectively. The TXOPI register bit is cleared immediately after it is read, thus acknowledging the event has been recorded.

UNPROVI:

The POS-PHY Level3 unprovisioned address interrupt is set high when the value of TDAT[7:0] addresses a non-existent channel buffer during in-band addressing. This interrupt is asserted when this value is greater than 0x0F. The UNPROVI register bit is cleared immediately after it is read, thus acknowledging the event has been recorded.

TXOPE:

The start or end of packet interrupt enable controls the assertion of the INTB output when TXOPI is high. When TXOPE is set high, an interrupt is generated upon assertion event of the TXOPI register. When TXOPE is set low, changes in the TXOPI status do not generate an interrupt.

UNPROVE:

The unprovisioned address interrupt enable controls the assertion of the INTB output when UNPROVI is high. When UNPROVE is set high, an interrupt is generated upon assertion event of the UNPROVI register. When UNPROVE is set low, changes in the UNPROVI status do not generate an interrupt.

Register 0x1013: TUL3 ATM Level 3 FIFO Configuration

Bit	Type	Function	Default
Bit 7	R/W	CELLFORM	0
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3	R/W	Reserved	0
Bit 2	R/W	Reserved	0
Bit 1	R/W	FIFODP[1]	1
Bit 0	R/W	FIFODP[0]	1

FIFODP[1:0]:

The FIFODP[1:0] bits determine the channel FIFO level at which TCA deasserts in UTOPIA Level 3 operation. FIFO fill level control may be important in systems where the cell latency through the TUL3-32 must be minimized or when the layer device latency of deasserting TENB is large.

When the channel FIFO is filled to the specified depth, the transmit cell available signal TCA is deasserted. When the FIFO fill level is set below the maximum size of the channel FIFO, the channel FIFO will still accept writes. TCA is asserted when the FIFO depth falls below the level specified by FIFODP[1:0].

FIFODP[1:0] specifies the FIFO full level in number of ATM cells, plus one, in the channel FIFO. Therefore, the FIFO full level may be configured from 1 to 4 ATM cells.

CELLFORM:

The CELLFORM bits controls the length of transmit Level 3 interface ATM cell structure. When CELLFORM is low, the ATM cell structure is 56 bytes in size (14 TFCLK cycles) and contains the HCS (H5) and HCS Control bytes. When CELLFORM is high, the ATM cell structure is 52 bytes in size (13 TFCLK cycles) and does not contain the HCS and HCS Control bytes.

The value of CELLFORM should be changed only when FIFORST is set high.

Register 0x1014: TUL3 ATM Level 3 Signal Label

Bit	Type	Function	Default
Bit 7	R/W	ATM[7]	0
Bit 6	R/W	ATM[6]	0
Bit 5	R/W	ATM[5]	0
Bit 4	R/W	ATM[4]	0
Bit 3	R/W	ATM[3]	0
Bit 2	R/W	ATM[2]	0
Bit 1	R/W	ATM[1]	0
Bit 0	R/W	ATM[0]	1

ATM[7:0]:

The ATM[7:0] bits are used to check the value of TDAT[31:24] when performing in-band addressing in POS-PHY Level 3 operation in the transmit direction. When TSX and TENB are high, the in-band address specifying the channel number is on TDAT[7:0]. In order to prevent confusion between ATM and POS data, TDAT[31:24] may be used to specify the data type for the channel.

For channels configured for packet data, TDAT[31:24] may be set to the value specified by POS[7:0] during in-band addressing. For channels configured for ATM cell data, TDAT[31:24] may be set to the value specified by ATM[7:0] during in-band addressing.

If a channel is configured for ATM traffic and the value of TDAT[31:24] does not match the value of ATM[7:0] during in-band addressing, the CAMI bit is set.

Register 0x1015: TUL3 POS Level 3 FIFO Low Water Mark

Bit	Type	Function	Default
Bit 7	R/W	Reserved	0
Bit 6	R/W	Reserved	0
Bit 5	R/W	LWM[5]	0
Bit 4	R/W	LWM[4]	0
Bit 3	R/W	LWM[3]	0
Bit 2	R/W	LWM[2]	1
Bit 1	R/W	LWM[1]	0
Bit 0	R/W	LWM[0]	0

LWM[5:0]:

The LWM[5:0] bits determine the channel FIFO depth at which PTPA and STPA assert in POS-PHY Level 3 operation. FIFO fill level control may be important when the layer device latency is large.

When the channel FIFO empties to the specified depth, the transmit packet available signals PTPA and STPA are asserted. PTPA and STPA are deasserted based on the FIFO level specified by HWM[5:0]. Together with HWM[5:0], LWM[5:0] provides hysteresis in the toggling of the transmit packet available signal.

LWM[5:0] specifies the FIFO level in the number of double-words (4 bytes). Therefore, the low water mark may be configured from 0 bytes to 255 bytes. For proper operation, the high water mark level must be greater than the low water mark level.

Note that when sending ATM cells over the POS-PHY Level 3 interface, HWM[5:0] together with LWM[5:0] do not directly translate to the number of writeable locations in the FIFO as the ATM cells are internally stored as 64 byte entities in the FIFO. For proper operation when sending ATM cells over the POS-PHY Level 3 interface, LWM[5:0] must be configured to at least 52 or 56 bytes, as specified by CELLFORM. Failure to do this will result in a FIFO deadlock with a partial cell stuck in the FIFO and PTPA and STPA deasserted.

Register 0x1016: TUL3 POS Level 3 FIFO High Water Mark

Bit	Type	Function	Default
Bit 7	R/W	Reserved	0
Bit 6	R/W	Reserved	0
Bit 5	R/W	HWM[5]	1
Bit 4	R/W	HWM[4]	1
Bit 3	R/W	HWM[3]	1
Bit 2	R/W	HWM[2]	0
Bit 1	R/W	HWM[1]	0
Bit 0	R/W	HWM[0]	0

HWM[5:0]:

The HWM[5:0] bits determine the channel FIFO depth at which PTPA and STPA deassert in POS-PHY Level 3 operation. FIFO fill level control may be important when the layer device latency is large.

When the channel FIFO is filled to the specified depth, the transmit packet available signals PTPA and STPA are deasserted. TMOD[1:0] is ignored when calculating FIFO depth. Therefore, PTPA and STPA may deassert when end of a packet is within 4 bytes of HWM. PTPA and STPA are asserted based on the FIFO level specified by LWM[5:0]. Together with LWM[5:0], HWM[5:0] provides hysteresis in the toggling of the transmit packet available signal.

HWM[5:0] specifies the FIFO level in the number of double-words (4 bytes). Therefore, the high water mark may be configured from 0 bytes to 255 bytes and must be less than the maximum size of the FIFO. For proper operation, the high water mark level must be greater than the low water mark level.

Note that when sending ATM cells over the POS-PHY Level 3 interface, HWM[5:0] together with LWM[5:0] do not directly translate to the number of writeable locations in the FIFO as the ATM cells are internally stored at 64 byte entities. In general, the HWM[5:0] should be programmed less than 240.

Register 0x1017: TUL3 POS Level 3 Signal Label

Bit	Type	Function	Default
Bit 7	R/W	POS[7]	0
Bit 6	R/W	POS[6]	0
Bit 5	R/W	POS[5]	0
Bit 4	R/W	POS[4]	0
Bit 3	R/W	POS[3]	0
Bit 2	R/W	POS[2]	0
Bit 1	R/W	POS[1]	0
Bit 0	R/W	POS[0]	0

POS[7:0]:

The POS[7:0] bits are used to check the value of TDAT[31:24] when performing in-band addressing in POS-PHY Level 3 operation. When TSX and TENB are high, the in-band address specifying the channel number is on TDAT[7:0]. In order to prevent confusion between ATM and POS data, TDAT[31:24] may be used to specify the data type for the channel.

For channels configured for packet data, TDAT[31:24] may be set to the value specified by POS[7:0] during in-band addressing. For channels configured for ATM cell data, TDAT[31:24] may be set to the value specified by ATM[7:0] during in-band addressing.

If a channel is configured for POS traffic and the value of TDAT[31:24] does not match the value of POS[7:0] during in-band addressing, the CAMI bit is set.

Register 0x1019: TUL3 Channel #0, #4, #8, #12 Mode Configuration

Bit	Type	Function	Default
Bit 7	R/W	FIFORST[12]	0
Bit 6	R/W	FIFORST[8]	0
Bit 5	R/W	FIFORST[4]	0
Bit 4	R/W	FIFORST[0]	0
Bit 3	R/W	PATM[12]	0
Bit 2	R/W	PATM[8]	0
Bit 1	R/W	PATM[4]	0
Bit 0	R/W	PATM[0]	0

PATM[12, 8, 4, 0]:

The PATM registers configure channels #0, #4, #8 and #12 for ATM or packet operation during POS-PHY Level 3 operation in the transmit direction. When POS_ATMB is high and PATM is low, the channel is configured for packet data over the POS-PHY Level 3 interface. When POS_ATMB is high and PATM is high, the channel is configured for ATM cells over the POS-PHY Level 3 interface.

When POS_ATMB is low, PATM must be set low.

FIFORST[12, 8, 4, 0]:

The FIFORST registers are used to reset channels #0, #4, #8 and #12 four cell/256 byte transmit FIFOs. When FIFORST is set to logic zero, the FIFO operates normally. When FIFORST is set to logic one, the FIFO is immediately emptied and ignores writes. The buffer remains empty and continues to ignore writes until a logic zero is written to FIFORST.

The channel FIFORST registers in the TXCP and TXFP must be set high before FIFORST is asserted. The channel FIFORST registers must be set low after FIFORST is deasserted.

Register 0x101A: TUL3 Channel #1, #5, #9, #13 Mode Configuration

Bit	Type	Function	Default
Bit 7	R/W	FIFORST[13]	0
Bit 6	R/W	FIFORST[9]	0
Bit 5	R/W	FIFORST[5]	0
Bit 4	R/W	FIFORST[1]	0
Bit 3	R/W	PATM[13]	0
Bit 2	R/W	PATM[9]	0
Bit 1	R/W	PATM[5]	0
Bit 0	R/W	PATM[1]	0

PATM[13, 9, 5, 1]:

The PATM registers configure channels #1, #5, #9 and #13 for ATM or packet operation during POS-PHY Level 3 operation. When POS_ATMB is high and PATM is low, the channel is configured for packet data over the POS-PHY Level 3 interface. When POS_ATMB is high and PATM is high, the channel is configured for ATM cells over the POS-PHY Level 3 interface.

When POS_ATMB is low, PATM must be set low.

FIFORST[13, 9, 5, 1]:

The FIFORST registers are used to reset channels #1, #5, #9 and #13 four cell/256 byte transmit FIFOs. When FIFORST is set to logic zero, the FIFO operates normally. When FIFORST is set to logic one, the FIFO is immediately emptied and ignores writes. The buffer remains empty and continues to ignore writes until a logic zero is written to FIFORST.

The channel FIFORST registers in the TXCP and TXFP must be set high before FIFORST is asserted. The channel FIFORST registers must be set low after FIFORST is deasserted.

Register 0x101B: TUL3 Channel #2, #6, #10, #14 Mode Configuration

Bit	Type	Function	Default
Bit 7	R/W	FIFORST[14]	0
Bit 6	R/W	FIFORST[10]	0
Bit 5	R/W	FIFORST[6]	0
Bit 4	R/W	FIFORST[2]	0
Bit 3	R/W	PATM[14]	0
Bit 2	R/W	PATM[10]	0
Bit 1	R/W	PATM[6]	0
Bit 0	R/W	PATM[2]	0

PATM[14, 10, 6, 2]:

The PATM registers configure channels #2, #6, #10 and #14 for ATM or packet operation during POS-PHY Level 3 operation. When POS_ATMB is high and PATM is low, the channel is configured for packet data over the POS-PHY Level 3 interface. When POS_ATMB is high and PATM is high, the channel is configured for ATM cells over the POS-PHY Level 3 interface.

When POS_ATMB is low, PATM must be set low.

FIFORST[14, 10, 6, 2]:

The FIFORST registers are used to reset channels #2, #6, #10 and #14 four cell/256 byte transmit FIFOs. When FIFORST is set to logic zero, the FIFO operates normally. When FIFORST is set to logic one, the FIFO is immediately emptied and ignores writes. The buffer remains empty and continues to ignore writes until a logic zero is written to FIFORST.

The channel FIFORST registers in the TXCP and TXFP must be set high before FIFORST is asserted. The channel FIFORST registers must be set low after FIFORST is deasserted.

Register 0x101C: TUL3 Channel #3, #7, #11, #15 Mode Configuration

Bit	Type	Function	Default
Bit 7	R/W	FIFORST[15]	0
Bit 6	R/W	FIFORST[11]	0
Bit 5	R/W	FIFORST[7]	0
Bit 4	R/W	FIFORST[3]	0
Bit 3	R/W	PATM[15]	0
Bit 2	R/W	PATM[11]	0
Bit 1	R/W	PATM[7]	0
Bit 0	R/W	PATM[3]	0

PATM[15, 11, 7, 3]:

The PATM register configures channel #3, #7, #11 and #15 for ATM or packet operation during POS-PHY Level 3 operation. When POS_ATMB is high and PATM is low, the channel is configured for packet data over the POS-PHY Level 3 interface. When POS_ATMB is high and PATM is high, the channel is configured for ATM cells over the POS-PHY Level 3 interface.

When POS_ATMB is low, PATM must be set low.

FIFORST[15, 11, 7, 3]:

The FIFORST registers are used to reset channels #3, #7, #11 and #15 four cell/256 byte transmit FIFOs. When FIFORST is set to logic zero, the FIFO operates normally. When FIFORST is set to logic one, the FIFO is immediately emptied and ignores writes. The buffer remains empty and continues to ignore writes until a logic zero is written to FIFORST.

The channel FIFORST registers in the TXCP and TXFP must be set high before FIFORST is asserted. The channel FIFORST registers must be set low after FIFORST is deasserted.

Register 0x1020: RUL3 Interface Configuration

Bit	Type	Function	Default
Bit 7	R	L3MODE	X
Bit 6	R/W	L3MODEINV	0
Bit 5	R/W	Reserved	0
Bit 4		Unused	X
Bit 3		Unused	X
Bit 2	R/W	RPRTYP	0
Bit 1	R/W	RCA_INV	0
Bit 0	R/W	FIFORST	1

FIFORST:

The FIFORST bit is used to reset the system interface channel receive FIFOs. When FIFORST is set low, the channel receive FIFOs operate normally. When FIFORST is set high, the channel receive FIFOs are immediately emptied. The channel FIFOs remain empty and continue to ignore read operations until a logic zero is written to FIFORST.

The RCA output should be low when FIFORST is set high to prevent the Level 3 interface from falsely reporting data in the FIFOs.

RCA_INV:

The RCA_INV bit is used to invert the polarity of the RCA output. When RCA_INV is set low, the RCA output operates normally. When RCA_INV is set high, the polarity of the control signals inverts. Therefore, when RCA_INV is set high, an empty channel FIFO is identified by RCA set high.

RPRTYP:

The RPRTYP bit selects even or odd parity for the RPRTY output on the transmit Level 3 interface. When RPRTYP is set high, the RPRTY input is the even parity for inputs RDAT[31:0]. When RPRTYP is set low, the RPRTY input is odd parity for inputs RDAT[31:0].

L3MODEINV:

The L3MODE invert register bit provides a method to override the POS_ATMB input using software in the transmit direction. The value of the POS_ATMB input is logically XOR'ed with the value of the L3MODEINV register bit to determine the mode of the receive Level 3 interface.

When L3MODEINV is high and POS_ATMB is low, the S/UNI-16x155 implements a receive POS-PHY Level 3 interface. When L3MODEINV is high and POS_ATMB is high, the S/UNI-16x155 implements a receive UTOPIA Level 3 interface. When L3MODEINV is low, the POS_ATMB input operates normally.

L3MODE:

The L3MODE register bit reflects the polarity of the POS_ATMB input. When the POS_ATMB input is low, the L3MODE register bit is low. When the POS_ATMB input is high, the L3MODE register bit is high.

When L3MODE is low, the S/UNI-16x155 is configured for UTOPIA Level 3 operation. When L3MODE is high, the S/UNI-16x155 is configured for POS-PHY Level 3 operation.

Register 0x1021: RUL3 Interrupt Status/Enable

Bit	Type	Function	Default
Bit 7	R/W	Reserved	0
Bit 6	R/W	FUNRE	0
Bit 5	R/W	Reserved	0
Bit 4	R/W	Reserved	0
Bit 3	R	Reserved	X
Bit 2	R	FUNRI	0
Bit 1	R	Reserved	0
Bit 0	R	Reserved	0

FUNRI:

The FIFO underrun interrupt is set high when a read from the FIFO is attempted while the FIFO is empty. The FUNRI register bit is cleared immediately after it is read, thus acknowledging the event has been recorded. This register bit is only valid during UTOPIA Level 3 operation.

ISOCE

The start of cell re-alignment interrupt enable controls the assertion of the INTB output when ISOCI is high. When ISOCE is set high, an interrupt is generated upon assertion event of the ISOCI register. When ISOCE is set low, changes in the ISOCI status do not generate an interrupt.

IPRTYE:

The parity error interrupt enable controls the assertion of the INTB output when IPRTYI is high. When IPRTYE is set high, an interrupt is generated upon assertion event of the IPRTYI register. When IPRTYE is set low, changes in the IPRTYI status do not generate an interrupt.

FUNRE:

The FIFO underrun interrupt enable controls the assertion of the INTB output when FUNRI is high. When FUNRE is set high, an interrupt is generated upon assertion event of the FUNRI register. When FUNRE is set low, changes in the FUNRI status do not generate an interrupt.

RXOPE:

The start or end of packet interrupt enable controls the assertion of the INTB output when RXOPI is high. When RXOPE is set high, an interrupt is generated upon assertion event of the RXOPI register. When RXOPE is set low, changes in the RXOPI status do not generate an interrupt.

Register 0x1022: RUL3 ATM Level 3 FIFO Configuration

Bit	Type	Function	Default
Bit 7	R/W	CELLFORM	0
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3		Unused	X
Bit 2		Unused	X
Bit 1		Unused	X
Bit 0		Unused	X

CELLFORM:

The CELLFORM bits controls the length of receive Level 3 interface ATM cell structure. When CELLFORM is low, the ATM cell structure is 56 bytes in size (14 RFCLK cycles) and contains the HCS (H5) and HCS Control bytes.

When CELLFORM is high, the ATM cell structure is 52 bytes in size (13 RFCLK cycles) and does not contain the HCS and HCS Control bytes.

The value of CELLFORM should be changed only when FIFORST is set high.

Register 0x1023: RUL3 ATM Level 3 Signal Label

Bit	Type	Function	Default
Bit 7	R/W	ATM[7]	0
Bit 6	R/W	ATM[6]	0
Bit 5	R/W	ATM[5]	0
Bit 4	R/W	ATM[4]	0
Bit 3	R/W	ATM[3]	0
Bit 2	R/W	ATM[2]	0
Bit 1	R/W	ATM[1]	0
Bit 0	R/W	ATM[0]	1

ATM[7:0]:

The ATM[7:0] bits controls the value of RDAT[31:24] when performing in-band addressing in POS-PHY Level 3 operation in the receive direction. When RSX is high and RVAL is low, the in-band address specifying the channel number is on RDAT[7:0]. In order to prevent confusion between ATM data and POS data, RDAT[31:24] is used to specify the data type for the channel.

For channels configured for packet data, RDAT[31:24] is set to the value specified by POS[7:0] during in-band addressing. For channels configured for ATM cell data, RDAT[31:24] is set to the value specified by ATM[7:0] during in-band addressing.

Register 0x1024: RUL3 POS Level 3 Configuration

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3		Unused	X
Bit 2		Unused	X
Bit 1	R/W	PAUSE[1]	0
Bit 0	R/W	PAUSE[0]	0

PAUSE[1:0]:

The PAUSE[1:0] bits specifies the minimum number of clock cycles the POS-PHY Level 3 interface will pause between transfer bursts. When PAUSE[1:0] is set to “00”, the POS-PHY Level 3 interface may select the next channel by immediately asserting RSX after ending a transferred. When PAUSE[1:0] is set to “11”, the POS-PHY Level 3 interface will wait for 3 RFCLK clock cycles before selecting the next channel and starting another transfer.

The PAUSE[1:0] register allows the user to configure the POS-PHY Level 3 interface to halt between burst transfers. By inserting dead-time between bursts, the Layer device may cleanly pause the transfer of data between bursts by deasserting RENB.

Register 0x1025: RUL3 POS Level 3 Signal Label

Bit	Type	Function	Default
Bit 7	R/W	POS[7]	0
Bit 6	R/W	POS[6]	0
Bit 5	R/W	POS[5]	0
Bit 4	R/W	POS[4]	0
Bit 3	R/W	POS[3]	0
Bit 2	R/W	POS[2]	0
Bit 1	R/W	POS[1]	0
Bit 0	R/W	POS[0]	0

POS[7:0]:

The POS[7:0] bits controls the value of RDAT[31:24] when performing in-band addressing in POS-PHY Level 3 operation in the receive direction. When RSX is high and RVAL is low, the in-band address specifying the channel number is on RDAT[7:0]. In order to prevent confusion between ATM data and POS data, RDAT[31:24] is used to specify the data type for the channel.

For channels configured for packet data, RDAT[31:24] is set to the value specified by POS[7:0] during in-band addressing. For channels configured for ATM cell data, RDAT[31:24] is set to the value specified by ATM[7:0] during in-band addressing.

Register 0x1026: RUL3 POS Level 3 Transfer Size

Bit	Type	Function	Default
Bit 7	R	Unused	X
Bit 6	R	Unused	X
Bit 5	R/W	TRAN[5]	0
Bit 4	R/W	TRAN[4]	0
Bit 3	R/W	TRAN[3]	1
Bit 2	R/W	TRAN[2]	1
Bit 1	R/W	TRAN[1]	1
Bit 0	R/W	TRAN[0]	0

TRAN[5:0]:

The TRAN[5:0] bits determine the maximum transfer length the POS-PHY Level 3 interface will service a PHY channel before servicing another PHY channel. TRAN[5:0] specifies the maximum number, plus 1, of RFCLK clock cycles the POS-PHY Level 3 interface will service on PHY channel.

Therefore, the maximum number of bytes per transfer is $4*(TRAN[5:0]+1)$.

The actual transfer burst length is until an end-of-packet is transferred or until the burst length specified by TRAN[5:0]. Valid transfer burst length range from 1 to 63.

TRAN[5:0] and BURST[6:0] must be configured such that the sum of TRAN[5:0] in number of bytes and RUL3 BURST[6:0] in number of byte should be less than the 256 bytes (the size of the channel FIFO). Last DWORD of an ATM cell is trapped in RUL3 FIFO for 52 bytes cell structure, if RUL3 TRAN is set to 4 , 8, 12, 16 or 24 bytes. For 56 bytes cell structure, the last DWORD of ATM cell will be trapped if RUL3 TRAN is set to 4 bytes.

Register 0x1028: RUL3 Level 2 Channel #0, #4, #8, #12 Mode Configuration

Bit	Type	Function	Default
Bit 7	R/W	FIFORST[12]	0
Bit 6	R/W	FIFORST[8]	0
Bit 5	R/W	FIFORST[4]	0
Bit 4	R/W	FIFORST[0]	0
Bit 3	R/W	PATM[12]	0
Bit 2	R/W	PATM[8]	0
Bit 1	R/W	PATM[4]	0
Bit 0	R/W	PATM[0]	0

PATM[12, 8, 6, 0]:

The PATM registers configure channels #0, #4, #8 and #12 for ATM or packet operation during POS-PHY Level 3 operation in the receive direction. When POS_ATMB is high and PATM is low, the channel is configured for packet data over the POS-PHY Level 3 interface. When POS_ATMB is high and PATM is high, the channel is configured for ATM cells over the POS-PHY Level 3 interface.

When POS_ATMB is low, PATM must be set low.

FIFORST[12, 8, 6, 0]:

The FIFORST registers are used to reset channels #0, #4, #8 and #12 four cell/256 byte transmit FIFOs. When FIFORST is set to logic zero, the FIFO operates normally. When FIFORST is set to logic one, the FIFO is immediately emptied and ignores writes. The buffer remains empty and continues to ignore writes until a logic zero is written to FIFORST.

The channel FIFORST registers in the RXCP and RXFP must be set high before FIFORST is asserted. The channel FIFORST registers must be set low after FIFORST is deasserted.

Register 0x1029: RUL3 Level 2 Channel #1, #5, #9, #13 Mode Configuration

Bit	Type	Function	Default
Bit 7	R/W	FIFORST[13]	0
Bit 6	R/W	FIFORST[9]	0
Bit 5	R/W	FIFORST[5]	0
Bit 4	R/W	FIFORST[1]	0
Bit 3	R/W	PATM[13]	0
Bit 2	R/W	PATM[9]	0
Bit 1	R/W	PATM[5]	0
Bit 0	R/W	PATM[1]	0

PATM[13, 9, 5, 1]:

The PATM registers configure channels #1, #5, #9 and #13 for ATM or packet operation during POS-PHY Level 3 operation in the receive direction. When POS_ATMB is high and PATM is low, the channel is configured for packet data over the POS-PHY Level 3 interface. When POS_ATMB is high and PATM is high, the channel is configured for ATM cells over the POS-PHY Level 3 interface.

When POS_ATMB is low, PATM must be set low.

FIFORST[13, 9, 5, 1]:

The FIFORST registers are used to reset channels #1, #5, #9 and #13 four cell/256 byte transmit FIFOs. When FIFORST is set to logic zero, the FIFO operates normally. When FIFORST is set to logic one, the FIFO is immediately emptied and ignores writes. The buffer remains empty and continues to ignore writes until a logic zero is written to FIFORST.

The channel FIFORST registers in the RXCP and RXFP must be set high before FIFORST is asserted. The channel FIFORST registers must be set low after FIFORST is deasserted.

Register 0x102A: RUL3 Level 2 Channel #2, #6, #10, #14 Mode Configuration

Bit	Type	Function	Default
Bit 7	R/W	FIFORST[14]	0
Bit 6	R/W	FIFORST[10]	0
Bit 5	R/W	FIFORST[6]	0
Bit 4	R/W	FIFORST[2]	0
Bit 3	R/W	PATM[14]	0
Bit 2	R/W	PATM[10]	0
Bit 1	R/W	PATM[6]	0
Bit 0	R/W	PATM[2]	0

PATM[14, 10, 6, 2]:

The PATM registers configure channels #2, #6, #10 and #14 for ATM or packet operation during POS-PHY Level 3 operation in the receive direction. When POS_ATMB is high and PATM is low, the channel is configured for packet data over the POS-PHY Level 3 interface. When POS_ATMB is high and PATM is high, the channel is configured for ATM cells over the POS-PHY Level 3 interface.

When POS_ATMB is low, PATM must be set low.

FIFORST[14, 10, 6, 2]:

The FIFORST registers are used to reset channels #2, #6, #10 and #14 four cell/256 byte transmit FIFOs. When FIFORST is set to logic zero, the FIFO operates normally. When FIFORST is set to logic one, the FIFO is immediately emptied and ignores writes. The buffer remains empty and continues to ignore writes until a logic zero is written to FIFORST.

The channel FIFORST registers in the RXCP and RXFP must be set high before FIFORST is asserted. The channel FIFORST registers must be set low after FIFORST is deasserted.

Register 0x102B: RUL3 Level 2 Channel #3, #7, #11, #15 Mode Configuration

Bit	Type	Function	Default
Bit 7	R/W	FIFORST[15]	0
Bit 6	R/W	FIFORST[11]	0
Bit 5	R/W	FIFORST[7]	0
Bit 4	R/W	FIFORST[3]	0
Bit 3	R/W	PATM[15]	0
Bit 2	R/W	PATM[11]	0
Bit 1	R/W	PATM[7]	0
Bit 0	R/W	PATM[3]	0

PATM[15, 11, 7, 3]:

The PATM registers configure channels #3, #7, #11 and #15 for ATM or packet operation during POS-PHY Level 3 operation in the receive direction. When POS_ATMB is high and PATM is low, the channel is configured for packet data over the POS-PHY Level 3 interface. When POS_ATMB is high and PATM is high, the channel is configured for ATM cells over the POS-PHY Level 3 interface.

When POS_ATMB is low, PATM must be set low.

FIFORST[15, 11, 7, 3]:

The FIFORST registers are used to reset channels #3, #7, #11 and #15 four cell/256 byte transmit FIFOs. When FIFORST is set to logic zero, the FIFO operates normally. When FIFORST is set to logic one, the FIFO is immediately emptied and ignores writes. The buffer remains empty and continues to ignore writes until a logic zero is written to FIFORST.

The channel FIFORST registers in the RXCP and RXFP must be set high before FIFORST is asserted. The channel FIFORST registers must be set low after FIFORST is deasserted.

Register 0x1030: DLL TUL3 Configuration

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4	R/W	Reserved	0
Bit 3		Unused	X
Bit 2	R/W	ERRORE	0
Bit 1	R/W	Reserved	0
Bit 0	R/W	Reserved	0

The DLL Configuration Register controls the basic operation of the DLL for the transmit system interface clock TFCLK.

ERRORE:

The DLL error interrupt enable controls the assertion of the INTB output when ERROR is high. When ERRORE is set high, an interrupt is generated upon assertion event of the ERROR register. When ERRORE is set low, changes in the ERROR status do not generate an interrupt.

Register 0x1033: DLL TUL3 Control Status

Bit	Type	Function	Default
Bit 7	R	TFCLKI	X
Bit 6		Unused	X
Bit 5	R	ERRORI	X
Bit 4		Reserved	X
Bit 3		Unused	X
Bit 2	R	ERROR	X
Bit 1		Reserved	X
Bit 0	R	RUN	X

The DLL Control Status Register provides information of the DLL operation.

RUN:

The DLL lock status register bit RUN indicates the DLL has found an initial lock condition. When the phase detector first indicates lock, RUN is set high. The RUN register bit is cleared only by a system reset or a software reset.

ERROR:

The delay line error register ERROR indicates the DLL is currently at the end of the delay line. ERROR is set high when the DLL tries to move beyond the end of the delay line.

ERRORI:

The error event register bit ERRORI indicates the ERROR register bit has been a logic one. When the ERROR register changes from a logic zero to a logic one, the ERRORI register bit is set to logic one. The ERRORI register bit is cleared immediately after it is read, thus acknowledging the event has been recorded.

TFCLKI:

The clock event register bit TFCLKI provides a method to monitor activity on the TFCLK clock. When the TFCLK input changes from a logic zero to a logic one, the TFCLKI register bit is set to logic one. The TFCLKI register bit is cleared immediately after it is read, thus acknowledging the event has been recorded.

Register 0x1034: DLL RUL3 Configuration

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4	R/W	Reserved	0
Bit 3		Unused	X
Bit 2	R/W	ERRORE	0
Bit 1	R/W	VERN_EN	0
Bit 0	R/W	LOCK	0

The DLL Configuration Register controls the basic operation of the DLL for the receive system interface clock RFCLK.

ERRORE:

The DLL error interrupt enable controls the assertion of the INTB output when ERRORE is high. When ERRORE is set high, an interrupt is generated upon assertion event of the ERROR register. When ERRORE is set low, changes in the ERROR status do not generate an interrupt.

Register 0x1037: DLL RUL3 Control Status

Bit	Type	Function	Default
Bit 7	R	RFCLKI	X
Bit 6		Unused	X
Bit 5	R	ERRORI	X
Bit 4		Unused	X
Bit 3		Unused	X
Bit 2	R	ERROR	X
Bit 1		Unused	X
Bit 0	R	RUN	X

The DLL Control Status Register provides information of the DLL operation.

RUN:

The DLL lock status register bit RUN indicates the DLL has found an initial lock condition. When the phase detector first indicates lock, RUN is set high. The RUN register bit is cleared only by a system reset or a software reset.

ERROR:

The delay line error register ERROR indicates the DLL is currently at the end of the delay line. ERROR is set high when the DLL tries to move beyond the end of the delay line.

ERRORI:

The error event register bit ERRORI indicates the ERROR register bit has been a logic one. When the ERROR register changes from a logic zero to a logic one, the ERRORI register bit is set to logic one. The ERRORI register bit is cleared immediately after it is read, thus acknowledging the event has been recorded.

RFCLKI:

The clock event register bit RFCLKI provides a method to monitor activity on the RFCLK clock. When the RFCLK input changes from a logic zero to a logic one, the RFCLKI register bit is set to logic one. The RFCLKI register bit is cleared immediately after it is read, thus acknowledging the event has been recorded.

Register 0x1038, 0x103C, 0x1040, 0x1044: TAOP Link #0 to #3 Control

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6	R/W	DS	0
Bit 5	R/W	Reserved	0
Bit 4	R/W	Reserved	0
Bit 3	R/W	Reserved	0
Bit 2	R/W	Reserved	0
Bit 1	R/W	Reserved	0
Bit 0	R/W	LAIS	0

The Transmit APS Overhead Processor (TAOP) controls the transmit APS interface generating A1/A2 framing and SONET scrambling. Four instances of this block is used, one for each APS link.

LAIS:

The LAIS bit controls the insertion of line alarm indication signal (AIS). When LAIS is set to logic one, the TSOP inserts AIS into the transmit SONET/SDH stream. Activation or deactivation of line AIS insertion is synchronized to frame boundaries. Line AIS insertion results in all bits of the SONET/SDH frame being set to 1 prior to scrambling except for the section overhead.

DS:

The DS bit is set to logic one to disable the scrambling of the STS-3c/STM-1 stream. When DS is a logic zero, scrambling is enabled.

Reserved:

The reserved bits must be programmed to logic zero for proper operation.

Register 0x1039, 0x103D, 0x1041, 0x1045: TAOP Link #0 to #3 Diagnostic

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3		Unused	X
Bit 2	R/W	DLOS	0
Bit 1	R/W	DBIP8	0
Bit 0	R/W	DFP	0

The Transmit APS Overhead Processor (TAOP) controls the transmit APS interface generating A1/A2 framing and SONET scrambling. Four instances of this block is used, one for each APS link.

DFP:

The DFP bit controls the insertion of a single bit error continuously in the most significant bit (bit 1) of the A1 section overhead framing byte. When DFP is set to logic one, the A1 bytes are set to 0x76 instead of 0xF6.

DBIP8:

The DBIP8 bit controls the insertion of bit errors continuously in the section BIP-8 byte (B1). When DBIP8 is set to logic one, the B1 byte is inverted.

DLOS:

The DLOS bit controls the insertion of all zeros in the STS-3c/STM-1 stream. When DLOS is set to logic one, the transmit stream is forced to 0x00.

Register 0x1048, 0x104C, 0x1050, 0x1054: RAOP Link #0 to #3 Control/Interrupt Enable

Bit	Type	Function	Default
Bit 7	R/W	BLKBIP	0
Bit 6	R/W	DDS	0
Bit 5	W	FOOF	X
Bit 4	R/W	ALGO2	0
Bit 3	R/W	BIP8EE	0
Bit 2	R/W	LOSE	0
Bit 1	R/W	LOFE	0
Bit 0	R/W	OOFE	0

The Receive APS Overhead Processor (RAOP) controls the receive APS interface SONET framing and descrambling as well as performance monitoring the APS links. Four instances of this block is used, one for each APS link.

OOFE:

The OOFE bit is an interrupt enable for the out-of-frame alarm. When OOFE is set to logic one, an interrupt is generated when the out-of-frame alarm changes state.

LOFE:

The LOFE bit is an interrupt enable for the loss of frame alarm. When LOFE is set to logic one, an interrupt is generated when the loss of frame alarm changes state.

LOSE:

The LOSE bit is an interrupt enable for the loss of signal alarm. When LOSE is set to logic one, an interrupt is generated when the loss of signal alarm changes state.

BIP8EE:

The BIP8EE bit is an interrupt enable for the section BIP-8 errors. When BIP8EE is set to logic one, an interrupt is generated when a section BIP-8 error (B1) is detected.

ALGO2:

The ALGO2 bit position selects the framing algorithm used to determine and maintain the frame alignment. When a logic one is written to the ALGO2 bit position, the framer is enabled to use the second of the framing algorithms where only the first A1 framing byte and the first 4 bits of the last A2 framing byte (12 bits total) are examined. This algorithm examines only 12 bits of the framing pattern regardless; all other framing bits are ignored. When a logic zero is written to the ALGO2 bit position, the framer is enabled to use the first of the framing algorithms where all the A1 framing bytes and all the A2 framing bytes are examined.

FOOF:

The FOOF bit controls the framing of the RAOP. When a logic one is written to FOOF, the RAOP is forced out of frame at the next frame boundary. The FOOF bit is a write only bit, register reads may yield a logic one or a logic zero.

DDS:

The DDS bit is set to logic one to disable the descrambling of the APS stream stream. When DDS is a logic zero, descrambling is enabled.

BLKBIP:

The BLKBIP bit position enables the accumulating of section BIP word errors. When a logic one is written to the BLKBIP bit position, one or more errors in the BIP-8 byte result in a single error being accumulated in the B1 error counter. When a logic zero is written to the BLKBIP bit position, all errors in the B1 byte are accumulated in the B1 error counter.

Register 0x1049, 0x104D, 0x1051, 0x1055: RAOP Link #0 to #3 Status/Interrupt Status

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6	R	BIPEI	X
Bit 5	R	LOSI	X
Bit 4	R	LOFI	X
Bit 3	R	OOFI	X
Bit 2	R	LOSV	X
Bit 1	R	LOFV	X
Bit 0	R	OOFV	X

The Receive APS Overhead Processor (RAOP) controls the receive APS interface SONET framing and descrambling as well as performance monitoring the APS links. Four instances of this block is used, one for each APS link.

OOFV:

The OOFV bit is read to determine the out-of-frame state of the RSOP. When OOFV is high, the RAOP is out of frame. When OOFV is low, the RSOP is in-frame.

LOFV:

The LOFV bit is read to determine the loss of frame state of the RSOP. When LOFV is high, the RAOP has declared loss of frame.

LOSV:

The LOSV bit is read to determine the loss of signal state of the RSOP. When LOSV is high, the RAOP has declared loss of signal.

OOFI:

The OOFI bit is the out-of-frame interrupt status bit. OOFI is set high when a change in the out-of-frame state occurs. This bit is cleared when this register is read.

LOFI:

The LOFI bit is the loss of frame interrupt status bit. LOFI is set high when a change in the loss of frame state occurs. This bit is cleared when this register is read.

LOSI:

The LOSI bit is the loss of signal interrupt status bit. LOSI is set high when a change in the loss of signal state occurs. This bit is cleared when this register is read.

BIPEI:

The BIPEI bit is the section BIP-8 interrupt status bit. BIPEI is set high when a section layer (B1) bit error is detected. This bit is cleared when this register is read.

Register 0x104A, 0x104E, 0x1052, 0x1056: RAOP Link #0 to #3 Section BIP-8 LSB

Bit	Type	Function	Default
Bit 7	R	SBE[7]	X
Bit 6	R	SBE[6]	X
Bit 5	R	SBE[5]	X
Bit 4	R	SBE[4]	X
Bit 3	R	SBE[3]	X
Bit 2	R	SBE[2]	X
Bit 1	R	SBE[1]	X
Bit 0	R	SBE[0]	X

Register 0x104B, 0x104F, 0x1053, 0x1057: RAOP Link #0 to #3 Section BIP-8 MSB

Bit	Type	Function	Default
Bit 7	R	SBE[15]	X
Bit 6	R	SBE[14]	X
Bit 5	R	SBE[13]	X
Bit 4	R	SBE[12]	X
Bit 3	R	SBE[11]	X
Bit 2	R	SBE[10]	X
Bit 1	R	SBE[9]	X
Bit 0	R	SBE[8]	X

The Receive APS Overhead Processor (RAOP) controls the receive APS interface SONET framing and descrambling as well as performance monitoring the APS links. Four instances of this block is used, one for each APS link.

SBE[15:0]:

Bits SBE[15:0] represent the number of section BIP-8 errors (individual or block) that have been detected since the last time the error count was polled. The error count is polled by writing to either of the RAOP Section BIP-8

Register addresses. Such a write transfers the internally accumulated error count to the Section BIP-8 registers within approximately 7 μ s and simultaneously resets the internal counter to begin a new cycle of error accumulation. This transfer and reset is carried out in a manner that ensures that coincident events are not lost.

The count can also be polled by writing to the S/UNI-16x155 Master Reset and Identity register (0x000). Writing to register address 0x000 loads all counter registers in all channels and APS links.

The count can also be polled by writing to the APS Interrupt Status register (0x1006). Writing to register address 0x1006 loads all counter registers in the RAOP blocks.

Register 0x1058, 0x105C, 0x1060, 0x1064: RAPS Link #0 to #3 Configuration

Bit	Type	Function	Default
Bit 7	R/W	Reserved	0
Bit 6	R/W	Reserved	0
Bit 5	R/W	SENB	0
Bit 4	R/W	Reserved	0
Bit 3		Unused	X
Bit 2	R	LOTI	X
Bit 1		Unused	X
Bit 0	R	DOOLI	X

The Receive APS Interface (RAPS) controls the receive APS interface SONET framing. Four instances of this block is used, one for each APS link.

DOOLI:

The DOOLI bit is the data out of lock interrupt status bit. DOOLI is set high when the DOOLV bit changes state, indicating that either the DRU has locked to the incoming data stream or has gone out of lock. DOOLI is cleared when this register is read.

LOTI:

The LOTI bit is the loss of transition interrupt status bit. LOTI is set high when a loss of transition event occurs. A loss of transition is defined as more than 96 consecutive ones or zeros received. LOTI is cleared when this register is read.

SENB:

The loss of signal transition detector enable (SENB) bit enables the declaration of loss of transition (LOT) when more than 96 consecutive ones or zeros occurs in the receive data. When SENB is a logic zero, a loss of transition is declared when more than 96 consecutive ones or zeros occurs in the receive data. When SENB is a logic one, a loss of transition is never declared.

PRELIMINARY
S/UNI-16X155
DATASHEET
PMC-2000495

ISSUE 2

PM5382
S/UNI-16X155

SATURN USER NETWORK INTERFACE (16X155)

Reserved:

These registers must be programmed to logic zero for proper operation.

Register 0x1059, 0x105D, 0x1061, 0x1065: RAPS Link #0 to #3 Status

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6	R	LOTV	X
Bit 5			X
Bit 4	R	DOOLV	X
Bit 3		Unused	X
Bit 2	R/W	LOTE	0
Bit 1	R/W	Reserved	0
Bit 0	R/W	DOOLE	0

The Receive APS Interface (RAPS) controls the receive APS interface SONET framing. Four instances of this block is used, one for each APS link.

DOOLE:

The DOOLE bit is an interrupt enable for the recovered data out of lock status. When DOOLE is set to logic one, an interrupt is generated upon assertion and negation events of the DOOLV register. When DOOLE is set low, changes in the DOOL status does not generate an interrupt.

Reserved:

These registers must be programmed to logic zero for proper operation.

LOTE:

The LOTE bit enables the loss of transition indication interrupt. When LOTE is set high, an interrupt is generated upon assertion events of the LOTV register. When LOTE is set low, changes in the LOTV status does not generate an interrupt.

DOOLV:

The recovered data out of lock status indicates the clock recovery phase locked loop is unable to recover and lock to the input data stream. DOOLV is a logic one if the recovered APS serial stream is not within approximately 488ppm of the REFCLK frequency or if no transitions have occurred on the APS link for more than 96 bits.

LOTV:

The loss of transition status indicates that at least 97 consecutive ones or zeros have been received. LOTV is a logic zero if less than 97 consecutive ones or zeros have been received. LOTV is a logic one if more than 96 consecutive ones or zeros have been received.

Register 0x1100: CSPI Clock Synthesis Configuration

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5	R/W	Reserved	0
Bit 4	R/W	Reserved	0
Bit 3		Unused	X
Bit 2		Unused	X
Bit 1		Unused	X
Bit 0	R	ROOLI	X

The Clock Synthesizer and 4 PISO block performs clock synthesis and serialization of the transmit serial interface stream.

ROOLI:

The ROOLI bit is the reference out of lock interrupt status bit for the CSU. The ROOLI is set high when the ROOLV register changes state, indicating that either the CSU is within 488ppm of the reference clock REFCLK or is out of lock. ROOLI is cleared when this register is read. If the corresponding ROOLE interrupt enable is high, the INTB is also asserted when the enabled ROOLI asserted.

Reserved:

These registers must be programmed with logic zero for proper operation.

Register 0x1101: CSPI Clock Synthesis Status

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4	R	ROOLV	X
Bit 3		Unused	X
Bit 2		Unused	X
Bit 1		Unused	X
Bit 0	R/W	ROOLE	0

ROOLE:

The ROOLE bit enables the reference out of lock indication interrupt for the CSU. When ROOLE is set high, INTB is asserted upon assertion and negation events of the ROOLV bit register. When ROOLE is set low, changes in the corresponding ROOL status do not generate an interrupt.

ROOLV:

The transmit reference out of lock status indicates the CSU is within 488ppm of the reference clock REFCLK input. ROOLV is a logic one if the CSU is not within 488ppm of the REFCLK frequency.

**Register 0x1104, 0x1107, 0x110A, 0x110D, 0x1110, 0x1113, 0x1116, 0x1119,
0x111C, 0x111F, 0x1122, 0x1125, 0x1128, 0x112B, 0x112E, 0x1131:
Channel #0 to #15 Receive Connect Select**

Bit	Type	Function	Default
Bit 7	R/W	RXEN	0
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4	R/W	RSEL[4]	X
Bit 3	R/W	RSEL[3]	X
Bit 2	R/W	RSEL[2]	0
Bit 1	R/W	RSEL[1]	0
Bit 0	R/W	RSEL[0]	0

The Receive Connect Select registers controls the source of receive path for each channel.

RSEL[4:0]:

The receive cross connect select (RSEL[4:0]) determines the source of receive path for the channel. When RXEN is low, the RSEL[4:0] is ignored. When RXEN is high, RSEL[4:0] specifies the source channel for the Receive Path Processor (RPOP) of the channel. RSEL[4:0] equal to 0 to 15 specify the channels in the S/UNI-16x155. RSEL[4:0] equal to 16 to 31 specify the receive APS links (protect function).

RXEN:

The receive cross connect enable (RXEN) controls when a channel's Receive Path Processor (RPOP) can cross connect with another channel's path. When RXEN is low, the channel operates normally. When RXEN is high, the channel cross connect is enabled.

Register 0x1105, 0x1108, 0x110B, 0x110E, 0x1111, 0x1114, 0x1117, 0x111A, 0x111D, 0x1120, 0x1123, 0x1126, 0x1129, 0x112C, 0x112F, 0x1132:
Channel #0 to #15 Transmit Connect Select

Bit	Type	Function	Default
Bit 7	R/W	TXEN	0
Bit 6	R/W	PROCM	0
Bit 5		Unused	X
Bit 4	R/W	TSEL[4]	X
Bit 3	R/W	TSEL[3]	X
Bit 2	R/W	TSEL[2]	0
Bit 1	R/W	TSEL[1]	0
Bit 0	R/W	TSEL[0]	0

The Transmit Connect Select registers control the source of transmit path for each channel.

TSEL[4:0]:

The transmit cross connect select (TSEL[4:0]) determines the source of transmit path for the channel. When TXEN is low, the TSEL[4:0] is ignored. When TXEN is high, TSEL[4:0] specifies the source channel for the Transmit Path Processor (TPOP) of the channel. TSEL[4:0] equal to 0 to 15 specify the channels in the S/UNI-16x155. TSEL[5:0] equal to 16 to 31 specify the receive APS links (bridge function).

PROCM:

The transmit APS protection mode select (PROCM) configures the channel for protection or working operation. When PROCM is set low, the channel's receive path is sent over the transmit APS link (channel is operating as a protection link). When PROCM is set high, the channel's transmit path is set over the transmit APS link (channel path is being bridged to another channel).

TXEN:

The transmit cross connect enable (TXEN) controls when a channel's Transmit Path Processor (TPOP) can cross connect with another channel's path. When TXEN is low, the channel operates normally. When TXEN is high, the channel cross connect is enabled.

**Register 0x1106, 0x1109, 0x110C, 0x110F, 0x1112, 0x1115, 0x1118, 0x111B,
0x111E, 0x1121, 0x1124, 0x1127, 0x112A, 0x112D, 0x1130, 0x1133:
Channel #0 to #15 Connect Control**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5		Unused	X
Bit 4		Unused	X
Bit 3	R	CSTALI	X
Bit 2	R	CHFERR	X
Bit 1	R/W	CHFRST	0
Bit 0	R/W	TAPSRST	0

The Connect Control registers provided configuration and status for each channel.

TAPSRST:

The transmit APS reset (TAPSRST) bit allows the STAL blocks associated with the channel to be reset under software control. If the TAPSRST bit is a logic one, the STAL blocks for the channel are held in reset. This bit is not self-clearing. Therefore, a logic zero must be written to bring the APS logic out of reset.

Holding the STAL blocks in a reset state places it into a low power, stand-by mode. A hardware reset or top level reset using RESET clears the TAPSRST bit, thus negating the software reset. Otherwise, the effect of the channel software reset is equivalent to that of a hardware reset.

CHFRST:

The transmit channel FIFO reset register (CHFRST) is used to reset the 8-byte transmit cross connect FIFO. When the CHFRST bit is set high, the channel's transmit connect FIFO is held in reset. While in reset data may pass through, however there will be data corruption if a small amount of jitter is applied at the APS input. The FIFO is held in reset until the CHFRST is set low.

When the FIFO reset, the FIFO initialized such that the FIFO is centered (that is, the fill level of the FIFO is 4 bytes).

CHFERR:

The transit channel FIFO error status (CHFERR) bits indicates that the 8-byte cross connect FIFO has overrun or underrun. The CHFERR bit is set high when the transmit cross connect FIFO corrupts the data stream due to a FIFO overrun or underrun. The CHFERR bit clears when the register is read, thus acknowledging the error has occurred

CSTALI:

The CSTALI bit is a logic one when an interrupt request is active from the channel STAL blocks. The STAL Control and Interrupt Status registers for the STAL associated with the channel must be read in order to identify the STAL with the active interrupt request..

**Register 0x1140, 0x114C, 0x1158, 0x1164, 0x1170, 0x117C, 0x1188, 0x1194,
0x11A0, 0x11AC, 0x11B8, 0x11C4, 0x11D0, 0x11DC, 0x11E8, 0x11F4:
STAL Channel #0 to #15 Configuration**

Bit	Type	Function	Default
Bit 7	R/W	Reserved	0
Bit 6	R/W	Reserved	0
Bit 5	R/W	Reserved	0
Bit 4		Unused	X
Bit 3	R/W	Reserved	0
Bit 2	R/W	ESEE	0
Bit 1	R/W	OPJEE	0
Bit 0	R/W	IPAIS	0

These STAL blocks perform the pointer processing required for the transmit APS interface for each channel. The other STAL blocks are slaved to these STAL blocks.

IPAIS:

The insert path AIS bits controls the insertion of Path AIS in the transmit APS stream. When IPAIS is set high, path AIS is inserted in the outgoing bus. The pointer bytes (H1, H2, and H3) and the entire synchronous payload envelop (virtual container) is set to all ones. Normal operation resumes when the IPAIS bit is set low.

OPJEE:

The transmit APS stream pointer justification event interrupt enable bit (OPJEE) controls the activation of the interrupt output when a pointer justification is inserted in the APS stream. When OPJEE is set high, insertion of pointer justification events in the transmit APS stream will assert the INTB output. When OPJEE is set low, insertion of pointer justification events will not affect INTB.

ESEE:

The elastic store error interrupt enable bit (ESEE) controls the assertion of INTB when a FIFO underflow or overflow has been detected in the elastic store. When ESEE is set high, FIFO flow error events will assert the INTB output. When ESEE is set low, FIFO flow error events will not affect INTB.

PRELIMINARY
S/UNI-16X155
DATASHEET
PMC-2000495

ISSUE 2

PM5382
S/UNI-16X155

SATURN USER NETWORK INTERFACE (16X155)

Reserved:

These register bits must be set to logic zero for proper operation.

**Register 0x1141, 0x114D, 0x1159, 0x1165, 0x1171, 0x117D, 0x1189, 0x1195,
0x11A1, 0x11AD, 0x11B9, 0x11C5, 0x11D1, 0x11DD, 0x11E9, 0x11F5:
STAL Channel #0 to #15 Control and Interrupt Status**

Bit	Type	Function	Default
Bit 7	R/W	Reserved	0
Bit 6	R/W	Reserved	0
Bit 5	R/W	Reserved	1
Bit 4	R/W	Reserved	0
Bit 3	R	ESEI	X
Bit 2	R	PPJI	X
Bit 1	R	NPJI	X
Bit 0	R/W	DLOP	0

These STAL blocks perform the pointer processing required for the transmit APS interface for each channel. The other STAL blocks are slaved to these STAL blocks.

DLOP:

The diagnose loss of pointer control bit (DLOP) allows downstream pointer processing elements to be diagnosed. When DLOP is set high, the new data flag (NDF) field of the payload pointer inserted in the APS stream inverted causing downstream pointer processing elements to enter a loss of pointer (LOP) state.

NPJI:

The transmit APS stream negative pointer justification interrupt status bit (NPJI) is set high when the STAL inserts a negative pointer justification event on the APS stream.

PPJI:

The transmit APS stream positive pointer justification interrupt status bit (PPJI) is set high when the STAL inserts a positive pointer justification event on the APS stream.

ESEI:

The elastic store error interrupt status bit (ESEI) is set high when STAL detects a FIFO underflow or overflow event.

**Register 0x1142, 0x114E, 0x115A, 0x1166, 0x1172, 0x117E, 0x118A, 0x1196,
0x11A2, 0x11AE, 0x11BA, 0x11C6, 0x11D2, 0x11DE, 0x11EA, 0x11F6:
STAL Channel #0 to #15 Alarm and Diagnostic Control**

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5	R/W	Reserved	0
Bit 4	R/W	Reserved	0
Bit 3	R/W	Reserved	0
Bit 2	R/W	TTCTE	0
Bit 1	R/W	ESAIS	0
Bit 0	R/W	Reserved	0

These STAL blocks perform the pointer processing required for the transmit APS interface for each channel. The other STAL blocks are slaved to these STAL blocks.

ESAIS:

The elastic store error path AIS insertion enable bit (ESAIS) controls the insertion of path AIS in the transmit APS stream when a FIFO underflow or overflow has been detected in the elastic store. When ESAIS is set high, detection of FIFO flow errors will cause path AIS to be inserted in the outgoing stream for at least three frames. When ESAIS is set low, path AIS is not inserted as a result of FIFO errors.

Register 0x1144, 0x1148: STAL Channel #0 Slave #0, #1
Register 0x1150, 0x1154: STAL Channel #1 Slave #0, #1
Register 0x115C, 0x1160: STAL Channel #2 Slave #0, #1
Register 0x1168, 0x116C: STAL Channel #3 Slave #0, #1
Register 0x1174, 0x1178: STAL Channel #4 Slave #0, #1
Register 0x1180, 0x1184: STAL Channel #5 Slave #0, #1
Register 0x118C, 0x1190: STAL Channel #6 Slave #0, #1
Register 0x1198, 0x119C: STAL Channel #7 Slave #0, #1
Register 0x11A4, 0x11A8: STAL Channel #8 Slave #0, #1
Register 0x11B0, 0x11B4: STAL Channel #9 Slave #0, #1
Register 0x11BC, 0x11C0: STAL Channel #10 Slave #0, #1
Register 0x11C8, 0x11CC: STAL Channel #11 Slave #0, #1
Register 0x11D4, 0x11D8: STAL Channel #12 Slave #0, #1
Register 0x11E0, 0x11E4: STAL Channel #13 Slave #0, #1
Register 0x11EC, 0x11F0: STAL Channel #14 Slave #0, #1
Register 0x11F8, 0x11FC: STAL Channel #15 Slave #0, #1

Configuration

Bit	Type	Function	Default
Bit 7	R/W	Reserved	0
Bit 6	R/W	Reserved	0
Bit 5	R/W	Reserved	0
Bit 4		Unused	X
Bit 3	R/W	Reserved	0
Bit 2	R/W	ESEE	0
Bit 1	R/W	OPJEE	0
Bit 0	R/W	IPAIS	0

These STAL blocks perform the pointer processing required for the transmit APS interface for each channel. The other STAL blocks are slaved to these STAL blocks.

IPAIS:

The insert path AIS bits controls the insertion of Path AIS in the transmit APS stream. When IPAIS is set high, path AIS is inserted in the outgoing bus. The pointer bytes (H1, H2, and H3) and the entire synchronous payload envelop (virtual container) is set to all ones. Normal operation resumes when the IPAIS bit is set low.

OPJEE:

The transmit APS stream pointer justification event interrupt enable bit (OPJEE) controls the activation of the interrupt output when a pointer justification is inserted in the APS stream. When OPJEE is set high, insertion of pointer justification events in the transmit APS stream will assert the INTB output. When OPJEE is set low, insertion of pointer justification events will not affect INTB.

ESEE:

The elastic store error interrupt enable bit (ESEE) controls the assertion of INTB when a FIFO underflow or overflow has been detected in the elastic store. When ESEE is set high, FIFO flow error events will assert the INTB output. When ESEE is set low, FIFO flow error events will not affect INTB.

Reserved:

These register bits must be set to logic zero for proper operation.

Register 0x1145, 0x1149: STAL Channel #0 Slave #0, #1
Register 0x1151, 0x1155: STAL Channel #1 Slave #0, #1
Register 0x115D, 0x1161: STAL Channel #2 Slave #0, #1
Register 0x1169, 0x116D: STAL Channel #3 Slave #0, #1
Register 0x1175, 0x1179: STAL Channel #4 Slave #0, #1
Register 0x1181, 0x1185: STAL Channel #5 Slave #0, #1
Register 0x118D, 0x1191: STAL Channel #6 Slave #0, #1
Register 0x1199, 0x119D: STAL Channel #7 Slave #0, #1
Register 0x11A5, 0x11A9: STAL Channel #8 Slave #0, #1
Register 0x11B1, 0x11B5: STAL Channel #9 Slave #0, #1
Register 0x11BD, 0x11C1: STAL Channel #10 Slave #0, #1
Register 0x11C9, 0x11CD: STAL Channel #11 Slave #0, #1
Register 0x11D5, 0x11D9: STAL Channel #12 Slave #0, #1
Register 0x11E1, 0x11E5: STAL Channel #13 Slave #0, #1
Register 0x11ED, 0x11F1: STAL Channel #14 Slave #0, #1
Register 0x11F9, 0x11FD: STAL Channel #15 Slave #0, #1

Control and Interrupt Status

Bit	Type	Function	Default
Bit 7	R/W	Reserved	0
Bit 6	R/W	Reserved	0
Bit 5	R/W	Reserved	1
Bit 4	R/W	Reserved	0
Bit 3	R	ESEI	X
Bit 2	R	PPJI	X
Bit 1	R	NPJI	X
Bit 0	R/W	DLOP	0

These STAL blocks perform the pointer processing required for the transmit APS interface for each channel. The other STAL blocks are slaved to these STAL blocks.

DLOP:

The diagnose loss of pointer control bit (DLOP) allows downstream pointer processing elements to be diagnosed. When DLOP is set high, the new data flag (NDF) field of the payload pointer inserted in the APS stream inverted causing downstream pointer processing elements to enter a loss of pointer (LOP) state.

NPJI:

The transmit APS stream negative pointer justification interrupt status bit (NPJI) is set high when the STAL inserts a negative pointer justification event on the APS stream.

PPJI:

The transmit APS stream positive pointer justification interrupt status bit (PPJI) is set high when the STAL inserts a positive pointer justification event on the APS stream.

ESEI:

The elastic store error interrupt status bit (ESEI) is set high when STAL detects a FIFO underflow or overflow event.

Register 0x1146, 0x114A: STAL Channel #0 Slave #0, #1
Register 0x1152, 0x1156: STAL Channel #1 Slave #0, #1
Register 0x115E, 0x1162: STAL Channel #2 Slave #0, #1
Register 0x116A, 0x116E: STAL Channel #3 Slave #0, #1
Register 0x1176, 0x117A: STAL Channel #4 Slave #0, #1
Register 0x1182, 0x1186: STAL Channel #5 Slave #0, #1
Register 0x118E, 0x1192: STAL Channel #6 Slave #0, #1
Register 0x119A, 0x119E: STAL Channel #7 Slave #0, #1
Register 0x11A6, 0x11AA: STAL Channel #8 Slave #0, #1
Register 0x11B2, 0x11B6: STAL Channel #9 Slave #0, #1
Register 0x11BE, 0x11C2: STAL Channel #10 Slave #0, #1
Register 0x11CA, 0x11CE: STAL Channel #11 Slave #0, #1
Register 0x11D6, 0x11DA: STAL Channel #12 Slave #0, #1
Register 0x11E2, 0x11E6: STAL Channel #13 Slave #0, #1
Register 0x11EE, 0x11F2: STAL Channel #14 Slave #0, #1
Register 0x11FA, 0x11FE: STAL Channel #15 Slave #0, #1

Alarm and Diagnostic Control

Bit	Type	Function	Default
Bit 7		Unused	X
Bit 6		Unused	X
Bit 5	R/W	Reserved	0
Bit 4	R/W	Reserved	0
Bit 3	R/W	Reserved	0
Bit 2	R/W	TTCTE	0
Bit 1	R/W	ESAIS	0
Bit 0	R/W	Reserved	0

These STAL blocks perform the pointer processing required for the transmit APS interface for each channel. The other STAL blocks are slaved to these STAL blocks.

ESAIS:

The elastic store error path AIS insertion enable bit (ESAIS) controls the insertion of path AIS in the transmit APS stream when a FIFO underflow or overflow has been detected in the elastic store. When ESAIS is set high, detection of FIFO flow errors will cause path AIS to be inserted in the outgoing stream for at least three frames. When ESAIS is set low, path AIS is not inserted as a result of FIFO errors.

12 TEST FEATURES DESCRIPTION

Simultaneously asserting (low) the CSB, RDB and WRB inputs causes all digital output pins and the data bus to be held in a high-impedance state. This test feature may be used for board testing.

Test mode registers are used to apply test vectors during production testing of the S/UNI-16x155. Test mode registers (as opposed to normal mode registers) are selected when TRS (A[13]) is high.

In addition, the S/UNI-16x155 also supports a standard IEEE 1149.1 five-signal JTAG boundary scan test port for use in board testing. All digital device inputs may be read and all digital device outputs may be forced via the JTAG test port.

Table 14: Test Mode Register Memory Map

Address	Register
0x000-0x1FF	Normal Mode Registers
0x2000	Master Test Register
0x2001-0x3FFF	Reserved For Production Test

12.1 Master Test and Test Configuration Registers

Notes on Test Mode Register Bits:

1. Writing values into unused register bits has no effect. However, to ensure software compatibility with future, feature-enhanced versions of the product, unused register bits must be written with logic zero. Reading back unused bits can produce either a logic one or a logic zero; hence, unused register bits should be masked off by software when read.
2. Writable test mode register bits are not initialized upon reset unless otherwise noted.

Register 0x2000: Master Test Register

Bit	Type	Function	Default
Bit 7	R/W	BYPASS	0
Bit 6	W	Reserved	X
Bit 5	W	PMCATST	X
Bit 4	W	PMCTST	X
Bit 3	W	DBCTRL	X
Bit 2		Reserved	0
Bit 1	W	HIZDATA	X
Bit 0	R/W	HIZIO	0

This register is used to enable S/UNI-16x155 test features. All bits, except PMCTST, PMCATST and BYPASS are reset to zero by a reset of the S/UNI-16x155 using either the RSTB input or the Master Reset register. PMCTST are reset when CSB is high. PMCTST and PMCATST can also be reset by writing a logic zero to the corresponding register bit.

HIZIO, HIZDATA:

The HIZIO and HIZDATA bits control the tri-state modes of the S/UNI-16x155. While the HIZIO bit is a logic one, all output pins of the S/UNI-16x155 except the data bus and output TDO are held tri-state. The microprocessor interface is still active. While the HIZDATA bit is a logic one, the data bus is also held in a high-impedance state which inhibits microprocessor read cycles. The HIZDATA bit is overridden by the DBCTRL bit.

DBCTRL:

The DBCTRL bit is used to pass control of the data bus drivers to the CSB pin. When the DBCTRL bit is set to logic one and PMCTST is set to logic one, the CSB pin controls the output enable for the data bus. While the DBCTRL bit is set, holding the CSB pin high causes the S/UNI-16x155 to drive the data bus and holding the CSB pin low tri-states the data bus. The DBCTRL bit overrides the HIZDATA bit. The DBCTRL bit is used to measure the drive capability of the data bus driver pads.

PMCTST:

The PMCTST bit is used to configure the S/UNI-16x155 for PMC's manufacturing tests. When PMCTST is set to logic one, the S/UNI-16x155

microprocessor port becomes the test access port used to run the PMC "canned" manufacturing test vectors. The PMCTST bit can be cleared by setting CSB to logic one and RSTB to logic zero or by writing logic zero to the bit.

PMCATST:

The PMCATST bit is used to configure the analog portion of the S/UNI-16x155 for PMC's manufacturing tests. The PMCTST bit can be cleared by setting CSB to logic one and RSTB to logic zero or by writing logic zero to the bit.

BYPASS:

The BYPASS bit forces the reference clock (REFCLK) to directly clock the channel's parallel-to-serial converter to generate the serial transmit stream (TXD+/-). BYPASS is available for PMC manufacturing test purposes only.

The CSU is not held in reset when BYPASS is high. The CSU may be held in reset by asserting the CSURESET register in the CSPI block.

Reserved:

The reserved bit must be programmed to logic zero for proper operation.

12.2 JTAG Test Port

The JTAG Test Access Port (TAP) allows access to the TAP controller and the 4 TAP registers: instruction, bypass, device identification and boundary scan. Using the TAP, device input logic levels can be read, device outputs can be forced, the device can be identified and the device scan path can be bypassed. For more details on the JTAG port, please refer to the Operations section.

Table 15: Instruction Register (Length - 3 bits)

Instructions	Selected Register	Instruction Codes, IR[2:0]
EXTEST	Boundary Scan	000
IDCODE	Identification	001
SAMPLE	Boundary Scan	010
BYPASS	Bypass	011
BYPASS	Bypass	100
STCTEST	Boundary Scan	101
BYPASS	Bypass	110
BYPASS	Bypass	111

Table 16: S/UNI-16x155 Identification Register

Length	32 bits
Version Number	0x0
Part Number	0x5382
Manufacturer's Identification Code	0x0CD
Device Identification	0x053820CD

Table 17: S/UNI-16x155 Boundary Scan Register

Pin/Enable	Register Bit	Cell Type	Device I.D.
TDAT[31]	220	IN_CELL	0
TDAT[29]	219	IN_CELL	0
TDAT[30]	218	IN_CELL	0
TDAT[28]	217	IN_CELL	0
TDAT[25]	216	IN_CELL	0
TDAT[27]	215	IN_CELL	1
TDAT[24]	214	IN_CELL	0
TDAT[26]	213	IN_CELL	1
TDAT[23]	212	IN_CELL	0

Pin/Enable	Register Bit	Cell Type	Device I.D.
TDAT[21]	211	IN_CELL	0
TDAT[22]	210	IN_CELL	1
TDAT[20]	209	IN_CELL	1
TDAT[19]	208	IN_CELL	1
TDAT[18]	207	IN_CELL	0
TDAT[17]	206	IN_CELL	0
TDAT[16]	205	IN_CELL	0
TDAT[15]	204	IN_CELL	0
TDAT[14]	203	IN_CELL	0
TDAT[12]	202	IN_CELL	1
TDAT[13]	201	IN_CELL	0
TDAT[11]	200	IN_CELL	0
TDAT[10]	199	IN_CELL	0
TDAT[9]	198	IN_CELL	0
TDAT[7]	197	IN_CELL	0
TDAT[8]	196	IN_CELL	1
TDAT[6]	195	IN_CELL	1
TDAT[5]	194	IN_CELL	0
TDAT[4]	193	IN_CELL	0
TDAT[3]	192	IN_CELL	1
TDAT[2]	191	IN_CELL	1
TDAT[1]	190	IN_CELL	0
TDAT[0]	189	IN_CELL	1
TPRTY	188	IN_CELL	-
TERR	187	IN_CELL	-
TSX	186	IN_CELL	-
TSOC_TSOP	185	IN_CELL	-
TEOP	184	IN_CELL	-
STPA	183	OUT_CELL	-
TCA_PTPA	182	OUT_CELL	-
TMOD[0]	181	IN_CELL	-
TMOD[1]	180	IN_CELL	-
TENB	179	IN_CELL	-
TADR[3]	178	IN_CELL	-
TADR[2]	177	IN_CELL	-
TADR[1]	176	IN_CELL	-
TADR[0]	175	IN_CELL	-
TFCLK	174	IN_CELL	-
RDAT[31]	173	OUT_CELL	-
RDAT[30]	172	OUT_CELL	-
RDAT[29]	171	OUT_CELL	-

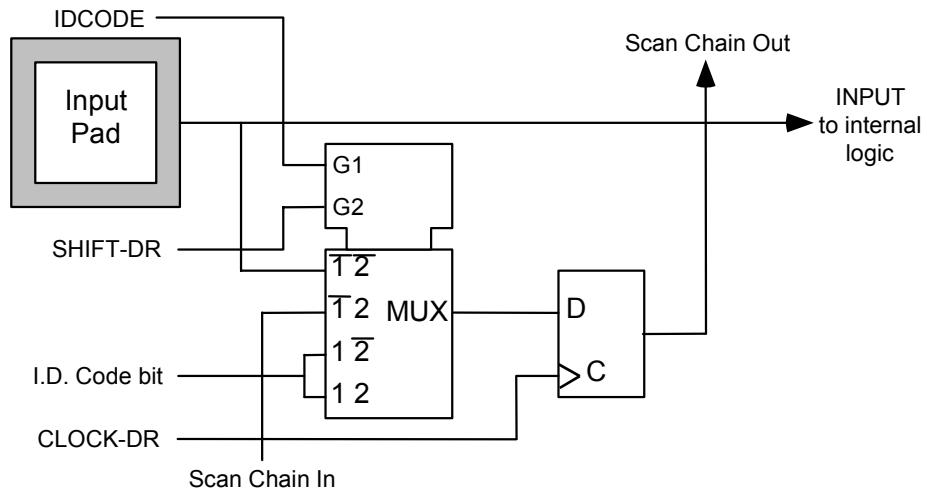
Pin/Enable	Register Bit	Cell Type	Device I.D.
RDAT[28]	170	OUT_CELL	-
RDAT[27]	169	OUT_CELL	-
RDAT[26]	168	OUT_CELL	-
RDAT[25]	167	OUT_CELL	-
RDAT[24]	166	OUT_CELL	-
RDAT[23]	165	OUT_CELL	-
RDAT[22]	164	OUT_CELL	-
RDAT[21]	163	OUT_CELL	-
RDAT[20]	162	OUT_CELL	-
RDAT[19]	161	OUT_CELL	-
RDAT[18]	160	OUT_CELL	-
RDAT[17]	159	OUT_CELL	-
RDAT[16]	158	OUT_CELL	-
RDAT[15]	157	OUT_CELL	-
RDAT[14]	156	OUT_CELL	-
RDAT[13]	155	OUT_CELL	-
RDAT[12]	154	OUT_CELL	-
RDAT[11]	153	OUT_CELL	-
RDAT[10]	152	OUT_CELL	-
RDAT[9]	151	OUT_CELL	-
RDAT[8]	150	OUT_CELL	-
RDAT[7]	149	OUT_CELL	-
RDAT[6]	148	OUT_CELL	-
RDAT[5]	147	OUT_CELL	-
RDAT[4]	146	OUT_CELL	-
RDAT[3]	145	OUT_CELL	-
RDAT[2]	144	OUT_CELL	-
RDAT[0]	143	OUT_CELL	-
RDAT[1]	142	OUT_CELL	-
RPRTY	141	OUT_CELL	-
REOP	140	OUT_CELL	-
RSOC_RSOP	139	OUT_CELL	-
RSX	138	OUT_CELL	-
RERR	137	OUT_CELL	-
RMOD[1]	136	OUT_CELL	-
RMOD[0]	135	OUT_CELL	-
RCA_RVAL	134	OUT_CELL	-
RENB	133	IN_CELL	-
RADR[3]	132	IN_CELL	-
RADR[2]	131	IN_CELL	-
RADR[1]	130	IN_CELL	-

Pin/Enable	Register Bit	Cell Type	Device I.D.
RFCLK	129	IN_CELL	-
RADR[0]	128	IN_CELL	-
RDCC[0]	127	OUT_CELL	-
RDCLK[0]	126	OUT_CELL	-
TDCLK[0]	125	OUT_CELL	-
TDCC[0]	124	IN_CELL	-
TDCC[1]	123	IN_CELL	-
TDCLK[1]	122	OUT_CELL	-
RDCLK[1]	121	OUT_CELL	-
RDCC[1]	120	OUT_CELL	-
RDCC[2]	119	OUT_CELL	-
RDCLK[2]	118	OUT_CELL	-
TDCLK[2]	117	OUT_CELL	-
TDCC[2]	116	IN_CELL	-
TDCC[3]	115	IN_CELL	-
TDCLK[3]	114	OUT_CELL	-
RDCLK[3]	113	OUT_CELL	-
RDCC[3]	112	OUT_CELL	-
RDCLK[4]	111	OUT_CELL	-
RDCC[4]	110	OUT_CELL	-
TDCC[4]	109	IN_CELL	-
TDCLK[4]	108	OUT_CELL	-
TDCC[5]	107	IN_CELL	-
TDCLK[5]	106	OUT_CELL	-
RDCLK[5]	105	OUT_CELL	-
RDCC[5]	104	OUT_CELL	-
RDCLK[6]	103	OUT_CELL	-
RDCC[6]	102	OUT_CELL	-
TDCC[6]	101	IN_CELL	-
TDCLK[6]	100	OUT_CELL	-
TDCC[7]	99	IN_CELL	-
TDCLK[7]	98	OUT_CELL	-
RDCLK[7]	97	OUT_CELL	-
RDCC[7]	96	OUT_CELL	-
RDCLK[8]	95	OUT_CELL	-
RDCC[8]	94	OUT_CELL	-
TDCC[8]	93	IN_CELL	-
TDCLK[8]	92	OUT_CELL	-
TDCC[9]	91	IN_CELL	-
TDCLK[9]	90	OUT_CELL	-
RDCLK[9]	89	OUT_CELL	-

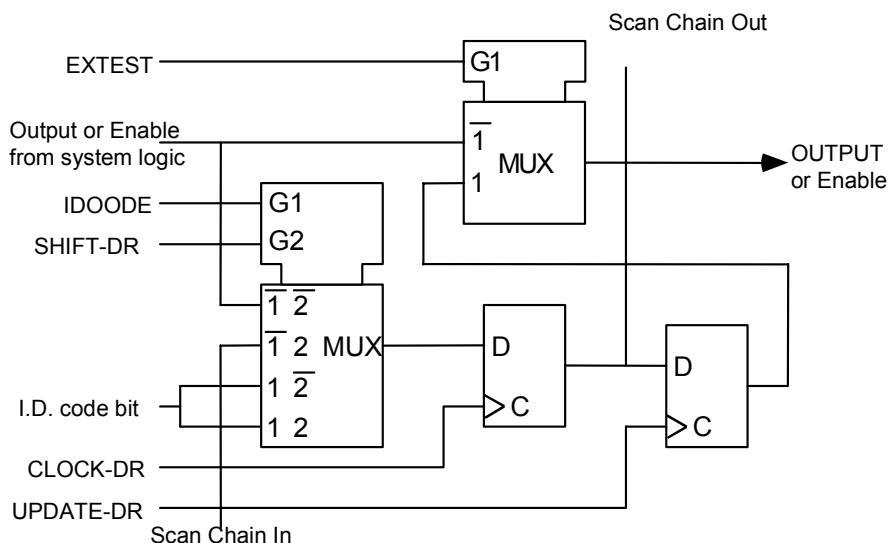
Pin/Enable	Register Bit	Cell Type	Device I.D.
RDCC[9]	88	OUT_CELL	-
RDCLK[10]	87	OUT_CELL	-
RDCC[10]	86	OUT_CELL	-
TDCC[10]	85	IN_CELL	-
TDCLK[10]	84	OUT_CELL	-
TDCC[11]	83	IN_CELL	-
TDCLK[11]	82	OUT_CELL	-
RDCLK[11]	81	OUT_CELL	-
RDCC[11]	80	OUT_CELL	-
RDCLK[12]	79	OUT_CELL	-
RDCC[12]	78	OUT_CELL	-
TDCC[12]	77	IN_CELL	-
TDCLK[12]	76	OUT_CELL	-
TDCC[13]	75	IN_CELL	-
TDCLK[13]	74	OUT_CELL	-
RDCLK[13]	73	OUT_CELL	-
RDCC[13]	72	OUT_CELL	-
RDCLK[14]	71	OUT_CELL	-
RDCC[14]	70	OUT_CELL	-
TDCC[14]	69	IN_CELL	-
TDCLK[14]	68	OUT_CELL	-
TDCC[15]	67	IN_CELL	-
TDCLK[15]	66	OUT_CELL	-
RDCLK[15]	65	OUT_CELL	-
RDCC[15]	64	OUT_CELL	-
POS_ATMB	63	IN_CELL	-
SPECLV	62	IN_CELL	-
APECLV	61	IN_CELL	-
SDTTL	60	IN_CELL	-
RALRM[15]	59	OUT_CELL	-
RALRM[14]	58	OUT_CELL	-
RALRM[13]	57	OUT_CELL	-
RALRM[12]	56	OUT_CELL	-
RALRM[11]	55	OUT_CELL	-
RALRM[10]	54	OUT_CELL	-
RALRM[9]	53	OUT_CELL	-
RALRM[8]	52	OUT_CELL	-
RALRM[7]	51	OUT_CELL	-
RALRM[6]	50	OUT_CELL	-
RALRM[5]	49	OUT_CELL	-
RALRM[4]	48	OUT_CELL	-

Pin/Enable	Register Bit	Cell Type	Device I.D.
RALRM[3]	47	OUT_CELL	-
RALRM[2]	46	OUT_CELL	-
RALRM[1]	45	OUT_CELL	-
RALRM[0]	44	OUT_CELL	-
RSTB	43	IN_CELL	-
TFPI	42	IN_CELL	-
TFPO	41	OUT_CELL	-
TCLK	40	OUT_CELL	-
RCLK	39	OUT_CELL	-
RFPO	38	OUT_CELL	-
INTB_EN	37	OUT_CELL	-
INTB	36	OUT_CELL	-
D[7]	35	IO_CELL	-
D_7_EN	34	OUT_CELL	-
D[6]	33	IO_CELL	-
D_6_EN	32	OUT_CELL	-
D[5]	31	IO_CELL	-
D_5_EN	30	OUT_CELL	-
D[3]	29	IO_CELL	-
D_3_EN	28	OUT_CELL	-
D[4]	27	IO_CELL	-
D_4_EN	26	OUT_CELL	-
D[2]	25	IO_CELL	-
D_2_EN	24	OUT_CELL	-
D[1]	23	IO_CELL	-
D_1_EN	22	OUT_CELL	-
D[0]	21	IO_CELL	-
D_0_EN	20	OUT_CELL	-
ALE	19	IN_CELL	-
WRB	18	IN_CELL	-
RDB	17	IN_CELL	-
CSB	16	IN_CELL	-
A[13]	15	IN_CELL	-
A[12]	14	IN_CELL	-
A[11]	13	IN_CELL	-
A[10]	12	IN_CELL	-
A[9]	11	IN_CELL	-
A[8]	10	IN_CELL	-
A[7]	9	IN_CELL	-
A[6]	8	IN_CELL	-
A[3]	7	IN_CELL	-

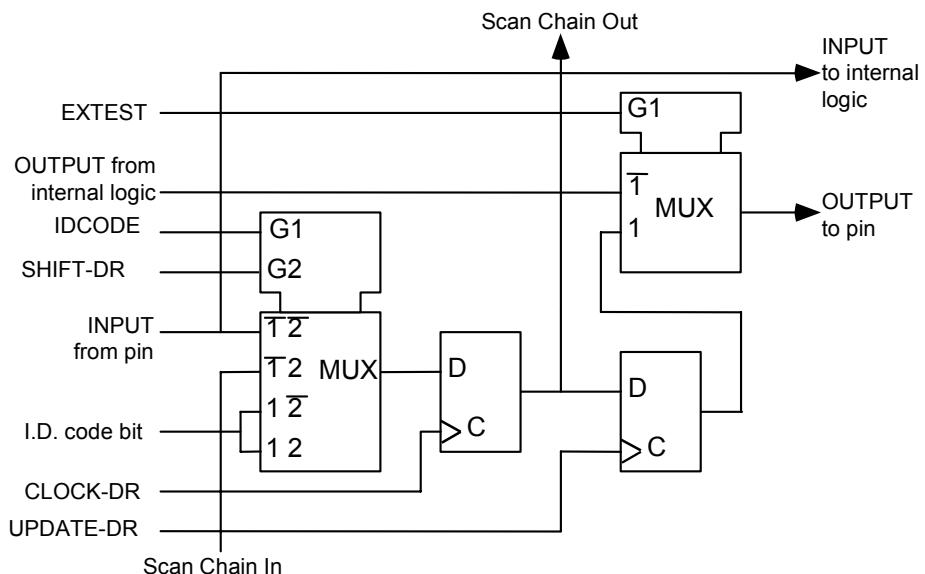
Pin/Enable	Register Bit	Cell Type	Device I.D.
A[5]	6	IN_CELL	-
A[2]	5	IN_CELL	-
A[4]	4	IN_CELL	-
A[1]	3	IN_CELL	-
A[0]	2	IN_CELL	-
HIZ	1	OUT_CELL	-
TCK		TAP Input	-
TMS		TAP Input	-
TDI		TAP Input	-
TDO		TAP Output	-
TRSTB		TAP Input	-


NOTES:

1. Enable “pinname_EN” tristates pin “pinname” when set high.
2. HIZ is the active low output enable for all OUT_CELL types except D[7:0] and INTB.
3. TDAT[31] is the first bit of the boundary scan chain closest to the TDI TAP input.


12.2.1 Boundary Scan Cells

In the following diagrams, CLOCK-DR is equal to TCK when the current controller state is SHIFT-DR or CAPTURE-DR, and unchanging otherwise. The multiplexer in the center of the diagram selects one of four inputs, depending on the status of select lines G1 and G2. The ID Code bit is as listed in the Boundary Scan Register table located above.


Figure 13: Input Observation Cell (IN_CELL)

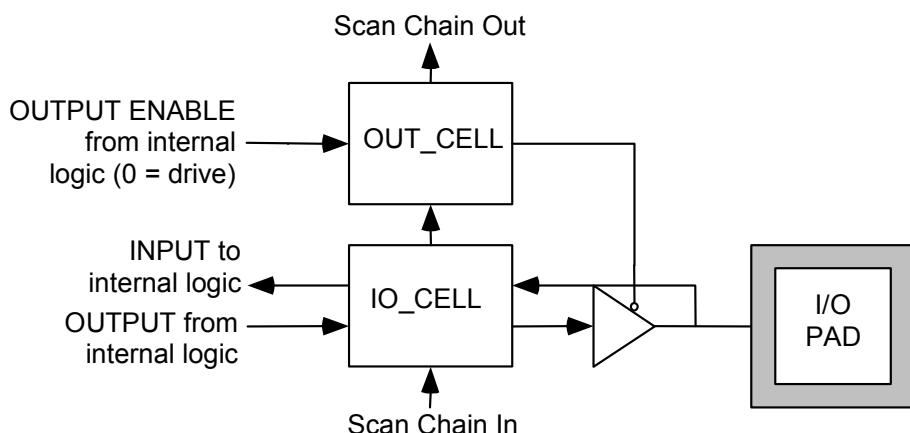
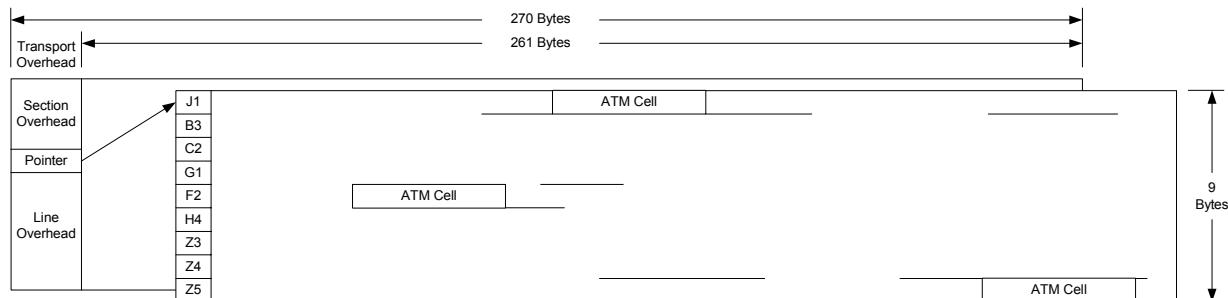

Figure 14: Output Cell (OUT_CELL)

Figure 15: Bidirectional Cell (IO_CELL)

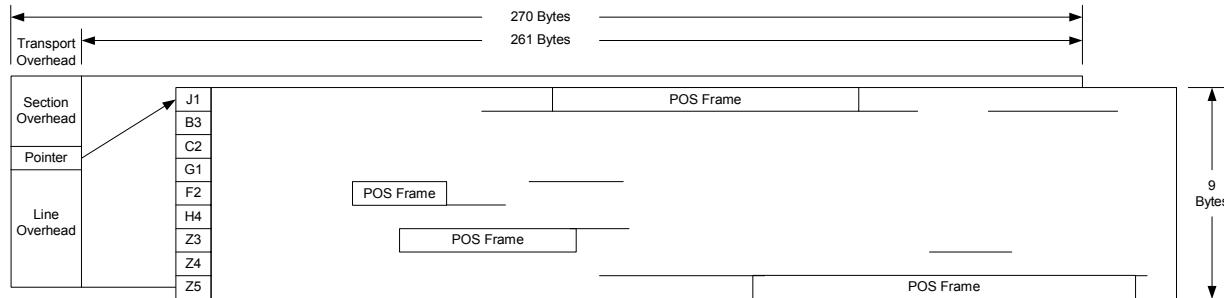
Figure 16: Layout of Output Enable and Bidirectional Cells


13 OPERATION

13.1 SONET/SDH Frame Mappings and Overhead Byte Usage

13.1.1 ATM Mapping

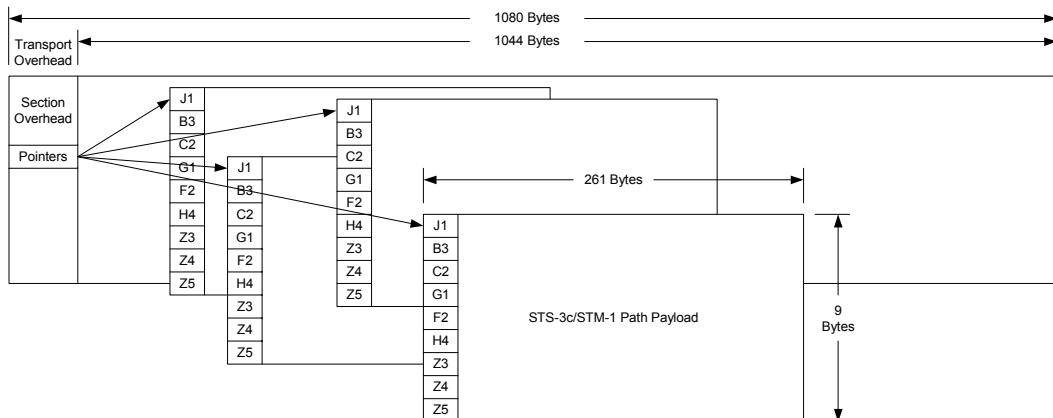
The S/UNI-16x155 processes the ATM cell mapping for STS-3c/STM-1 as shown below in Figure 17. The S/UNI-16x155 processes the transport and path overhead required to support ATM UNIs and NNIs. In addition, the S/UNI-16x155 provides support for the APS bytes, the data communication channels and provides full control and observability of the transport and path overhead bytes through register access. In Figure 17, the STS-3c/STM-1 mapping is shown. In this mapping, three stuff columns are included in the SPE. No other options are provided.


Figure 17: A TM Mapping into the STS-3c/STM-1 SPE

13.1.2 Packet over SONET/SDH Mapping

The S/UNI-16x155 processes the Packet over SONET/SDH mapping for STS-3c/STM-1 as shown below in Figure 18. The S/UNI-16x155 processes the transport and path overhead required to support Packet over SONET/SDH applications. In addition, the S/UNI-16x155 provides support for the APS bytes, the data communication channels and provides full control and observability of the transport and path overhead bytes through register access. In Figure 18, the STS-3c/STM-1 mapping is shown. In this mapping, the entire SPE is used for POS Frames.

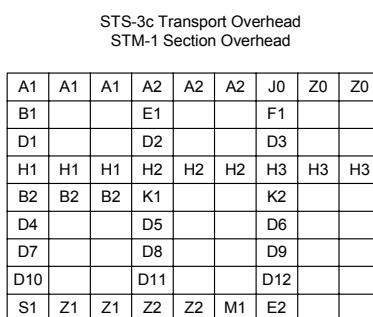
Figure 18: POS Mapping into the STS-3c/STM-1 SPE


13.1.3 APS Interface Mapping

The APS serial interfaces are used to pass SONET/SDH STS-3c/STM-1 path information between two S/UNI-16x155 devices using four 622.08 Mbit/s STS-12/STM-4 interfaces. Each APS interface passes the path overhead and payload of four channels transparently over the link. The section overhead contains valid A1, A2, B1, D1, D2 and D3 bytes. The Line overhead is invalid. Figure 19 shows the mapping.

When the APS interface is carrying a transmit path being bridged, the pointer is determined by the source Transmit Path Overhead Processor (TPOP). The path overhead is inserted by the source TPOP and is passed transparently across the APS interface.

When the APS interface is carrying a receive path being protected, the pointer is determined by the receive pointer value and the frequency offset between the reference clock REFCLK and the receive serial interface. The STAL blocks perform pointer manipulation to ensure the payload and path overhead are passed transparently.


Figure 19: APS Mapping into the STS-12/STM-4 SPE

13.1.4 Transport and Path Overhead Bytes

Under normal operating conditions, the S/UNI-16x155 processes a subset of the complete transport overhead present in an STS-3c/STM-1 stream. The byte positions processed by the S/UNI-16x155 are indicated in Figure 20.

Figure 20: STS-3c/STM-1 Overhead

Transport Overhead Bytes

A1, A2: The frame alignment bytes (A1, A2) locate the SONET/SDH frame in the STS-3c/STM-1 serial stream.

J0 The J0 byte is currently defined as the STS-3c/STM-1 section trace byte for SONET/SDH. J0 byte is not scrambled by the frame synchronous scrambler.

Z0: The Z0 bytes are currently defined as the STS-3c/STM-1 section growth bytes for SONET/SDH. Z0 bytes are not scrambled by the frame synchronous scrambler.

B1: The section bit interleaved parity byte provides a section error monitoring function.

In the transmit direction, the S/UNI-16x155 calculates the B1 byte over all bits of the previous frame after scrambling. The calculated code is then placed in the current frame before scrambling.

In the receive direction, the S/UNI-16x155 calculates the B1 code over the current frame and compares this calculation with the B1 byte received in the following frame. B1 errors are accumulated in an error event counter.

D1 - D3: The section data communications channel provides a 192 kbit/s data communications channel for network element to network element communications.

In the transmit direction, the section DCC byte is inserted from a dedicated 192 kbit/s input, TDCC[15:0], when the channel is configured for section DCC.

In the receive direction, the section DCC is extracted on a dedicated 192 kbit/s output, RDCC[15:0], when the channel is configured for section DCC.

H1, H2: The pointer value bytes locate the path overhead column in the SONET/SDH frame.

In the transmit direction, the S/UNI-16x155 inserts a fixed pointer value, with a normal new data flag indication in the first H1-H2 pair. The concatenation indication is inserted in the remaining H1-H2 pairs (STS-3c/STM-1). Pointer movements can be induced using the TPOP registers.

In the receive direction, the pointer is interpreted to locate the SPE. The loss of pointer state is entered when a valid pointer cannot be found. Path AIS is detected when H1, H2 contain an all ones pattern.

H3: The pointer action bytes contain synchronous payload envelope data when a negative stuff event occurs. The all zeros pattern is

inserted in the transmit direction. This byte is ignored in the receive direction unless a negative stuff event is detected.

B2: The line bit interleaved parity bytes provide a line error monitoring function.

In the transmit direction, the S/UNI-16x155 calculates the B2 values. The calculated code is then placed in the next frame.

In the receive direction, the S/UNI-16x155 calculates the B2 code over the current frame and compares this calculation with the B2 code receive in the following frame. Receive B2 errors are accumulated in an error event counter.

K1, K2: The K1 and K2 bytes provide the automatic protection switching channel. The K2 byte is also used to identify line layer maintenance signals. Line RDI is indicated when bits 6, 7, and 8 of the K2 byte are set to the pattern '110'. Line AIS is indicated when bits 6, 7, and 8 of the K2 byte are set to the pattern '111'.

In the transmit direction, the S/UNI-16x155 provides register control for the K1 and K2 bytes.

In the receive direction, the S/UNI-16x155 provides register access to the filtered APS channel. Protection switch byte failure alarm detection is provided. The K2 byte is examined to determine the presence of the line AIS, or the line RDI maintenance signals.

D4 - D12: The line data communications channel provides a 576 kbit/s data communications channel for network element to network element communications.

In the transmit direction, the line DCC byte is inserted from a dedicated 576 kbit/s input, TDCC[15:0], when the channel is configured for line DCC.

In the receive direction, the line DCC is extracted on a dedicated 576 kbit/s output, RDCC[15:0], when the channel is configured for line DCC.

S1: The S1 byte provides the synchronization status byte. Bits 5 through 8 of the synchronization status byte identifies the synchronization source of the STS-3c/STM-1 signal. Bits 1 through 4 are currently undefined.

In the transmit direction, the S/UNI-16x155 provides register control for the synchronization status byte.

In the receive direction, the S/UNI-16x155 provides register access to the synchronization status byte. The SSTB block also provides circuitry to detect synchronization status mismatch and unstable alarms.

Z1: The Z1 bytes are located in the second and third STS-1's locations of an STS-3c/STM-1 and are allocated for future growth.

M1: The M1 byte is located in the third STS-1 locations of a STS-3c/STM-1 and provides a line far end block error function for remote performance monitoring.

Z2: The Z2 bytes are located in the first and second STS-1's locations of a STS-3c/STM-1 and are allocated for future growth.

In the transmit direction, Z2 byte is internally generated. The number of B2 errors detected in the previous interval is inserted.

In the receive direction, a legal Z2 byte value is added to the line FEBE event counter.

Path Overhead Bytes

J1: The Path Trace byte is used to repetitively transmit a 64-byte CLLI message (for SONET/SDH networks), or a 16-byte E.164 address (for SDH networks). When not used, this byte should be set to transmit continuous null characters. Null is defined as the ASCII code, 0x00.

In the transmit direction, characters can be inserted using the TPOP Path Trace register or the SPTB block. The register is the default selection and resets to 0x00 to enable the transmission of NULL characters from a reset state.

In the receive direction, the path trace message is optionally extracted into the 16 or 64 byte path trace message buffer.

B3: The path bit interleaved parity byte provides a path error monitoring function.

In the transmit direction, the S/UNI-16x155 calculates the B3 bytes. The calculated code is then placed in the next frame.

In the receive direction, the S/UNI-16x155 calculates the B3 code and compares this calculation with the B3 byte received in the next frame. B3 errors are accumulated in an error event counter.

C2: The path signal label indicator identifies the equipped payload type. For ATM payloads, the identification code is 0x13. For Packet over SONET/SDH (including $X^{43}+1$ payload scrambling), the identification code is 0x16.

In the transmit direction, the S/UNI-16x155 inserts the value 0x13 or 0x16 using the TPOP Path Signal Label register.

In the receive direction, the code is available in the RPOP Path Signal Label register. In addition, the SPTB block also provides circuitry to detect path signal label mismatch and unstable alarms.

G1: The path status byte provides a path FEBE function, and a path remote defect indication function. Three bits are allocated for remote defect indications: bit 5 (the path RD 1 bit), bit 6 (the auxiliary path RDI bit) and bit 7 (Enhanced RDI bit). Taken together these bits provide a eight state path RDI code that can be used to categorize path defect indications.

In the transmit direction, the S/UNI-16x155 provides register bits to control the path RDI (bit 5) and auxiliary path RDI (bit 6) states. For path FEBE, the number of B3 errors detected in the previous interval is inserted either automatically or using a register. This path FEBE code has 9 legal values, namely 0 to 8 errors.

In the receive direction, a legal path FEBE value is accumulated in the path FEBE event counter. In addition, the path RDI and auxiliary path RDI signal states are available in internal registers.

H4: The multi-frame indicator byte is a payload specific byte, and is not used for ATM payloads. This byte is forced to 0x00 in the transmit direction, and is ignored in the receive direction.

Z3 - Z5: The path growth bytes provide three unused bytes for future use.

UTOPIA Level 3 ATM Cell Data Structure

ATM cells on the Level 3 interface use either a 52 word, 32-bit UTOPIA Level 3 compliant data structure or a 56 word, 32-bit UTOPIA Level 3 compliant data structure. The data structures are shown in Figure 21 and Figure 22.

For the 52 byte ATM cell structure, bit 31 of each word is the most significant bit (which corresponds to the first bit transmitted). The HCS octet (H5) is not contained in this structure and is generated by the Transmit Cell Processor (TXCP). The start of cell indications (TSOC and RSOC) are coincident with word 1 of the structure.

Figure 21: 32-bit Wide, 52 Byte ATM Cell Structure

	Bit 31	Bit 24	Bit 23	Bit 16	Bit 15	Bit 8	Bit 7	Bit 0
Word 1	H1		H2		H3		H4	
Word 2	Byte 1		Byte 2		Byte 3		Byte 4	
Word 3	Byte 4		Byte 5		Byte 6		Byte 7	
Word 4	Byte 8		Byte 9		Byte 10		Byte 11	
Word 5	Byte 12		Byte 13		Byte 14		Byte 15	
	•		•		•		•	
	•		•		•		•	
	•							
Word 13	Byte 45		Byte 46		Byte 47		Byte 48	

For the 56 byte ATM cell structure, bit 31 of each word is the most significant bit (which corresponds to the first bit transmitted). The HCS octet (H5) and HCS control bytes are passed through this structure to the TXCP block. The UDF bytes are ignored by the TUL3. The start of cell indications (TSOC and RSOC) are coincident with word 1 of the structure.

Figure 22: 32-bit Wide, 56 Byte ATM Cell Structure

	Bit 31	Bit 24	Bit 23	Bit 16	Bit 15	Bit 8	Bit 7	Bit 0
Word 1	H1		H2		H3		H4	
Word 2	H5			HCS Control		UDF		UDF
Word 3	Byte 1		Byte 2		Byte 3		Byte 4	
Word 4	Byte 4		Byte 5		Byte 6		Byte 7	
Word 5	Byte 8		Byte 9		Byte 10		Byte 11	
Word 6	Byte 12		Byte 13		Byte 14		Byte 15	
	⋮		⋮		⋮		⋮	
Word 14	Byte 45		Byte 46		Byte 47		Byte 48	

13.3 POS-PHY Level 3 Data Structures

The 16-bit POS-PHY Level 3 packet data structure is shown in Figure 23. The packet length of 109 bytes is chosen arbitrarily for illustrative purposes only. Other lengths are acceptable.

Bit 31 of each word is the most significant bit (which corresponds to the first bit transmitted). Octets are written in the same order they are to be transmitted on the SONET line. The start of the packet is marked with TSOP/RSOP set high and the end of the packet is marked with TEOP/REOP set high. All words are composed of four octets, except the last word of a packet, which can have one, two, three or four bytes of valid data, determined by the TMOD[1:0]/RMOD[1:0] signals.

Both the start and the end of the packet are identified by the TSOP/RSOP and TEOP/REOP signals. In transmit direction, all packets marked with TERR and TEOP will be appended by the HDLC abort sequence by the TXFP block. In the receive direction, HDLC aborted packets, invalid packets, illegal length packets are marked by RERR and REOP.

Figure 23: 32-Wide, 109 Byte Packet Data Structure

	Bit 31	Bit 24	Bit 23	Bit 16	Bit 15	Bit 8	Bit 7	Bit 0
Word 1	Byte 1		Byte 2		Byte 3		Byte 4	
Word 2	Byte 5		Byte 6		Byte 7		Byte 8	
Word 3	Byte 9		Byte 10		Byte 11		Byte 12	
Word 4	Byte 13		Byte 14		Byte 15		Byte 16	
Word 5	Byte 17		Byte 18		Byte 19		Byte 20	
Word 6	Byte 21		Byte 22		Byte 23		Byte 24	
	⋮		⋮		⋮		⋮	
Word 28	Byte 109		XX		XX		XX	

A 109 Byte Packet

When transferring ATM cells over the POS-PHY Level 3 interface, the UTOPIA ATM cell structures are used. The CELLFORM register bit defines the size of the ATM cell structure when a channel is configured for ATM traffic in POS-PHY operation. A single ATM cell structure may be transferred in multiple interface data bursts less than 52/56 bytes in size.

The first word of the ATM cell structure is marked by TSOP/RSOP and the last word of the structure is marked by TEOP/REOP. In the transmit direction, the ATM cell will be transmitted when the entire ATM cell structure is received. In the receive direction, the ATM cell structures will contain complete ATM cells. The TERR signal must be low at all times for the channel. RERR signal will be low at all times for the channel.

Last DWORD of an ATM cell is trapped in RUL3 FIFO for 52 bytes cell structure, if RUL3 TRAN is set to 4, 8, 12, 16 or 24 bytes. For 56 bytes cell structure, the last DWORD of ATM cell will be trapped if RUL3 TRAN is set to 4 bytes. TMOD is ignored for channels carrying ATM traffic. When a packet is 1, 2, or 3 bytes smaller than the correct size for a PHY configured for ATM cells (52/56 bytes), the entire last word on the POS-PHY Level 3 interface is used as part of the cell, regardless of the state of the TMOD pins. In this case, no errors are reported by the S/UNI-16x155. Incorrectly sized cells, other than 1,2, or 3 bytes smaller than 52 or 56, cause a TSOCL to assert.

13.4 Setting ATM Mode of Operation

The following sequence of operation should be used to prepare the device for the ATM operation.

- 1- Input pin POS_ATMB should be tied low to enable ATM operation. This pin can be overridden in software by writing a logic one to the L3MODEINV bits in the TUL3 (register 0x1010) and RUL3 (register 0x1020).

When using the software override feature, these bits must be set after step (2), as resetting the device restores the registers to their default values. This feature is useful for building a single PHY card that can be configured in software as a POS or ATM card.

- 2- Reset the device. This can be done by asserting the RSTB pin or setting the RESET bit in the Master Reset and ID Register (Register 0x000).
- 3- If the TFCLK and RFCLK clock inputs are not stable clocks, wait until these clock inputs stabilize. Reset the DLL units associated with each clock input (write 0x00 to registers 0x1032 and 0x1036 respectively).
- 4- Reset the receive and transmit FIFO's by setting the FIFORST register bits in the TUL3 (register 0x1010), RUL3 (register 0x1020) and each TXCP (offset 0x080) and RXCP (offset 0x062) blocks. Keep these bits set for at least 1 μ s, then set the bit back to its inactive logic zero value.
- 5- Set the path signal label C2 byte (offset 0x048 and offset 0x055) to 0x13 to identify ATM payload data.
- 6- Reset the performance monitoring counters by writing a logic zero to the Master Reset and Identity register (Register 0x00). TIP remains high as the performance monitoring registers are loaded, and is set to a logic zero when the transfer is complete.
- 7- Bit 4 in registers 0X?062 must be set low for UTOPIA Level 3 normal mode operation.

13.5 Setting Packet-Over-SONET/SDH Mode of Operation

The following sequence of operation should be used to prepare the device for the Packet over SONET/SDH (POS) operation.

- 1- Input pin POS_ATMB should be tied high to enable POS operation. This pin can be overridden in software by writing a logic one to the L3MODEINV bits in

the TUL3 (register 0x1010) and RUL3 (register 0x1020).

When using the software override feature, these bits must be set after step (2), as resetting the device restores the registers to their default values. This feature is useful for building a single PHY card that can be configured in software as a POS or ATM card.

- 2- Reset the device. This can be done by asserting the RSTB pin or setting the RESET bit in the Master Reset and ID Register (Register 0x000).
- 3- If the TFCLK and RFCLK clock inputs are not stable clocks, wait until these clock inputs stabilize. Reset the DLL units associated with each clock input (write 0x00 to registers 0x1032 and 0x1036 respectively).
- 4- Reset the receive and transmit FIFO's by setting the FIFO_RST register bits in the TUL3 (register 0x1010), RUL3 (register 0x1020) and each TXFP (offset 0x0C1) and RXFP (offset 0x0A0) blocks. Keep these bits set for at least 1 μ s, then set the bit back to its inactive logic zero value.
- 5- Set the path signal label C2 byte (offset 0x048 and offset 0x055) to 0x16 to identify POS payload data.
- 6- Reset the performance monitoring counters by writing a logic zero to the Master Reset and Identity register (Register 0x00). TIP remains high as the performance monitoring registers are loaded, and is set to a logic zero when the transfer is complete.
- 7- In order to avoid frequent TXFP underrun, the recommended TXFP and TUL3 setting in bytes are: TXFP TIL=192 bytes, TXFP LWM=200 bytes, TXFP HWM=204 bytes, TUL3 LWM=96 bytes, TUL3 HWM=172 bytes, TUL3 burst=32 bytes.

13.6 Setting SONET or SDH Mode of Operation

The SONET and SDH standard for optical networking are very similar with only minor difference in overhead processing. The main difference between the SONET (Bellcore GR-253-CORE) and SDH (ITU.707) standards lies in the handling of some of the overhead bytes. Other details, like framing and data payload mappings are equivalent in SONET and SDH.

The bit error rate (BER) monitoring requirements are also slightly different between SONET and SDH. An application note, PMC-950820, explains the different parameters in detail for the RASE block.

The list below shows the various register setting to configure the S/UNI-16x155 for either SONET or SDH operation.

Table 18: Settings for SONET or SDH Operation

Configuration Registers	SONET	SDH
SDH_J0/Z0 (register offset 0x004)	0	X
ENSS (register offset 0x03D)	0	1
Path LEN16 (register offset 0x028)	0	1
Section LEN16 (register offset 0x050)	0	1
S[1:0] (register offset 0x46)	00	10

Notes:

1. SONET requires Z0 bytes to be set to the number corresponding to the STS-1 column number. SDH consider those bytes reserved.
2. When forcing a constant Z0 pattern (SDH_J0/Z0 is high), the Z0 bytes must be DC balanced (approximately the same number of ones and zeros) as the bytes are not scrambled. Failure to do so may cause downstream clock recovery to lose lock.
3. SONET uses 64 byte trace messages while SDH used 16 byte trace messages.
4. SDH specification requires the detector of SS bits to be “10”.
5. The SS bits are undefined for SONET, but must be set to “10” for SDH.

13.7 Bit Error Rate Monitor

The S/UN-16x155 provides two BERM blocks per channel. One can be dedicated to monitor at the Signal Degrade (SD) error rate and the other dedicated to monitor at the Signal Fail (SF) error rate for the channel.

The Bit Error Rate Monitor (BERM) block counts and monitor line BIP errors over programmable periods of time (window size). It can monitor to declare an alarm or to clear it if the alarm is already set. A different threshold and accumulation period must be used to declare or clear the alarm, whether or not those two operations are not performed at the same BER. The following table list the recommended content of the BERM registers for different error rates (BER). Both BERM in the TSB are equivalent and are programmed similarly. In a normal application they will be set to monitor different BER.

When the SF/SD CMODE bit is set to one, the clearing monitoring is recommended to be performed using a window size that is 8 times longer than the declaration window size. When the SF/SD CMODE bit is set to zero, the clearing monitoring is recommended to be performed using a window size equal to the declaration window size. In all cases, the clearing threshold is calculated for a BER that is 10 times lower than the declaration BER, as required in the references. The table indicates the declare BER and evaluation period only.

The saturation threshold is not listed in the table, and should be programmed with the value 0xFFFF by default, deactivating saturation. Saturation capabilities are provided to allow the user to address issues associated with error bursts.

For additional information, please refer to the BERM application note (PMC-950820) for more detailed information.

Table 19: Recommended BERM settings

STS	Declare BER	Evals / Second	SF/SD SMODE	SF/SD CMODE	SF/SD SAP	SF/SD DTH	SF/SD CTH
STS-3c	10-3	0.008	0	0	0x000008	0x245	0x083
STS-3c	10-4	0.013	0	1	0x00000D	0x0A3	0x0B4
STS-3c	10-5	0.100	0	1	0x000064	0x084	0x08E
STS-3c	10-6	1.000	0	1	0x0003E8	0x085	0x08E
STS-3c	10-7	10.000	0	1	0x002710	0x085	0x08E
STS-3c	10-8	83.000	0	1	0x014438	0x06D	0x077
STS-3c	10-9	667.000	0	1	0x0A2D78	0x055	0x061

13.8 Auto Alarm Control Configuration

The S/UNI-16x155 supports the automatic generation of transmit alarm information based on the detected receive alarms. This functionality is controlled by the master AUTOxx register bits in channel register offset 0x002 and the Auto Path and Line Configuration channel register offsets 0x008 to 0x00F.

When consequential action is enabled for a given alarm condition, other S/UNI-16x155 configuration registers become important. For instance, if consequential action for signal degrade is enabled, the RASE must be configured for the desired alarm thresholds. The following table lists register settings for path RDI and extended path RDI interfaces for a channel (register offsets are supplied for channel #0).

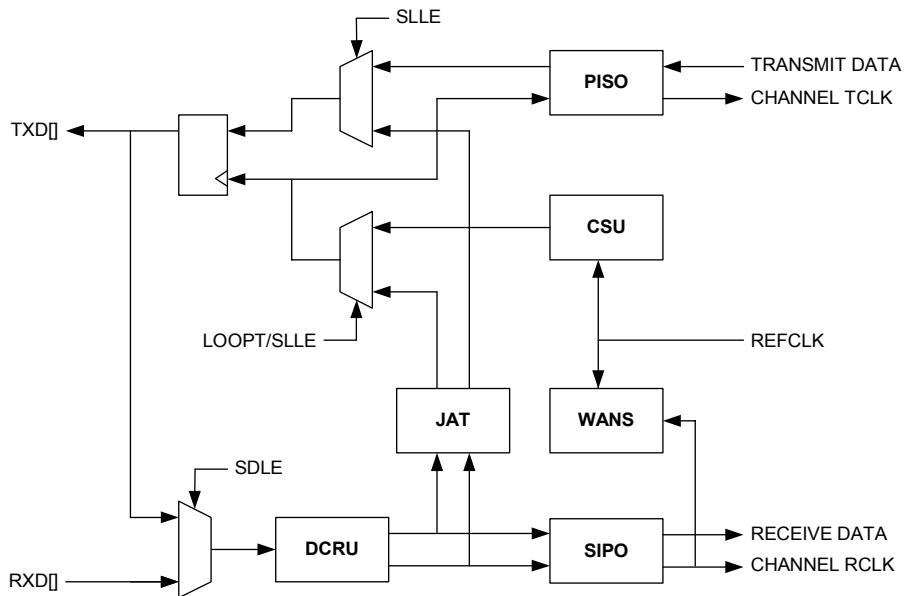
Table 20: Path RDI and Extended RDI Register Settings

Offset	RDI	EPRDI
0x009	11111111	01101111
0x00A	xxxxxxxx	11111111
0x00B	10xxx010	11xxx111
0x040	x00x00xx	x11x00xx

When a channel's cross connect is active, the AUTO Path Configuration register functionality changes. In some cases, the AUTO Path Configuration specifies AUTORDI functionality for two channels (working channel of two channels bridged together). In other cases, the AUTO Path Configuration specifies AUTORDI functionality for another channel (crossbar between two channels). And in some cases, the AUTO Path Configuration register is ignored (protection channel of two channels bridged together).

When a working channel is bridging path from another channel or device, the AUTO Path Configuration register configures the AUTORDI functionality for the bridged channels. Since the same receive path processor (RPOP) is used no matter the setting of the receive APS enable RXEN (selecting working or protection channel).

When a channel has been cross connected with another channel (crossbar where the two channel path's are switched), the AUTO Path Configuration register specifies AUTORDI functionality for the other channel. The other channel's AUTO Path Configuration register specifies AUTRDI functionality for the channel.


When a protection channel is bridging path from another channel or device, the AUTO Path Configuration register is ignored. In this mode, the source and sink of path is in the other device and the path processors (RPOP and TPOP) are unused.

13.9 Clocking Options

The S/UNI-16x155 supports several clocking modes. Figure 24 is an abstraction of the clocking topology for a channel. The S/UNI-16x155 can operate in source time, internally looped timed and externally loop timed.

Source timed operation is used for all public user network interfaces (UNIs) and for private UNIs and private network node interfaces (NNIs) that are not synchronized to the recovered clock.

Figure 24: Clocking Structure

The transmit clock in a public UNI must conform to SONET/SDH Network Element (NE) requirements specified in Bellcore GR-253-CORE. These requirements include jitter generation, short term clock stability, phase transients during synchronization failure, and holdover. The 77.76 MHz clock source is typically a VCO (or temperature compensated VCXO) locked to a primary reference source for public UNI applications. The accuracy of this clock source should be within ± 20 ppm of 77.76 MHz to comply with the SONET/SDH network element free-run accuracy requirements. The S/UNI-16x155 WANS block can be used to implement the system timing reference.

The transmit clock in a private UNI or a private NNI may be locked to an external reference or may free-run. The simplest implementation requires an oscillator free-running at 77.76 MHz.

Source timed operation is selected by clearing the LOOPT bit of the channel's Master Configuration register. REFCLK is multiplied by 2 to become the 155.52 MHz transmit clock. REFCLK must be jitter free. The source REFCLK is also internally used as the clock recovery reference during receive loss of transition conditions.

Internally loop timed operation is used for private UNIs and private NNIs that require synchronization to the recovered clock. This mode is selected by setting the LOOPT bit of the channel's Master Control register to logic one. Normally,

the transmit clock is locked to the receive data. In the event of a loss of signal/transition condition, the transmit clock is synthesized from REFCLK.

Externally loop timed operation makes use of the WAN Synchronization block capabilities. This mode can be achieved when the channel's LOOPT is set to logic zero. The timing loop is achieved at the system level, through a microprocessor, an external VCXO and back through the REFCLK input. This mode allows an S/UNI-16x155 to meet Bellcore wander transfer and holdover stability requirements.

13.10 WAN Synchronization (WANS Block)

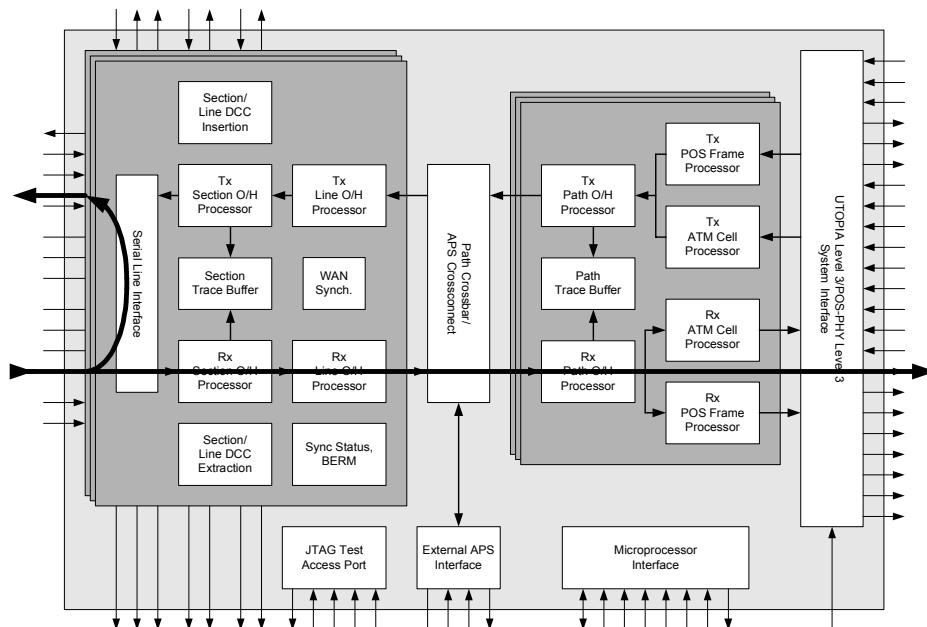
The WANS provides a means to implement a Stratum 3 or lower system timing reference with a minimum amount of external circuitry. The WANS implements a phase detector necessary to create a digital control PLL.

A description of how to program and use the WANS feature will be made available in the S/UNI-16x155 reference design (PMC-200-0506).

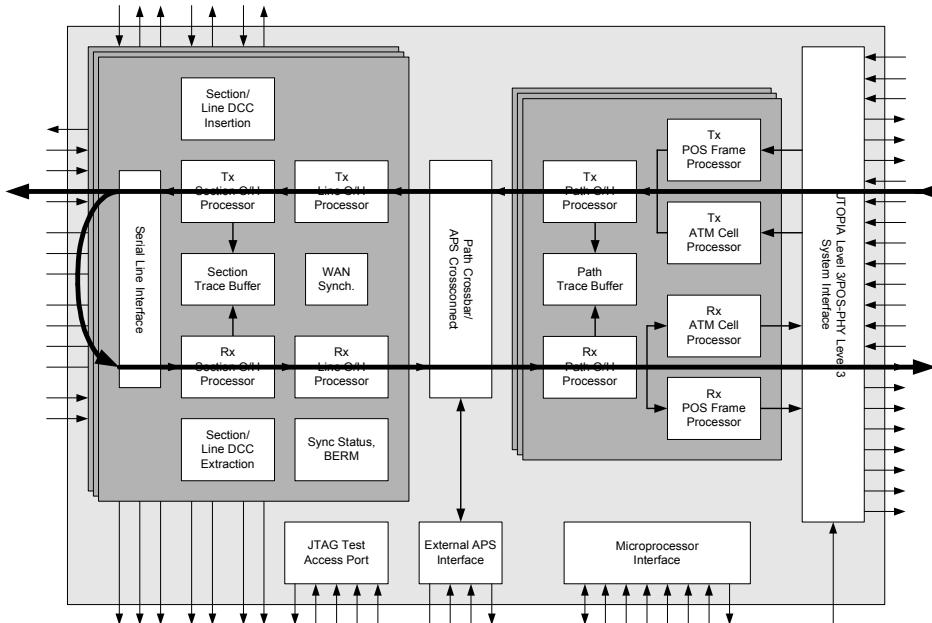
13.11 Loopback Operation

The S/UNI-16x155 supports five loopback functions for each channel: path loopback, line loopback, data diagnostic loopback, parallel diagnostic loopback and serial diagnostic loopback. Each channel's loopback modes operate independently. The loopback modes are activated by the PDLE, SLLE, DLE, DPLE and SDLE bits contained in the channel's Master Configuration registers.

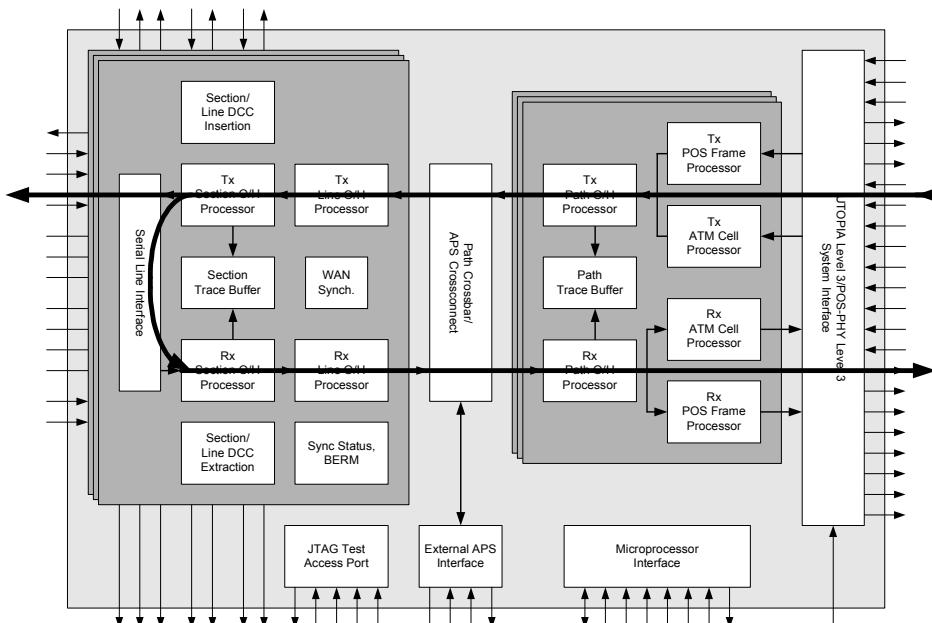
The line loopback, see Figure 25, connects the high speed receive data and clock to the high speed transmit data and clock, and can be used for line side investigations (including clock recovery and clock synthesis). While in this mode, the entire receive path is operating normally and cells can be received through the FIFO interface.

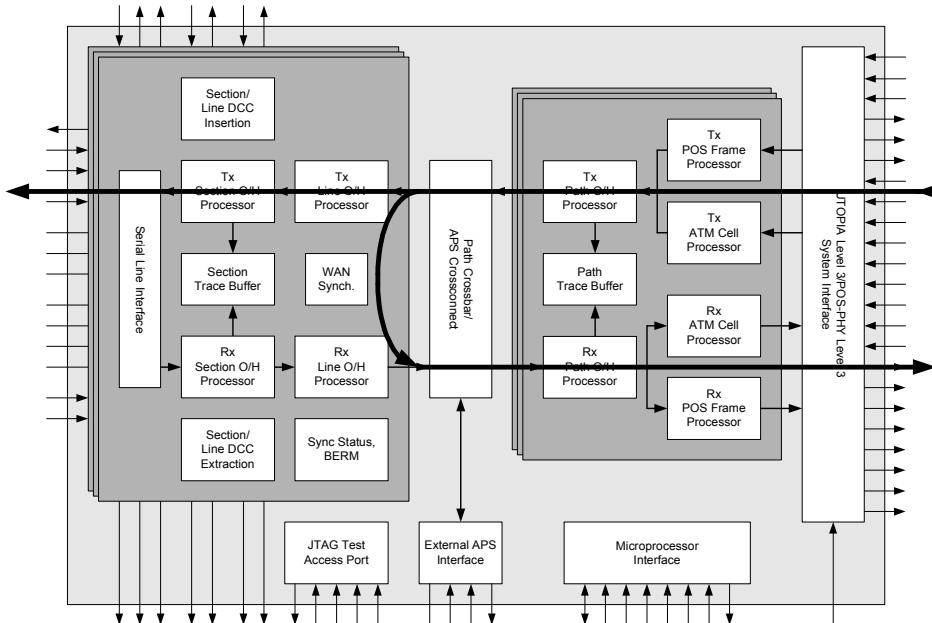

The serial diagnostic loopback, see Figure 26, connects the high speed transmit data and clock to the high speed receive data and clock. While in this mode, the entire transmit path is operating normally and data is transmitted on the TXD+/- outputs.

The parallel diagnostic loopback, see Figure 27, connects the byte wide transmit data and clock to the byte wide receive data and clock. While in this mode, the entire transmit path is operating normally and data is transmitted on the TXD+/- outputs.


The path diagnostic loopback, see Figure 28, connects the transmit path processor TPOP output to the receive path processor RPOP. While in this mode, the entire transmit path is operating normally and data is transmitted on the TXD+/- outputs.

The data diagnostic loopback, see Figure 29, connects the transmit POS/ATM processor TXFP/TXCP) to the corresponding receive POS/ATM processor (RXFP/RXCP). While in this mode, the transmit path does not operate normally and the data transmitted on the TXD+/- outputs is invalid.


Figure 25: Line Loopback Mode


Figure 26: Serial Diagnostic Loopback Mode

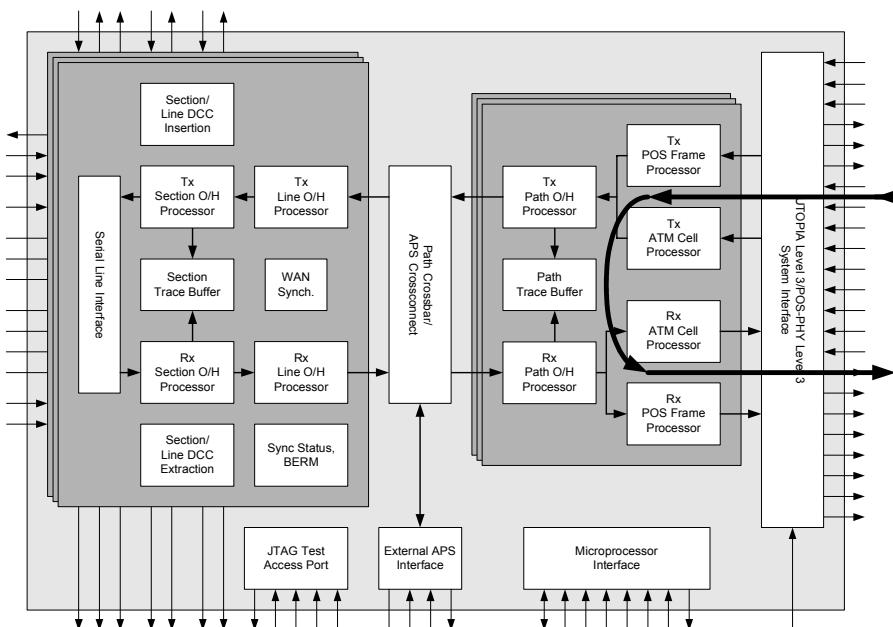
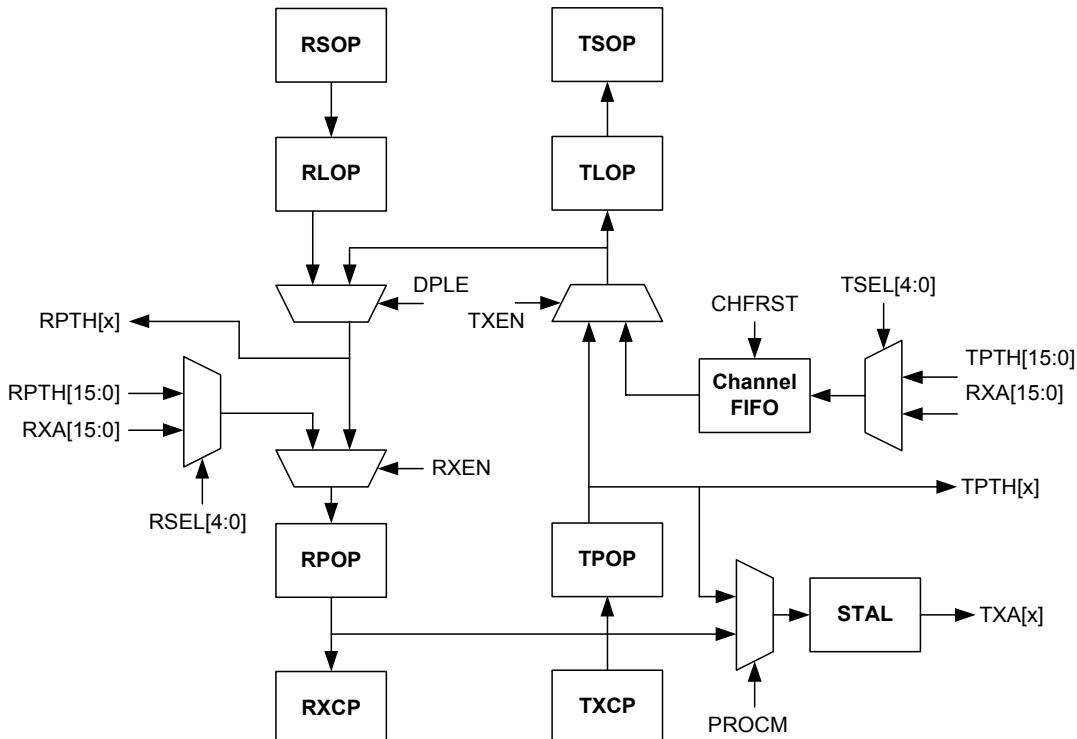

Figure 27: Parallel Diagnostic Loopback Mode

Figure 28: Path Diagnostic Loopback Mode

Figure 29: Data Diagnostic Loopback Mode

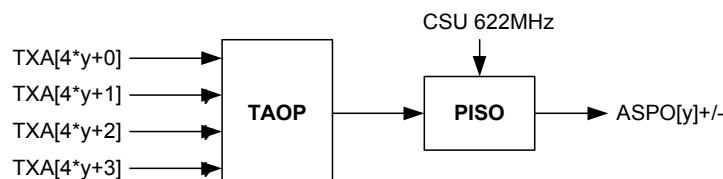


13.12 APS Support

The S/UNI-16x155 has the ability to exchange transmit path data with another S/UNI-16x155 in order to implement APS interface. The APS support logic may also be used to reassign at the path level the channel numbers in a single S/UNI-16x155. The diagram in Figure 30 shows the APS support logic for each channel. The diagnostic path loop back DPLE is shown to illustrate that path loop back includes all path functions including the APS stream if used.

In the transmit direction, the transmit path may be configured using the TXEN register to use the normal transmit path from TPOP or the APS path stream. The APS path stream is configured using the TSEL[4:0] registers to select from the other TPOP path sources in the S/UNI-16x155 (TPTH[15:0]) or from the receive APS channels (RXA[15:0]). The channel adds section and line overhead to the transmit path data stream using its TSOP and TLOP units. Thus, each channel has unique K1/K2 byte control.

Figure 30: Channel APS Structure

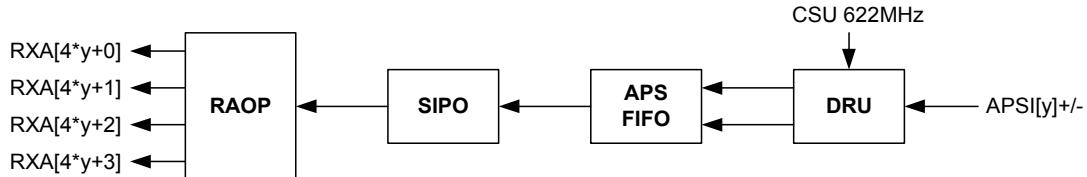

In the receive direction, channel processes section and line overhead in the receive path stream using its RSOP and RLOP units. Thus, each channel has

unique K1/K2 byte monitoring. The receive path may be configured using the RXEN register to use the normal receive path from RLOP or the APS path stream. The APS path stream is configured using the RSEL[4:0] registers to select from other receive RLOP path sources in the S/UNI-16x155 (RPTH[15:0]) or from the receive APS channels (RXA[15:0]). The channel path processors, RPOP and TPOP, are connected for AUTOPRDI and FEBE functionality.

The 8-byte channel FIFO is used to handle fixed phase variations between channels caused by the serial line interface PISO blocks. Each PISO generates an upstream TCLK from the serial transmit clock using a free running divide-by-8 counter. Since each PISO can generate a TCLK which is exactly the same frequency, but with a different phase offset, the channel FIFO is used to cross clock domains between channels. The channel FIFO should reset using CHFRST to center the read and write pointers when the APS link is configured.

The diagram in Figure 31 shows the structure of a transmit APS link. Each channel may be configured using the PROCM register (in Figure 30) to send receive path information or transmit path information over the APS link. The transmit APS link has a four-to-one correlation between channel and APS link. That is, four channel's APS information is passed to the other S/UNI-16x155 device on a fixed APS link. Selection between different channels is performed on the receive side of the APS link. The TAOP block performs BIP calculation and SONET scrambling functions for the transmit APS stream. The PISO block generates the 622.08 Mbit/s serial stream for the interface.

Figure 31: Transmit APS Link



When passing receive path over the transmit APS link, the STAL block performs pointer processing to handle frequency offsets and jitter variations between the recovered clock and the synthesized 622.08 MHz clock from the CSU. In order to process the pointer, the RPOP block must interpret the STS-3c/STM-1 pointer for the STAL block. When the receive path stream becomes invalid (due to various SONET alarms including LOP, LOS, LDRI, PAIS, LOPC, AIS), path AIS is forced over the transmit APS link.

The diagram in Figure 32 shows the structure of a receive APS link. Each receive APS link uses a DRU to recover the data from the incoming 622Mbit/s

stream. The DRU will track high frequency jitter and low frequency wander of the incoming serial stream. The APS FIFO is used to handle the phase variation between the APS serial stream and the synthesized 622.08 MHz clock from the CSU which is used to generate the transmit serial data stream. The APS FIFO reset FRST should be toggled when ROOLV of either CSU in the two S/UNI-16x155 devices indicate a CSU has lost lock or after a system reset. The APS FIFO interrupt FERRI will indicate when the FIFO has corrupted data due to an overrun or an underrun.

Figure 32: Receive APS Link

Because of the architecture of the receive APS interface, the reference clocks REFCLK for both S/UNI-16x155 must be frequency locked. While the DRU can track jitter on the serial interface, the DRU cannot process serial interfaces with a frequency offset from the 622.08 MHz clock synthesized by the CSU block.

The RAOP and SIPO blocks perform SONET framing, BIP calculation and performance monitoring. The DCC channel is used carry transport alarm status (LOP, LOS, LOF, LRDI and LAIS) of the path streams in order for the AUTOPRDI logic to quickly respond to these alarms. While the transport alarm status is not necessary to generate correct PRDI in the transmit direction, the transport alarm status allows the AUTOPRDI to quickly report PRDI without waiting numerous SONET frames for the receive RPOP to declare path failure.

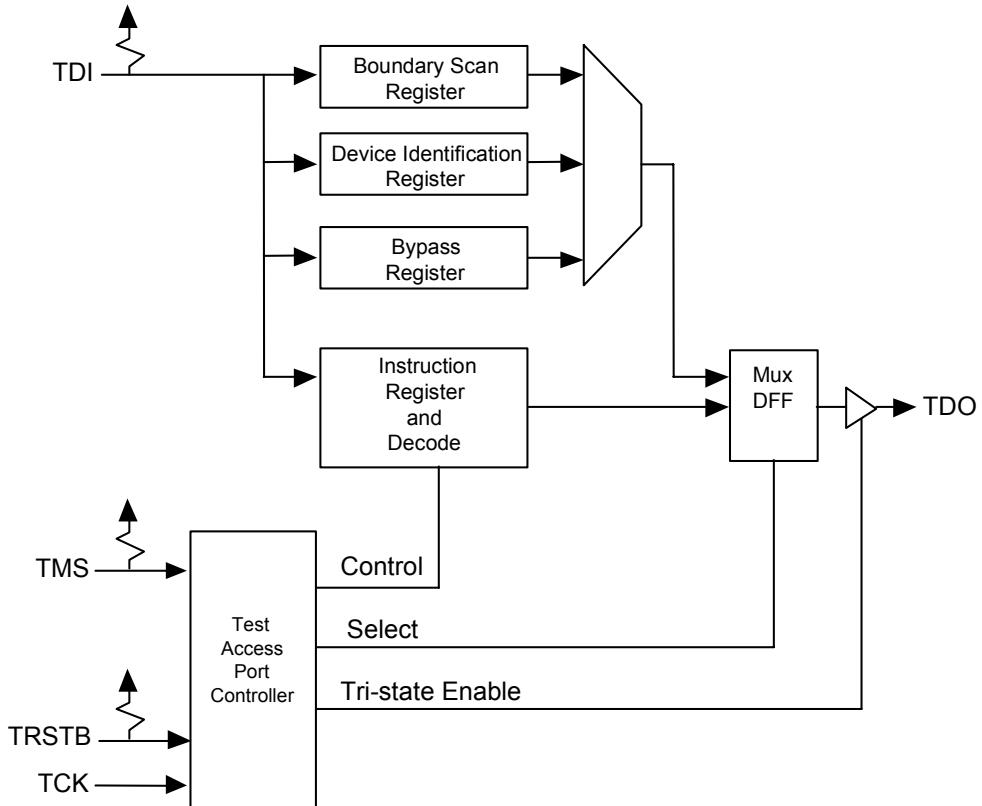
The following tables describes basic programming requirements for various configurations.

Table 21: Channel Swizzle Configuration

Bit	Channel #A	Channel #B
RXEN	1	1
RSEL[4:0]	Device channel B	Device channel A
TXEN	1	1
TSEL[4:0]	Device channel B	Device channel A
PROCM	don't care	don't care

Table 22: 1+1 APS Configuration

Bit	Protection Device Channel #A	Working Device Channel #A
RXEN	0	select protect/working
RSEL[4:0]	APS channel A	don't care
TXEN	1	0
TSEL[4:0]	APS channel A	don't care
PROCM	0	1

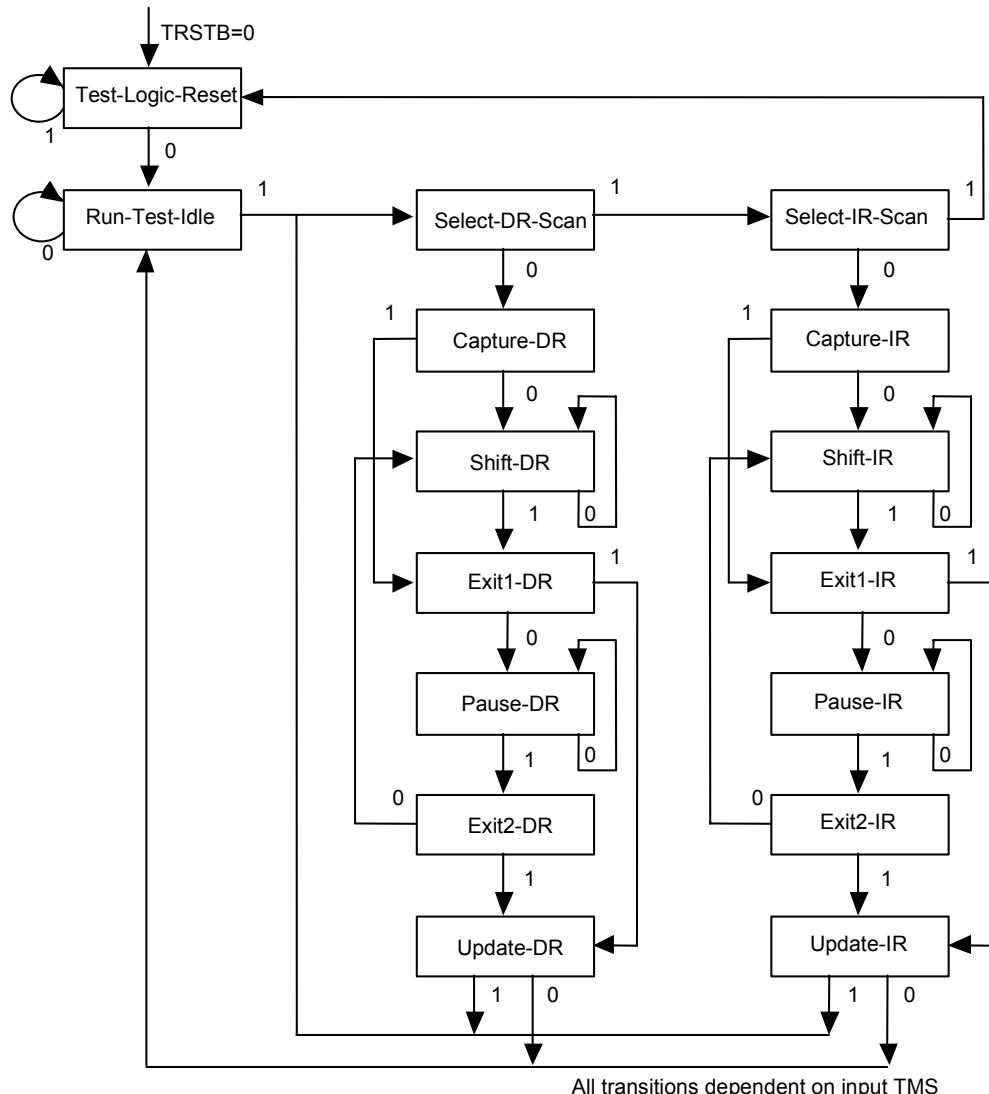

Table 23: 1:8 APS Configuration

Bit	Device #0 Channel #A (Spare)	Device #1 Channel #B (Failed)
RXEN	0	1
RSEL[4:0]	don't care	APS channel A
TXEN	1	0
TSEL[4:0]	APS channel B	don't care
PROCM	0	1

13.13 JTAG Support

The S/UNI-16x155 supports the IEEE Boundary Scan Specification as described in the IEEE 1149.1 standards. The Test Access Port (TAP) consists of the five standard pins, TRSTB, TCK, TMS, TDI and TDO used to control the TAP controller and the boundary scan registers. The TRSTB input is the active-low reset signal used to reset the TAP controller. TCK is the test clock used to sample data on input, TDI and to output data on output, TDO. The TMS input is used to direct the TAP controller through its states. The basic boundary scan architecture is shown below.

Figure 33: Boundary Scan Architecture


The boundary scan architecture consists of a TAP controller, an instruction register with instruction decode, a bypass register, a device identification register and a boundary scan register. The TAP controller interprets the TMS input and generates control signals to load the instruction and data registers. The instruction register with instruction decode block is used to select the test to be executed and/or the register to be accessed. The bypass register offers a single-bit delay from primary input, TDI to primary output, TDO. The device identification register contains the device identification code.

The boundary scan register allows testing of board inter-connectivity. The boundary scan register consists of a shift register placed in series with device inputs and outputs. Using the boundary scan register, all digital inputs can be sampled and shifted out on primary output, TDO. In addition, patterns can be shifted in on primary input, TDI and forced onto all digital outputs.

13.13.1 TAP Controller

The TAP controller is a synchronous finite state machine clocked by the rising edge of primary input, TCK. All state transitions are controlled using primary input, TMS. The finite state machine is described below.

Figure 34: TAP Controller Finite State Machine

13.13.2 States

Test-Logic-Reset

The test logic reset state is used to disable the TAP logic when the device is in normal mode operation. The state is entered asynchronously by asserting input, TRSTB. The state is entered synchronously regardless of the current TAP controller state by forcing input, TMS high for 5 TCK clock cycles. While in this state, the instruction register is set to the IDCODE instruction.

Run-Test-Idle

The run test/idle state is used to execute tests.

Capture-DR

The capture data register state is used to load parallel data into the test data registers selected by the current instruction. If the selected register does not allow parallel loads or no loading is required by the current instruction, the test register maintains its value. Loading occurs on the rising edge of TCK.

Shift-DR

The shift data register state is used to shift the selected test data registers by one stage. Shifting is from MSB to LSB and occurs on the rising edge of TCK.

Update-DR

The update data register state is used to load a test register's parallel output latch. In general, the output latches are used to control the device. For example, for the EXTEST instruction, the boundary scan test register's parallel output latches are used to control the device's outputs. The parallel output latches are updated on the falling edge of TCK.

Capture-IR

The capture instruction register state is used to load the instruction register with a fixed instruction. The load occurs on the rising edge of TCK.

Shift-IR

The shift instruction register state is used to shift both the instruction register and the selected test data registers by one stage. Shifting is from MSB to LSB and occurs on the rising edge of TCK.

Update-IR

The update instruction register state is used to load a new instruction into the instruction register. The new instruction must be scanned in using the Shift-IR state. The load occurs on the falling edge of TCK.

The Pause-DR and Pause-IR states are provided to allow shifting through the test data and/or instruction registers to be momentarily paused.

Boundary Scan Instructions

The following is a description of the standard instructions. Each instruction selects a serial test data register path between input, TDI and output, TDO.

13.13.3 Instructions

BYPASS

The bypass instruction shifts data from input, TDI to output, TDO with one TCK clock period delay. The instruction is used to bypass the device.

EXTEST

The external test instruction allows testing of the interconnection to other devices. When the current instruction is the EXTEST instruction, the boundary scan register is placed between input, TDI and output, TDO. Primary device inputs can be sampled by loading the boundary scan register using the Capture-DR state. The sampled values can then be viewed by shifting the boundary scan register using the Shift-DR state. Primary device outputs can be controlled by loading patterns shifted in through input TDI into the boundary scan register using the Update-DR state.

SAMPLE

The sample instruction samples all the device inputs and outputs. For this instruction, the boundary scan register is placed between TDI and TDO. Primary device inputs and outputs can be sampled by loading the boundary scan register using the Capture-DR state. The sampled values can then be viewed by shifting the boundary scan register using the Shift-DR state.

IDCODE

The identification instruction is used to connect the identification register between TDI and TDO. The device's identification code can then be shifted out using the Shift-DR state.

STCTEST

The single transport chain instruction is used to test out the TAP controller and the boundary scan register during production test. When this instruction is the current instruction, the boundary scan register is connected between TDI and TDO. During the Capture-DR state, the device identification code is loaded into the boundary scan register. The code can then be shifted out output, TDO using the Shift-DR state.

13.14 Board Design Recommendations

The noise environment and signal integrity are often the limiting factors in system performance. Therefore, the following board design guidelines must be followed in order to ensure proper operation:

1. Use a single plane for both digital and analog grounds.
2. Provide separate +3.3 volt analog and +3.3 volt digital supplies, but otherwise connect the supply voltages together at one point close to the connector where +3.3 volts is brought to the card.
3. Ferrite beads are not advisable in digital switching circuits because inductive spiking (di/dt noise) is introduced into the power rail. Simple RC filtering is the best approach provided care is taken to ensure the IR drop in the resistance does not lower the supply voltage below the recommended operating voltage.
4. High-frequency decoupling capacitors are recommended for each power pin as close to the package pin as possible. Separate decoupling is required to prevent the transmitter from coupling noise into the receiver and to prevent power supply transients from coupling into some internal reference circuitry. See the section on Power Supplies for more details.
5. Low-pass filtering networks are recommended for analog power supplies as close to the package pin as possible. Separate decoupling is required to prevent the transmitter from coupling noise into the receiver and to prevent power supply transients from coupling into some internal reference circuitry. See the section on Power Supplies for more details.
6. The high speed serial streams (TXD[15:0]+/- and RXD[15:0]+/-) must be routed with 50 ohm controlled impedance circuit board traces and must be terminated with a matched load. Normal TTL-type design rules are not recommended and will reduce the performance of the device. See the section on interfacing to ECL and PECL devices for more details.

Please refer to the S/UNI-16x155 reference design (PMC-200-0506) for further recommendations

13.15 Power Supplies

Due to ESD protection structures in the pads it is necessary to exercise caution when powering a device up or down. ESD protection devices behave as diodes between power supply pins and from I/O pins to power supply pins. Under extreme conditions it is possible to blow these ESD protection devices or trigger latch up. The recommended power supply sequencing follows:

1. The VDD supply must be applied before or at the same time as QAVD and AVD supplies (the voltage difference between any two pins must be less than 0.5 volts) or the QAVD and AVD supplies must be current limited to the maximum latch-up current specification.
2. VDDI supplies must be applied after VDD has been applied or must be current limited to the maximum latch-up current specification.
3. VDD/VDDI supplies must be applied before digital input pins are driven or the current per pin limited to less than the maximum DC input current specification.
4. AVD supplies must be applied before analog input pins are driven or the current per pin limited to less than the maximum DC input current specification.
5. The differential voltage between VDD and AVD must be less than 1.0 volts including peak to peak noise. The differential voltage between VDD and QAVD must be less than 0.5 volts including peak to peak noise. Otherwise, digital noise on VDD will be coupled into the sensitive analog circuitry.
6. Power down the device in the reverse sequence. Use the above current limiting technique for the analog power supplies. Small offsets in VDD / AVD / VDDI discharge times will not damage the device.

In order to optimize jitter generated by the CSU and the jitter tolerance of the CRU, we recommend the following power filter scheme shown in Figure 35 and Figure 36. Sensitive analog power pins require RC filter networks in order to meet SONET/SDH jitter specifications. Some recommended notes follows:

1. Place each 0.1uF capacitor as close to its associated power pin as possible as shown in Figure 35.

2. The 0.1uF capacitors are ceramic X7R or X5R.
3. The 10uF capacitors are 10V X5R ceramic, 1210 size, from Tayio-Yuden, LMK325BJ106MN (visit their web site at www.t-yuden.com).
4. The 10uF capacitors and resistors do not have to be very close to power pins as they are filtering the power supply and not decoupling it.
5. The two 10uF X5R capacitors can be replaced by one 22uF, 10V, X5R LMK432BJ226MM from Tayio Yuden.
6. All resistors shown are 1/10 watt.
7. All other power pins not mentioned do not need any extra filtering or decoupling.

Please refer to the S/UNI-16x155 reference design (PMC-200-0506) for further recommendations.

Figure 35: Power Supply Component Layout

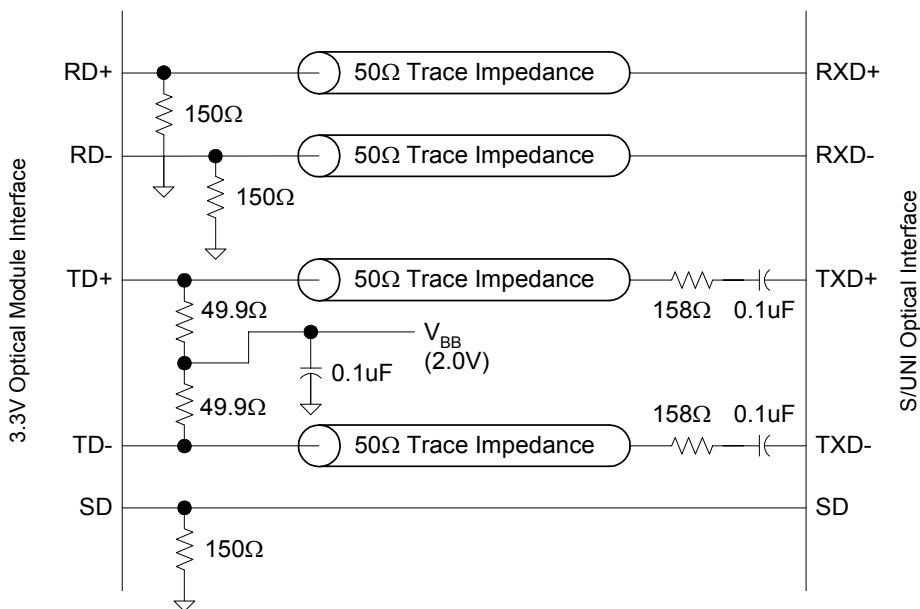
TBD

Figure 36: Power Supply Filtering and Decoupling

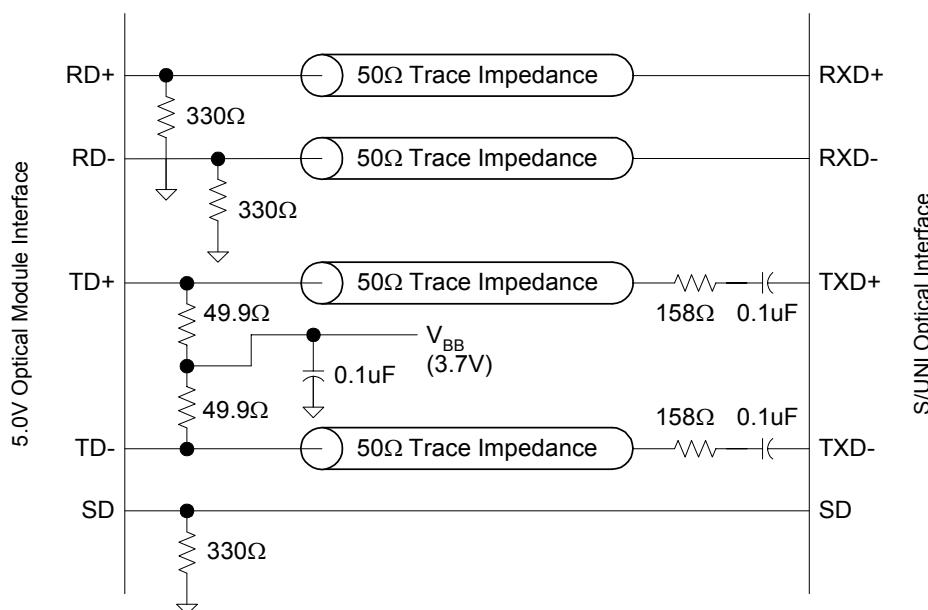
13.16 High Speed PECL Interfaces

In normal operation, the S/UNI-16x155 performs clock and data recovery on the incoming serial stream. The device is designed for optical modules without clock and data recovery such as **TBD** transceivers.

Only a few passive components are required to convert the optical transceivers signals to ECL (or PECL) logic levels. Figure 37 and Figure 38 illustrate the recommended configurations for both types of ECL voltage levels when connecting to optical modules. Note that the RXD[15:0]+/- inputs are internally terminated with a 100 ohm resistor between the differential inputs. The SPECLV must be set appropriately to configure the RXD[15:0]+/- and SD[15:0] for the optical module being used. The SD also supports TTL input which may be enabled using the SDTTL input.


The TXD[15:0]+/- outputs are AC coupled so that the ECL inputs of the optical module are free to swing around the ECL bias voltage (V_{BB}). In general, the ECL bias voltage is referenced 1.3volts lower than the supply. The bias voltage may be generated using a resistor divided as shown in Figure 38. The bias voltage may be shared between optical modules if the resistor divider is well decoupled and star connected to the termination networks. Otherwise, data dependent jitter may be coupled between optic modules.

The TXD+/- outputs on the S/UNI-16x155 swing approximately 3.3V and requires the combination of the series source resistor and the termination resistors to divide the output voltage down to a nominally 800mV swing. The series resistor attenuates the signal as well as damping any signal reflections from the optics module. Calculations involving the series resistor must include the 15 to 20 ohm source resistance of the TXD[15:0]+/- output drivers.


The 50 ohm control impedance traces reduce the effect of signal reflections between the optical module and the S/UNI-16x155. Vias should be avoided on the signal path between the optical module and the S/UNI-16x155 as they can affect the jitter performance of the interface. Vias may be used for the termination networks as the inductive effective of a via will not significantly affect the termination performance.

When a RXD[15:0]+/- PECL input is not being used, the positive differential input must be tied to analog power (AVD) and the negative differential input must be tied to analog ground (AVS). In all cases, the PECL inputs must be driven with a differential voltage (do not connect both pins to AVD or AVS). When a TXD[15:0]+/- PECL output is not being used, the pins must be left floating.

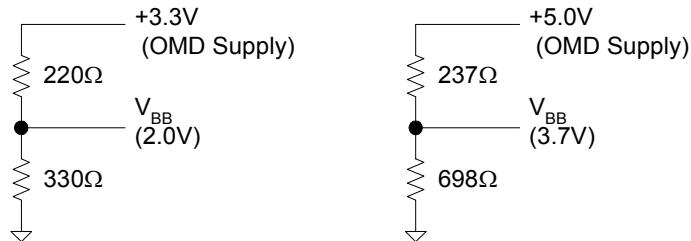
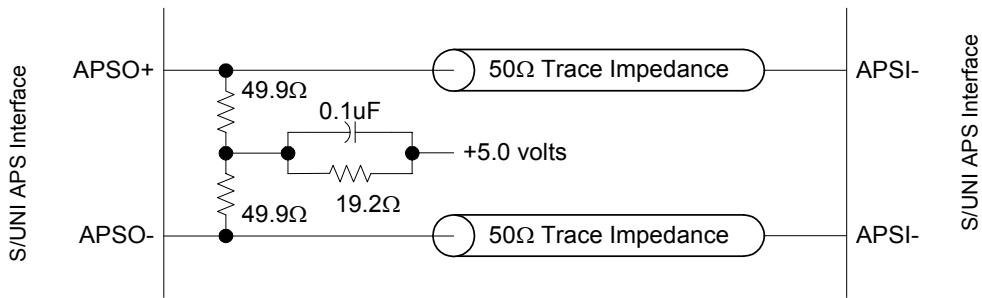
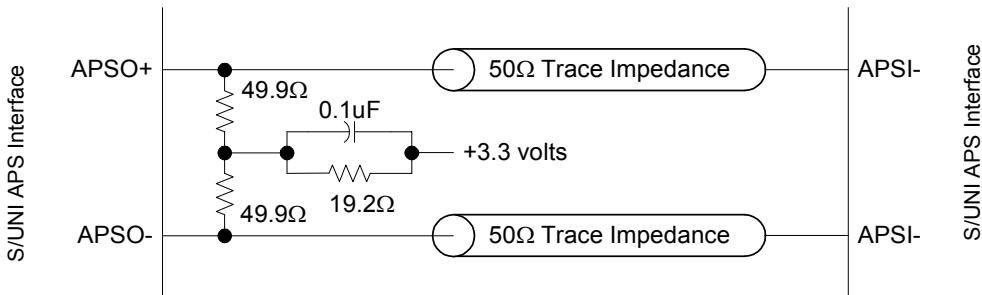

Figure 37: Interfacing S/UNI-16x155 Line PECL Pins to 3.3V Devices

Figure 38: Interfacing S/UNI-16x155 Line PECL Pins to 5.0V Devices

Figure 39: ECL Bias Voltage Generator Networks


The APS serial interface and the REFCLK input operate similar to the optical module interfaces except they are design for 622.08 MHz operation. The APECLV input controls the ECL levels for the APSI[3:0]+/- inputs, APSO[3:0]+/- outputs and the REFCLK input. illustrate the recommended configurations for both types of ECL voltage levels when connecting to optical modules. Note that the APSI[3:0]+/- and REFCLK inputs are internally terminated with a 100 ohm resistor between the differential inputs.

The APECLV must be set appropriately to configure the APSI[3:0]+/- inputs, APSO[3:0]+/- outputs and REFCLK input for the termination scheme used. In these configurations, the traces are double terminated (terminated at the source and sink). The APREF resistor must be set to 1 Kohm.


The 50 ohm control impedance traces must be less than 4 cm in length to reduce the effect of signal reflections between the two S/UNI-16x155. If the APS traces are longer than 4cm (for instance, the APS traces travel over a backplane), the APSO[3:0]+/- outputs should be buffered using standard ECL buffers. The ECL buffers will ensure proper signal levels at the APSI[3:0]+/- with little waveform overshoot or undershoot. Figure 42 illustrates this configuration showing the ECL buffer. In this configuration, the APS traces are single terminated (terminated at sink) and the APREF resistor must be 2 Kohms.

When a APSI[3:0]+/- PECL input is not being used, the positive differential input must be tied to digital power (VDD) and the negative differential input must be tied to digital ground (VSS). In all cases, the PECL inputs must be driven with a differential voltage (do not connect both pins to VDD or VSS). When a APSO[3:0]+/- PECL output is not being used, both the positive and negative differential outputs of the PECL output may be tied both to digital ground (VSS). If all APSO[3:0]+/- outputs are not being used, the PECL drivers may be powered down by connect the APREF1 to digital power (VDD) and the APREF0 to digital ground (VSS).

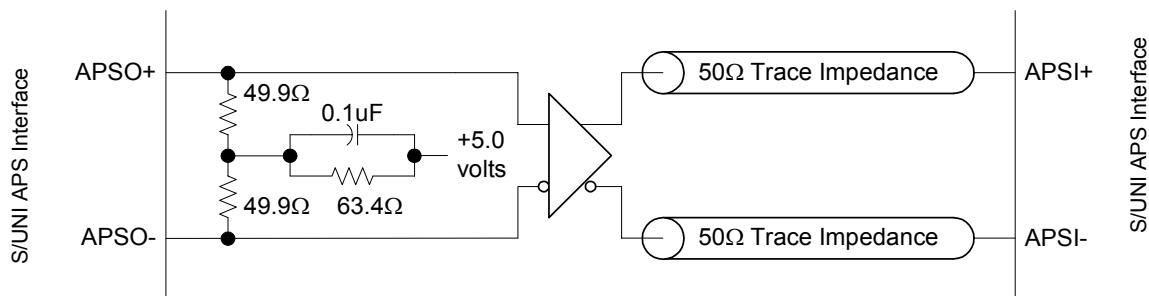

Figure 40: Interfacing S/UNI-16x155 APS PECL Pins to 5.0V Devices

Figure 41: Interfacing S/UNI-16x155 APS PECL Pins to 3.0V Devices

Figure 42: Interfacing S/UNI-16x155 APS PECL Pins to 5.0V ECL Buffer

Please refer to the S/UNI-16x155 reference design (PMC-200-0506) for further recommendations.

13.17 Clock Synthesis and Recovery

The Clock Synthesizer unit (CSU) in the S/UNI-16x155 requires an external reference clock REFCLK to generate the 155.52 MHz transmit clock. The REFCLK input is a PECL input in order to reduce the amount of noise coupled into the CSU. In most cases, the reference clock must be generated and propagated using PECL logic in order for the CSU to meet SONET/SDH intrinsic jitter specifications.

In general, the reference clock REFCLK is supplied by a crystal oscillator with PECL outputs. The oscillator must have at least **TBD** dBc/ $\sqrt{\text{Hz}}$ between 12 kHz and 1.3 MHz frequency offset in order for the CSU to meet SONET/SDH intrinsic jitter specifications.

Each Clock Recovery Unit (CRU) in the S/UNI-16x155 is implemented using two digital PLL structures. The first digital PLL (DCRU) recovers the clock from the receive data RXD+/- and controls the jitter tolerance characteristics of the device. The second digital PLL (JAT) attenuates the jitter on the recovered clock and controls the jitter transfer characteristics of the device. Both PLL structures are powered from the VDDI power supply. While the digital PLLs are robust to voltage variations, the S/UNI-16x155 must be well decoupled to prevent local system voltage variations from affecting the jitter performance.

Please refer to the S/UNI-16x155 reference design (PMC-200-0506) for further recommendations.

13.18 System Interface DLL Operation

The S/UNI-16x155 use digital delay lock loop (DLL) units to improve the output propagation timing on certain digital output pins. The TFCLK and RFCLK clock inputs each have a DLL to improve the timing on their associated interfaces.

The DLL compensates for internal timing and output pad delays by adaptively delaying the input clock signal by approximately one clock period (1 UI) to create a new clock which controls the internal device logic. A side effect is that the DLL units impose a minimum clock rate on each of the clock signals.

After the S/UNI-16x155 is reset, the DLL units find the initial delay lock. This process may take up to 3400 clock cycles to identify the lock position. During this initial lock period, device interface timing will not meet the timing specifications listed in A.C. Timing section. The TCA/TPA and STPA pins are held low when the TFCLK DLL is finding lock. If the clock inputs are not stable during this period (for instance, a clock is generated using an external PLL), the

S/UNI-16x155 should be held in reset until the clocks are stable or the DLL should be reset using software control.

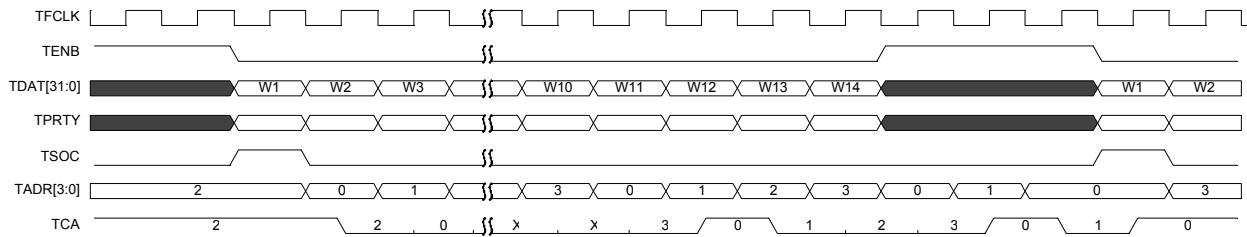
The RFCLK and TFCLK DLL software resets are performed by writing 0x00 to registers 0x1035 and 0x1032 respectively. When resetting the RFCLK or TFCLK DLL units, the associated FIFOs in the RXCP, RXFP, TXCP, TXCP, TUL3 and RUL3 blocks must also be reset using the their FIFORST register bits. The RUN register bit is set high when the DLL finds lock after a system or software reset.

The DLL units are sensitive to jitter on the clock inputs. The reason is that the DLL must track the changes in clock edges cause by changes in clock frequency, temperature, voltage and jitter. While the DLL may tolerate up to 0.4UIpp of clock jitter without losing phase lock, the output timing may degrade with excessive input jitter. Therefore, the high frequency clock jitter (above 1 MHz) should be less than value specified by the A.C. Timing section.

14 FUNCTIONAL TIMING

All functional timing diagrams assume that polarity control is not being applied to input and output data and clock lines (i.e. polarity control bits in the S/UNI-16x155 registers are set to their default states).

14.1 Transmit ATM UTOPIA Level 3 System Interface

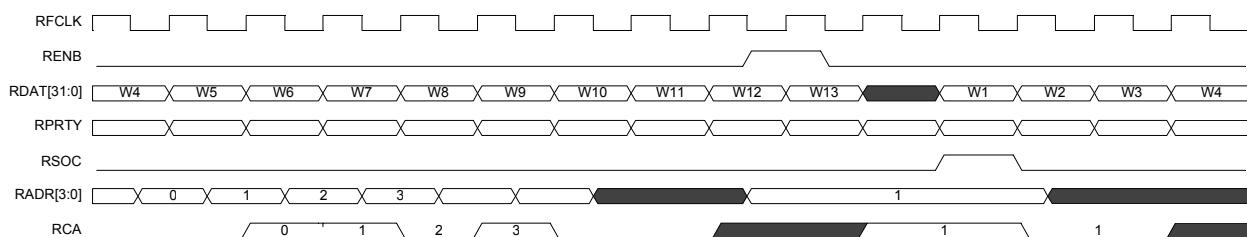

The ATM UTOPIA Level 3 System Interface is compatible with the UTOPIA Level 3 specification (see References). The S/UNI-16x155 only supports the 32-bit mode of operation.

The Transmit UTOPIA Level 3 System Interface Timing diagram (Figure 43) illustrates the operation of the system side transmit FIFO interface. Assertion of the transmit cell available output, TCA, indicates that there is space available in the transmit FIFO for at least one ATM cell structure. Deassertion of TCA occurs when the FIFO is filled with the number of ATM cells indicated by the register bits FIFODP[1:0]. TCA will only deassert one clock cycle after TSOC is sampled high and may assert at any time. If the TCA is configured to deassert early before the FIFO is truly full, the FIFO will accept additional cells even if TCA is inactive. TCA will be deasserted for polling cycles during the first two cycles of a cell transfer for the phy being transferred. That is, during transferring a cell it might say it has no more room even if it does. This prevents a false positive on TCA before the FIFO fill level can be re-evaluated. At any time, if the upstream does not have a cell to write, it must deassert TENB.

PHY selection occurs by setting the TADR[3:0] bus with the PHY address when TENB changes from a high to a low value. In the example, a 56-byte ATM cell structure written to PHY #2 which reports that the FIFO is full after the start of the cell is written into the FIFO. The PHY channels are polled and PHY #0 reports it can accept at least one ATM cell. A cell is written into PHY #0 which is not full since the transmit cell available TCA does not deassert after the start of the ATM cell is written into the FIFO.

TSOC must be high during the first byte of the ATM cell structure and must be present for the start of each cell. Thus, TSOC will mark the word with the H1 to H4 bytes. When TSOC is asserted and the previous byte transferred was not the end of an ATM cell structure, the system interface realigns itself to the new timing, and the previous partially transferred cell is dropped. The length of the cell structure can be configured for 52 and 56 bytes using the CELLFORM register in TUL3.

Figure 43: Transmit UTOPIA Level 3 System Interface Timing


14.2 Receive ATM UTOPIA Level 3 System Interface

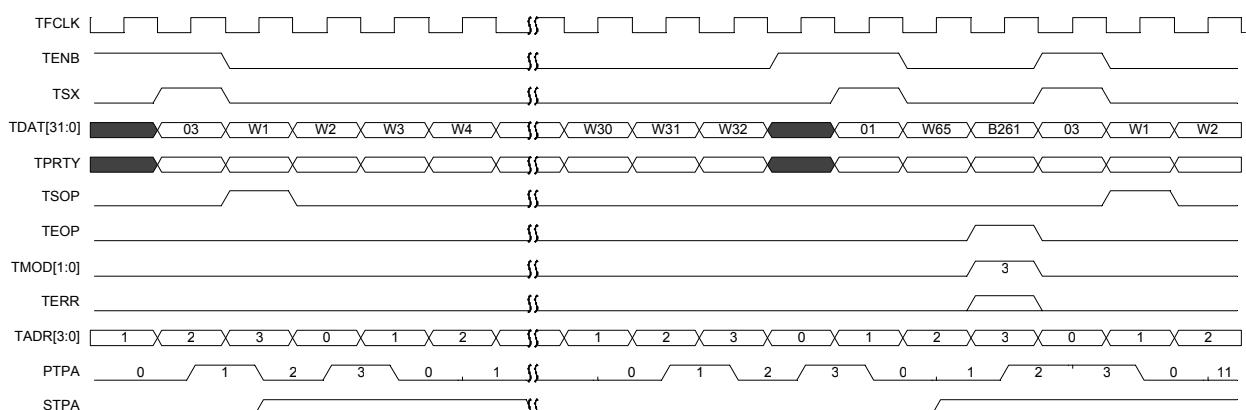
The Receive UTOPIA Level 3 System Interface Timing diagram (Figure 44) illustrates the operation of the system side receive interface. Assertion of the receive cell available output, RCA, indicates that there is at least one ATM cell structure in the channel FIFO. Internally a channel's RCA status must only deassert one clock cycle after RSOC has been sampled high by the layer device. A channel's RCA may reassert at any time when a cell is received.

PHY selection occurs by setting the RADR[3:0] bus with the PHY address when RENB changes from a high to a low value. RENB should deassert when the cell structure of the last cell in the FIFO has finished being transferred. Once the cell transfer has started, the interface cannot be paused. In the example, a 52-byte ATM cell structure read from a PHY. The PHY channels are polled and PHY #0, #1 and #3 report they have at least one ATM cell. A cell is then read from PHY #1.

RSOC is high during the first word of the ATM cell structure and is present for the start of each cell. Thus, RSOC will mark the H1 to H4 bytes in the ATM cell structure. The length of the cell structure can be configured for 52 and 56 bytes using the CELLFORM register in RUL3.

Figure 44: Receive UTOPIA Level 3 System Interface Timing

14.3 Transmit Packet over SONET/SDH (POS) Level 3 System Interface


The Packet over SONET/SDH (POS) Level 3 System Interface is compatible with the POS-PHY Level 3 specification (see References). The S/UNI-16x155 only supports the 32-bit mode of operation.

The Transmit POS Level 3 System Interface Timing diagram (Figure 45) illustrates the operation of the system side transmit FIFO interface. Assertion of the transmit packet available output, PTPA/STPA, indicates that the FIFO fill level is below the low water mark configured by LWM[5:0]. De-assertion of the transmit packet available output occurs when the FIFO fill level is above the high water mark configured by HWM[5:0]. When a channel is polled with PTPA high and the upstream is ready to write data, the upstream device should select the PHY using TSX and then assert TENB to write data. At any time, if the upstream does not have a byte to write, it must de-assert TENB.

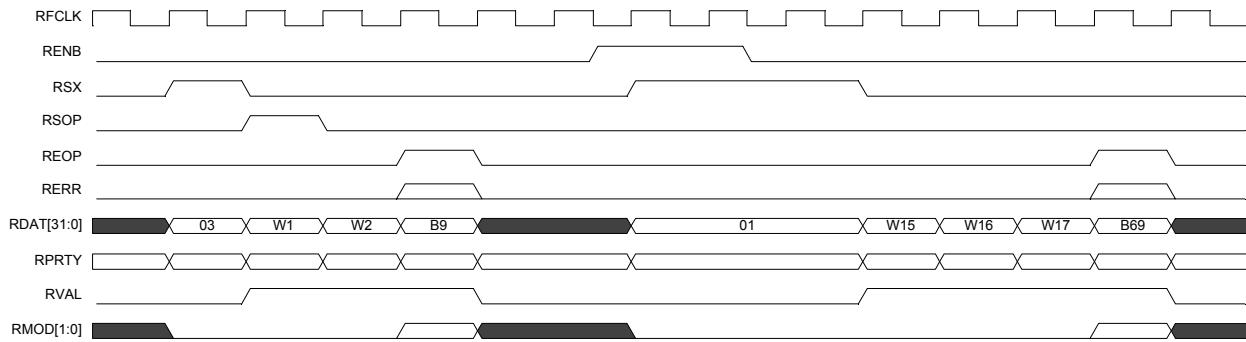
PHY selection is performed by using in-band addressing. The TDAT[7:0] bus contains the PHY address to be selected and is identified by TSX and TENB high. The TADR[3:0] bus is only used for polling the FIFO fill status of the other PHY channels. The PTPA reports the polled FIFO fill status while the STPA reports the FIFO fill status selected by TSX.

TSOP must be high during the first byte of each packet. TEOP must be high during the last byte of the packet. It is legal to assert TSOP and TEOP at the same time. This case occurs when a one, two, three or four byte packet is transferred. When TSOP is asserted and the previous byte transfer was not marked with TEOP, the system interface realigns itself to the new timing, and the previous packet is marked to be aborted.

Figure 45: Transmit POS Level 3 System Interface Timing

When transferring ATM cell structures over the POS-PHY interface, the start of the ATM cell structure must be marked by TSOP and the end of the ATM cell structure must be marked by TEOP. The TMOD[1:0] and TERR signals must be low. The ATM cell structure must be configured by the CELLFORM register in TUL3.

14.4 Receive Packet over SONET/SDH (POS) Level 3 System Interface

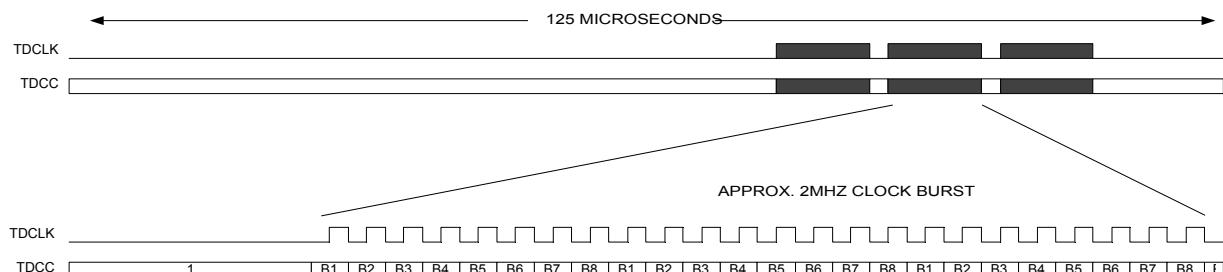

The Receive POS Level 3 System Interface Timing diagram (Figure 46) illustrates the operation of the interface. When the channel FIFO has sufficient data to perform a transfer, the RUL3-32 performs an in-band address cycle with RSX set high. During this cycle, the RDAT[7:0] bus contains the PHY address to be selected.

PHY selection is performed by using in-band addressing. The RDAT[7:0] bus contains the PHY address being selected and is identified by RSX high and RVAL low. When RVAL is high, valid packet data is available on the POS-PHY interface. RENB is used by the layer device to pause the interface.

In the example, the RUL3 selects PHY #3 and transfers a nine byte packet. The RUL3-32 then pauses for two clock cycles due to the PAUSE[1:0] registers be configured for the two clock cycles between transfers. This pause allows the layer device to cleanly pause on the in-band address by deasserting RENB after it samples REOP high. The layer device then reasserts the RENB and the RUL3-32 selects PHY #1. The next packet transferred is end of a 69 byte packet.

RSOP is high during the first word of each packet. REOP is high during the last word of the packet. It is legal to assert RSOP and REOP at the same time. This case occurs when a 1-byte, 2-byte, 3-byte or 4-byte packet is transferred. The RVAL signal qualifies the

Figure 46: Receive POS Level 3 System Interface Timing


The receive POS-PHY Level 3 interface cannot support full bandwidth with arbitrarily small consecutive packets. In general, the Level 3 interface can carry consecutive 40 byte packets without the RUL3 channel FIFO overflowing.

14.5 Transmit Data Communication Channels

The S/UNI-16x155 provides access to Line or Section Data Communications Channels (DCC). The TDCC[15:0] with their clocks TDCLK[15:0] provide either the section or line DCC channels based on the DCCSEL[15:0] registers.

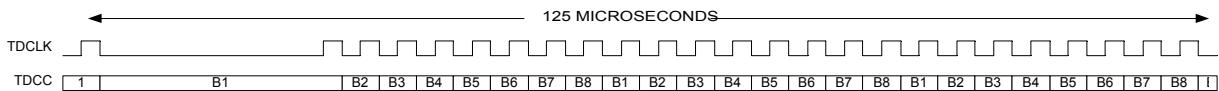
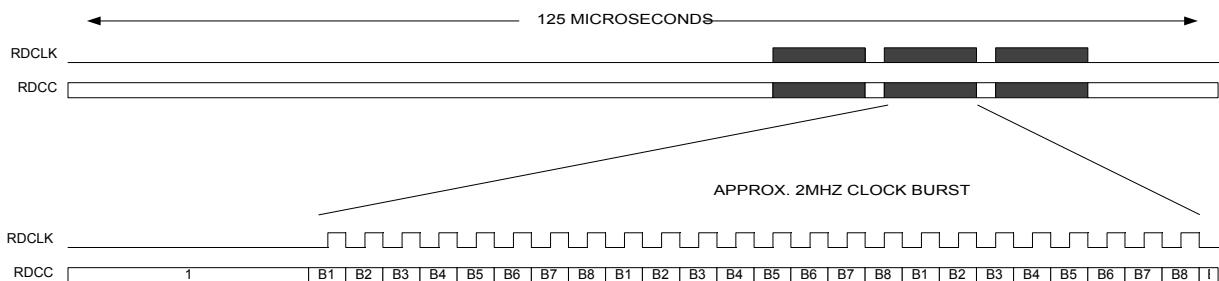

The Transmit Line Data Link Clock and Data Insertion diagram (Figure 47) shows the relationship between the TDCC serial data input, and its associated TDCLK. In this mode, TDCLK is a 2.16 MHz, 67%(high)/33%(low) duty cycle clock that is gapped to produce a 576 kHz nominal rate. TDCC is sampled on the rising edge of TDCLK. The D4-D12 bytes shifted in to the S/UNI-16x155 in the frame shown are inserted in the corresponding transport overhead channels in the next frame.

Figure 47: Transmit Line Data Link Clock and Data Insertion

The Transmit Section Data Link Clock and Data Insertion diagram (Figure 48) shows the relationship between the TDCC serial data input, and its associated TDCLK. In this mode, TDCLK is a 216 kHz, 50% duty cycle clock that is gapped to produce a 192 kHz nominal rate. TDCC is sampled on the rising edge of TDCLK. The D1-D3 bytes shifted in to the S/UNI-16x155 in the frame shown are inserted in the corresponding transport overhead channels in the next frame.

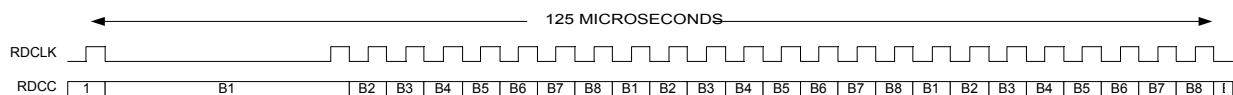
Figure 48: Transmit Section Data Link Clock and Data Insertion



14.6 Receive Data Communication Channels

The S/UNI-16x155 provides access to Line or Section Data Communications Channels (DCC). The RDCC[15:0] with their clocks RDCLK[15:0] provide either the section or line DCC channels based on the DCCSEL[15:0] registers.

The Receive Line Data Link Clock and Data Extraction Timing diagram (Figure 49) shows the relationship between the RDCC serial data output and its associated RDCLK when configured for line DCC. In this mode, RDCLK is a 2.16 MHz, 67% (high)/33% (low) duty cycle clock that is gapped to produce a 576 kHz nominal rate. RDCC is updated on the falling edge of RDCLK. The D4-D12 bytes shifted out of the S/UNI-16x155 in the frame shown are extracted from the corresponding transport overhead channels in the previous frame.


Figure 49: Receive Line Data Link Clock and Data Extraction

The Receive Section Data Link Clock and Data Extraction Timing diagram (Figure 50) shows the relationship between a RDCC serial data output and its

associated RDCLK when configured for section DCC. In this mode, RDCLK is a 216 kHz, 50% duty cycle clock that is gapped to produce a 192 kHz nominal rate. RDCC is updated on the falling edge of RDCLK. The D1-D3 bytes shifted out of the S/UNI-16x155 in the frame shown are extracted from the corresponding transport overhead channels in the previous frame.

Figure 50: Receive Section Data Link Clock and Data Extraction

15 ABSOLUTE MAXIMUM RATINGS

Maximum ratings are the worst case limits that the device can withstand without sustaining permanent damage. They are not indicative of normal mode operation conditions.

Table 24: Absolute Maximum Ratings

Ambient Temperature under Bias	-40°C to +85°C
Storage Temperature	-40°C to +125°C
VDD Supply Voltage	-0.3V to +4.6V
VDDI Supply Voltage	-0.3V to +3.5V
Voltage on Any Pin	-0.3V to +5.5V
Static Discharge Voltage	±1000 V
Latch-Up Current per Pin	±100 mA
DC Input Current	±20 mA
Lead Temperature	+230°C
Absolute Maximum Junction Temperature	+150°C

16 D.C. CHARACTERISTICS

$T_J = -40^{\circ}\text{C}$ to $+120^{\circ}\text{C}$, $V_{DDI} = 2.5\text{V} \pm 5\%$, $V_{DD} = 3.3\text{V} \pm 8\%$, $V_{AVD} = 3.3\text{V} \pm 5\%$,
(Typical Conditions: $T_A = 25^{\circ}\text{C}$, $V_{DDI} = 2.5\text{V}$, $V_{DD} = 3.3\text{V}$, $V_{AVD} = 3.3\text{V}$)

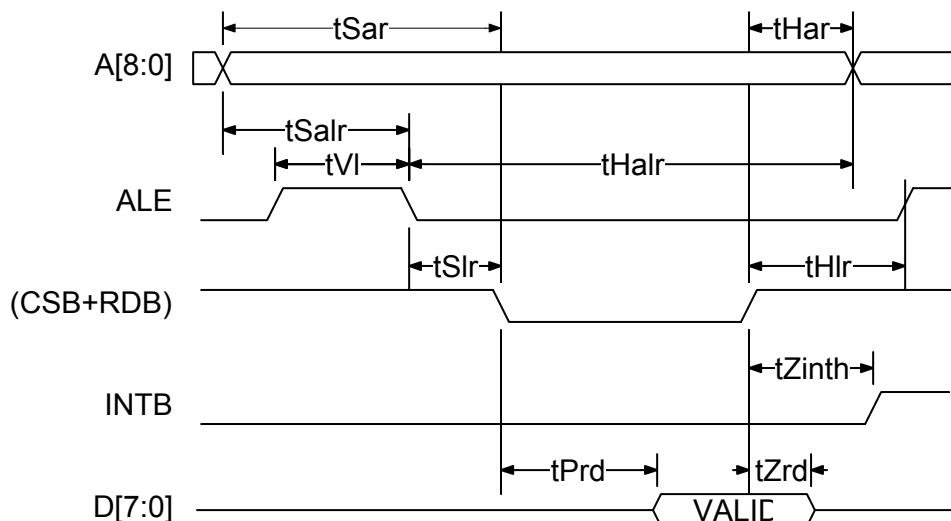
Table 25: D.C Characteristics

Symbol	Parameter	Min	Typ	Max	Units	Conditions
V _{VDDI}	Power Supply	2.37	2.5	2.63	Volts	
V _{DD}	Power Supply	3.04	3.3	3.56	Volts	
V _{AVD}	Power Supply	3.14	3.3	3.47	Volts	
V _{IL}	Input Low Voltage	0	1.2	0.8	Volts	Guaranteed Input Low voltage.
V _{IH}	Input High Voltage	2.0	1.2		Volts	Guaranteed Input High voltage.
V _{OL}	Output or Bi-directional Low Voltage		0.2	0.4	Volts	Guaranteed output low voltage at $VDD=2.97\text{V}$ and I_{OL} =maximum rated for pad.
V _{OH}	Output or Bi-directional High Voltage	2.4	2.6		Volts	Guaranteed output high voltage at $VDD=2.97\text{V}$ and I_{OH} =maximum rated current for pad.
V _{T+}	Reset Input High Voltage	2.0			Volts	Applies to RSTB and TRSTB only.
V _{T-}	Reset Input Low Voltage			0.8	Volts	Applies to RSTB and TRSTB only.
V _{TH}	Reset Input Hysteresis Voltage		0.3		Volts	Applies to RSTB and TRSTB only.
V _{PECLI+}	Input PECL High Voltage	V _{PECL} - 1.165	V _{PECL} - 0.955	V _{PECL} - 0.880	Volts	$V_{PECL} = 5.0\text{V}$ or 3.3V
V _{PECLI-}	Input PECL Low Voltage	V _{PECL} - 1.810	V _{PECL} - 1.700	V _{PECL} - 1.470	Volts	$V_{PECL} = 5.0\text{V}$ or 3.3V
V _{PECLIC}	Input PECL Common Mode Voltage	V _{PECL} - 1.490	V _{PECL} - 1.329	V _{PECL} - 1.180	Volts	$V_{PECL} = 5.0\text{V}$ or 3.3V

Symbol	Parameter	Min	Typ	Max	Units	Conditions
VPECLO+	Output PECL High Voltage	VPECL - 0.880	VPECL - 0.955	VPECL - 1.025	Volts	$V_{PECL} = 5.0V$ or $3.3V$ (APSO outputs only).
VPCLO5-	Output PECL Low Voltage	VPECL - 1.620	VPECL - 1.705	VPECL - 1.810	Volts	$V_{PECL} = 5.0V$ or $3.3V$ (APSO outputs only).
I _{ILPU}	Input Low Current	-100	-50	-4	µA	$V_{IL} = GND$. Notes 1 and 3.
I _{IHPU}	Input High Current	-10	0	+10	µA	$V_{IH} = V_{DD}$. Notes 1 and 3.
I _{IL}	Input Low Current	-10	0	+10	µA	$V_{IL} = GND$. Notes 2 and 3.
I _{IH}	Input High Current	-10	0	+10	µA	$V_{IH} = V_{DD}$. Notes 2 and 3.
C _{IN}	Input Capacitance		5		pF	$t_A=25^{\circ}C$, $f = 1$ MHz
C _{OUT}	Output Capacitance		5		pF	$t_A=25^{\circ}C$, $f = 1$ MHz
C _{IO}	Bi-directional Capacitance		5		pF	$t_A=25^{\circ}C$, $f = 1$ MHz
I _{DD3OP1}	ATM Operation (no APS)		TBD	TBD	mA	Outputs Unloaded, VDD supply
I _{DD2OP1}	ATM Operation (no APS)		TBD	TBD	mA	Outputs Unloaded, VDDI supply
I _{DD3OP2}	POS Operation (no APS)		TBD	TBD	mA	Outputs Unloaded, VDD supply
I _{DD2OP2}	POS Operation (no APS)		TBD	TBD	mA	Outputs Unloaded. VDDI supply
I _{DD3OP3}	ATM Operation (APS active)		TBD	TBD	mA	Outputs Unloaded, VDD supply
I _{DD2OP3}	ATM Operation (APS active)		TBD	TBD	mA	Outputs Unloaded, VDDI supply
I _{DD3OP4}	POS Operation (APS active)		TBD	TBD	mA	Outputs Unloaded, VDD supply
I _{DD2OP4}	POS Operation (APS active)		TBD	TBD	mA	Outputs Unloaded, VDDI supply

Notes on D.C. Characteristics:

1. Input pin or bi-directional pin with internal pull-up resistor.
2. Input pin or bi-directional pin without internal pull-up resistor
3. Negative currents flow into the device (sinking), positive currents flow out of the device (sourcing).

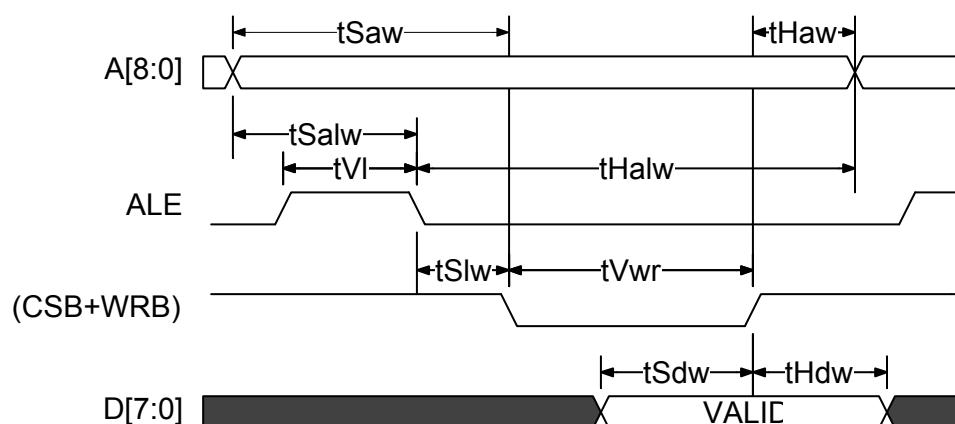

17 MICROPROCESSOR INTERFACE TIMING CHARACTERISTICS

$T_J = -40^{\circ}\text{C}$ to $+120^{\circ}\text{C}$, $V_{DDI} = 2.5\text{V} \pm 5\%$, $V_{DD} = 3.3\text{V} \pm 8\%$, $V_{AVD} = 3.3\text{V} \pm 5\%$,

Table 26: Microprocessor Interface Read Access (Figure 51)

Symbol	Parameter	Min	Max	Units
t_{SAR}	Address to Valid Read Set-up Time	10		ns
t_{HAR}	Address to Valid Read Hold Time	5		ns
t_{SALR}	Address to Latch Set-up Time	10		ns
t_{HALR}	Address to Latch Hold Time	10		ns
t_{VL}	Valid Latch Pulse Width	5		ns
t_{SLR}	Latch to Read Set-up	0		ns
t_{HLR}	Latch to Read Hold	5		ns
t_{PRD}	Valid Read to Valid Data Propagation Delay		70	ns
t_{ZRD}	Valid Read Negated to Output Tri-state		20	ns
t_{ZINTH}	Valid Read Negated to INTB High		50	ns

Figure 51: Microprocessor Interface Read Timing


Notes on Microprocessor Interface Read Timing:

1. Output propagation delay time is the time in nanoseconds from the 1.4 Volt point of the reference signal to the 1.4 Volt point of the output.
2. Maximum output propagation delays are measured with a 100 pF load on the Microprocessor Interface data bus, (D[7:0]).
3. A valid read cycle is defined as a logical OR of the CSB and the RDB signals.
4. In non-multiplexed address/data bus architectures, ALE should be held high so parameters t_{SALR} , t_{HALR} , t_{VL} , t_{SLR} , and t_{HLR} are not applicable.
5. Parameter t_{HAR} is not applicable if address latching is used.
6. When a set-up time is specified between an input and a clock, the set-up time is the time in nanoseconds from the 1.4 Volt point of the input to the 1.4 Volt point of the clock.
7. When a hold time is specified between an input and a clock, the hold time is the time in nanoseconds from the 1.4 Volt point of the input to the 1.4 Volt point of the clock.
8. Output tri-state delay is the time in nanoseconds from the 1.4 Volt of the reference signal to the point where the total current delivered through the output is less than or equal to the leakage current.

Table 27: Microprocessor Interface Write Access (Figure 52)

Symbol	Parameter	Min	Max	Units
t _{SAW}	Address to Valid Write Set-up Time	10		ns
t _{SDW}	Data to Valid Write Set-up Time	20		ns
t _{SALW}	Address to Latch Set-up Time	10		ns
t _{HALW}	Address to Latch Hold Time	10		ns
t _{VL}	Valid Latch Pulse Width	5		ns
t _{SLW}	Latch to Write Set-up	0		ns
t _{H_{LW}}	Latch to Write Hold	5		ns
t _{H_{DW}}	Data to Valid Write Hold Time	5		ns
t _{H_{AW}}	Address to Valid Write Hold Time	5		ns
t _{V_{WR}}	Valid Write Pulse Width	40		ns

Figure 52: Microprocessor Interface Write Timing

Notes on Microprocessor Interface Write Timing:

- 1 A valid write cycle is defined as a logical OR of the CSB and the WRB signals.
- 2 In non-multiplexed address/data bus architectures, ALE should be held high so parameters t_{SALW} , t_{HALW} , t_{VL} , t_{SLW} , and t_{HLW} are not applicable.
- 3 Parameter t_{HAW} is not applicable if address latching is used.
- 4 When a set-up time is specified between an input and a clock, the set-up time is the time in nanoseconds from the 1.4 Volt point of the input to the 1.4 Volt point of the clock.
- 5 When a hold time is specified between an input and a clock, the hold time is the time in nanoseconds from the 1.4 Volt point of the input to the 1.4 Volt point of the clock.

18 A.C. TIMING CHARACTERISTICS

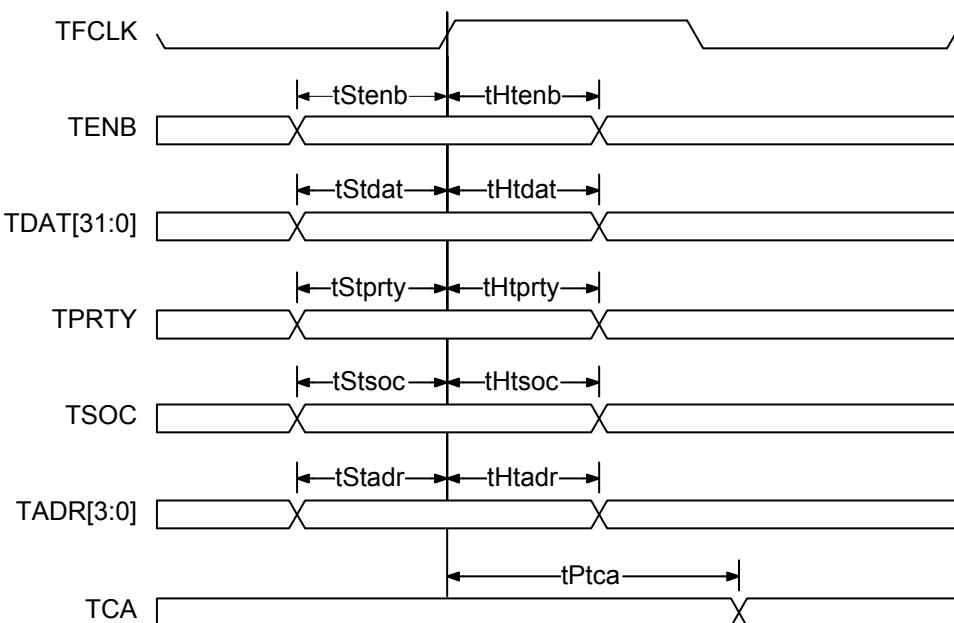
$T_J = -40^{\circ}\text{C}$ to $+120^{\circ}\text{C}$, $V_{DD1} = 2.5\text{V} \pm 5\%$, $V_{DD} = 3.3\text{V} \pm 8\%$, $V_{AVD} = 3.3\text{V} \pm 5\%$,

18.1 System Reset Timing

Table 28: RSTB Timing (Figure 53)

Symbol	Description	Min	Max	Units
$t_{V_{RSTB}}$	RSTB Pulse Width	100		ns

Figure 53: RSTB Timing Diagram



18.2 UTOPIA Level 3 System Interface Timing

Table 29: Transmit UTOPIA Level 3 System Interface Timing (Figure 54)

Symbol	Description	Min	Max	Units
f_{TFCLK}	TFCLK Frequency	60	104	MHz
D_{TFCLK}	TFCLK Duty Cycle	40	60	%
J_{TFCLK}	TFCLK Peak to Peak Jitter (> 1 MHz)		1	ns
tS_{TENB}	TENB Set-up time to TFCLK	2		ns
tH_{TENB}	TENB Hold time to TFCLK	0.5		ns
tS_{TDAT}	TDAT[31:0] Set-up time to TFCLK	2		ns
tH_{TDAT}	TDAT[31:0] Hold time to TFCLK	0.5		ns
tS_{TPRTY}	TPRTY Set-up time to TFCLK	2		ns
tH_{TPRTY}	TPRTY Hold time to TFCLK	0.5		ns
tS_{TSOC}	TSOC Set-up time to TFCLK	2		ns
tH_{TSOC}	TSOC Hold time to TFCLK	0.5		ns
tS_{TADR}	TADR[3:0] Set-up time to TFCLK	2		ns
tH_{TADR}	TADR[3:0] Hold time to TFCLK	0.5		ns
tP_{TCA}	TFCLK High to TCA Valid	1.5	6	ns

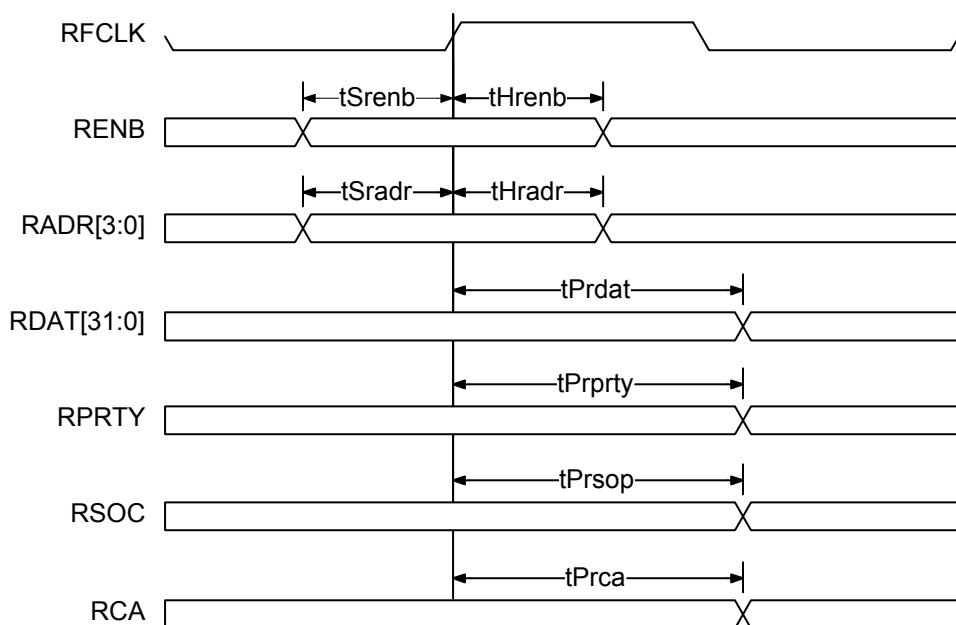
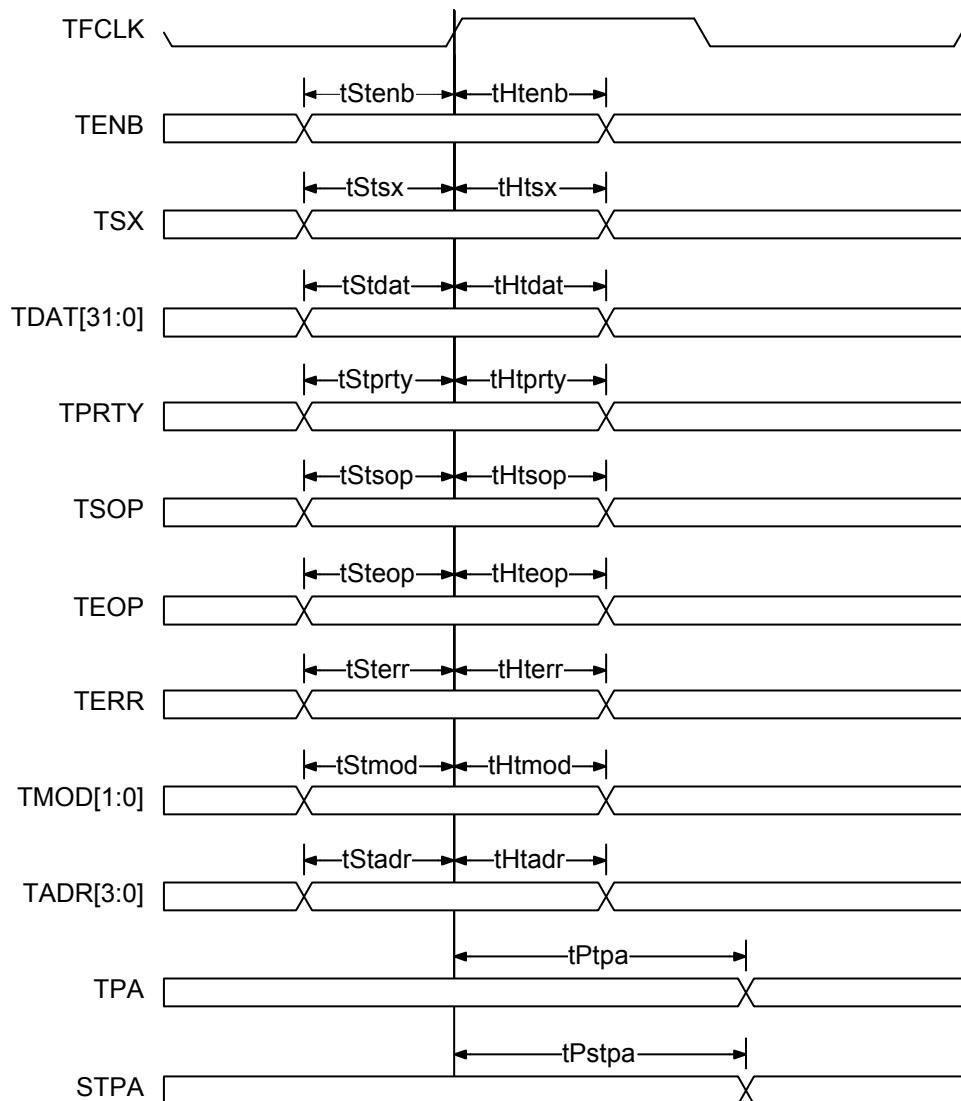

Figure 54: Transmit UTOPIA Level 3 System Interface Timing Diagram

Table 30: Receive UTOPIA Level 3 System Interface Timing (Figure 55)

Symbol	Description	Min	Max	Units
f_{RFCLK}	RFCLK Frequency	60	104	MHz
D_{RFCLK}	RFCLK Duty Cycle	40	60	%
J_{RFCLK}	RFCLK Peak to Peak Jitter (> 1 MHz)		1	ns
$t_{S_{RENB}}$	RENB Set-up time to RFCLK	2		ns
$t_{H_{RADR}}$	RADR[3:0] Hold time to RFCLK	0.5		ns
$t_{S_{RADR}}$	RADR[3:0] Set-up time to RFCLK	2		ns
$t_{H_{RENB}}$	RENB Hold time to RFCLK	0.5		ns
$t_{P_{RDAT}}$	RFCLK High to RDAT[31:0] Valid	1.5	6	ns
$t_{P_{RSOC}}$	RFCLK High to RSOC Valid	1.5	6	ns
$t_{P_{RPRTY}}$	RFCLK High to RPRTY Valid	1.5	6	ns
$t_{P_{RCA}}$	RFCLK High to RCA Valid	1.5	6	ns

Figure 55: Receive UTOPIA Level 3 System Interface Timing Diagram



18.3 POS Level 3 System Interface Timing

Table 31: Transmit POS-PHY Level 3 System Interface Timing (Figure 56)

Symbol	Description	Min	Max	Units
f_{TFCLK}	TFCLK Frequency	60	104	MHz
D_{TFCLK}	TFCLK Duty Cycle	40	60	%
J_{TFCLK}	TFCLK Peak to Peak Jitter (> 1 MHz)		1	ns
tS_{TENB}	TENB Set-up time to TFCLK	2		ns
tH_{TENB}	TENB Hold time to TFCLK	0.5		ns
tS_{TSX}	TSX Set-up time to TFCLK	2		ns
tH_{TSX}	TSX Hold time to TFCLK	0.5		ns
tS_{TDAT}	TDAT[31:0] Set-up time to TFCLK	2		ns
tH_{TDAT}	TDAT[31:0] Hold time to TFCLK	0.5		ns
tS_{TMOD}	TMOD[1:0] Set-up time to TFCLK	2		ns
tH_{TMOD}	TMOD[1:0] Hold time to TFCLK	0.5		ns
tS_{TPRTY}	TPRTY Set-up time to TFCLK	2		ns
tH_{TPRTY}	TPRTY Hold time to TFCLK	0.5		ns
tS_{TSOP}	TSOP Set-up time to TFCLK	2		ns
tH_{TSOP}	TSOP Hold time to TFCLK	0.5		ns
tS_{TEOP}	TEOP Set-up time to TFCLK	2		ns
tH_{TEOP}	TEOP Hold time to TFCLK	0.5		ns
tS_{TERR}	TERR Set-up time to TFCLK	2		ns
tH_{TERR}	TERR Hold time to TFCLK	0.5		ns
tS_{TADR}	TADR[3:] Set-up time to TFCLK	2		ns
tH_{TADR}	TADR[3:0] Hold time to TFCLK	0.5		ns
tP_{TPA}	TFCLK High to TPA Valid	1.5	6	ns
tP_{STPA}	TFCLK High to STPA Valid	1.5	6	ns

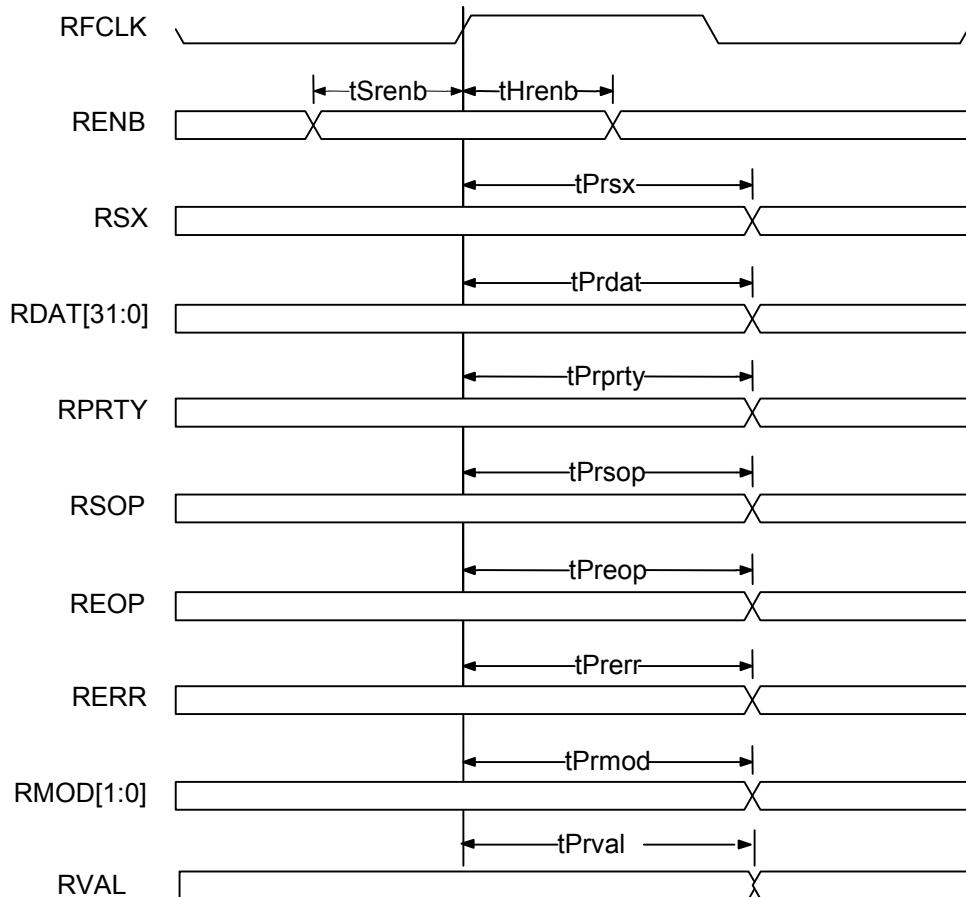
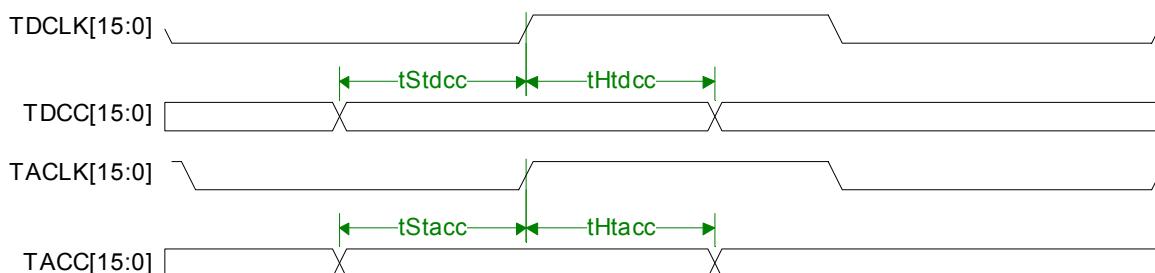

Figure 56: Transmit POS-PHY Level 3 System Interface Timing

Table 32: Receive POS-PHY Level 3 System Interface Timing (Figure 57)

Symbol	Description	Min	Max	Units
f_{RFCLK}	RFCLK Frequency	60	104	MHz
D_{RFCLK}	RFCLK Duty Cycle	40	60	%
J_{RFCLK}	RFCLK Peak to Peak Jitter (> 1 MHz)		1	ns
$t_{S_{RENB}}$	RENB Set-up time to RFCLK	2		ns
$t_{H_{RENB}}$	RENB Hold time to RFCLK	0.5		ns
$t_{P_{RSX}}$	RFCLK High to RSX Valid	1.5	6	ns
$t_{P_{RDAT}}$	RFCLK High to RDAT[31:0] Valid	1.5	6	ns
$t_{P_{RPRTY}}$	RFCLK High to RPRTY Valid	1.5	6	ns
$t_{P_{RSOP}}$	RFCLK High to RSOP Valid	1.5	6	ns
$t_{P_{REOP}}$	RFCLK High to REOP Valid	1.5	6	ns
$t_{P_{RERR}}$	RFCLK High to RERR Valid	1.5	6	ns
$t_{P_{RVAL}}$	RFCLK High to RVAL Valid	1.5	6	ns
$t_{P_{RMOD}}$	RFCLK High to RMOD Valid	1.5	6	ns

Figure 57: Receive POS-PHY Level 3 System Interface Timing

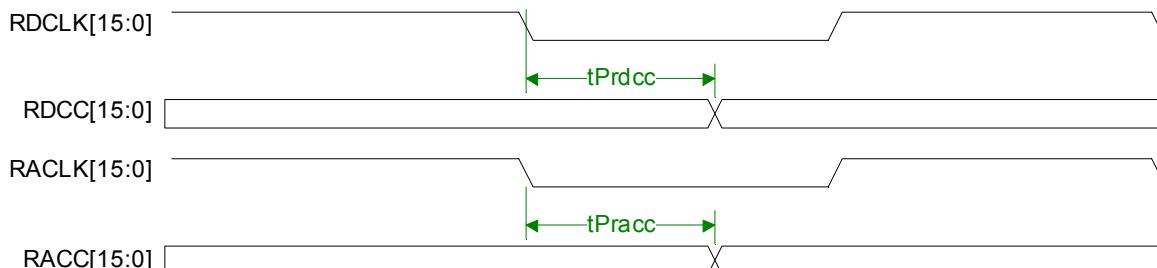


18.4 Transmit DCC Interface Timing

Table 33: Transmit DCC Interface Timing (Figure 58)

Symbol	Description	Min	Max	Units
f_{TDCLK}	TDCLK[15:0] Frequency (line configured)		2.16	MHz
D_{TDCLK}	TDCLK[15:0] Duty Cycle (line configured)	30	70	%
f_{TDCLK}	TDCLK[15:0] Frequency (section configured)		216	kHz
D_{TDCLK}	TDCLK[15:0] Duty Cycle (section configured)	40	60	%
tS_{TDCC}	TDCC[15:0] Set-up time to TDCLK[15:0]	25		ns
tH_{TDCC}	TDCC[15:0] Hold time to TDCLK[15:0]	25		ns
tS_{TACC}	TACC[15:0] Set-up time to TACLK[15:0]	25		ns
tH_{TACC}	TACC[15:0] Hold time to TACLK[15:0]	25		ns

Figure 58: Transmit DCC Interface Timing

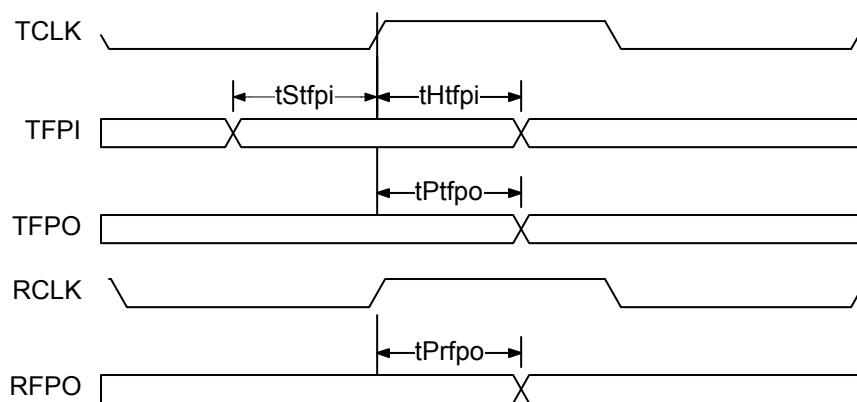


18.5 Receive DCC Interface Timing

Table 34: Receive DCC Interface Timing (Figure 59)

Symbol	Description	Min	Max	Units
f_{RDCLK}	RDCLK[15:0] Frequency (line configured)		2.16	MHz
D_{RDCLK}	RDCLK[15:0] Duty Cycle (line configured)	30	70	%
f_{RDCLK}	RDCLK[15:0] Frequency (section configured)		216	kHz
D_{RDCLK}	RDCLK[15:0] Duty Cycle (section configured)	40	60	%
tP_{RDCC}	RDCLK[15:0] low to RDCC[15:0] valid	-20	20	ns
tP_{RACC}	RACLK[15:0] low to RACC[15:0] valid	-20	20	ns

Figure 59: Receive DCC Interface Timing

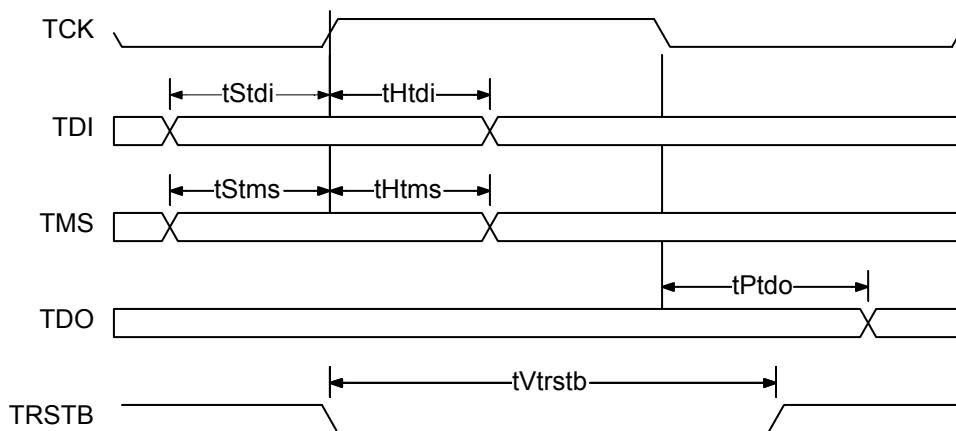


18.6 Clock and Frame Pulse Interface Timing

Table 35: Clock and Frame Pulse Interface Timing (Figure 60)

Symbol	Description	Min	Max	Units
f_{TCLK}	TCLK Frequency		77.76	MHz
D_{TCLK}	TCLK Duty Cycle	30	70	%
f_{RCLK}	RCLK Frequency		77.76	MHz
D_{RCLK}	RCLK Duty Cycle	30	70	%
$t_{S_{TFPI}}$	TFPI Set-up time to TCLK	2		ns
$t_{H_{TFPI}}$	TFPI Hold time to TCLK	0.5		ns
$t_{P_{RFPO}}$	RCLK High to RFPO Valid	1	6	ns
$t_{P_{TFPO}}$	TCLK High to TFPO Valid	1	6	ns

Figure 60: Clock and Frame Pulse Interface Timing



18.7 JTAG Test Port Timing

Table 36: JTAG Port Interface (Figure 61)

Symbol	Description	Min	Max	Units
	TCK Frequency		4	MHz
	TCK Duty Cycle	40	60	%
t _{STMS}	TMS Set-up time to TCK	25		ns
t _{Htms}	TMS Hold time to TCK	25		ns
t _{STDI}	TDI Set-up time to TCK	25		ns
t _{Htdi}	TDI Hold time to TCK	25		ns
t _{Ptdo}	TCK Low to TDO Valid	2	50	ns
t _{Vtrstb}	TRSTB Pulse Width	100		ns

Figure 61: JTAG Port Interface Timing

Notes on Input Timing:

1. When a set-up time is specified between an input and a clock, the set-up time is the time in nanoseconds from the 1.4 Volt point of the input to the 1.4 Volt point of the clock.

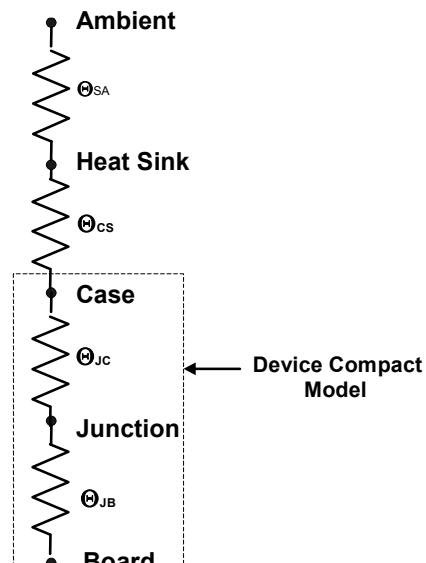
2. When a hold time is specified between an input and a clock, the hold time is the time in nanoseconds from the 1.4 Volt point of the clock to the 1.4 Volt point of the input.

Notes on Output Timing:

1. Output propagation delay time is the time in nanoseconds from the 1.4 Volt point of the reference signal to the 1.4 Volt point of the output.
2. Output propagation delays are measured with a 50 pF load on the outputs except for the Level 3 interface output signals (TCA/TPA, STPA, RCA/RVAL, RDAT[31:0], RPRTY, RSOC/RSOP, REOP, RERR, RMOD[1:0] and RSX) where the load is 30 pF.
3. Output tri-state delay is the time in nanoseconds from the 1.4 Volt of the reference signal to the point where the total current delivered through the output is less than or equal to the leakage current.

19 THERMAL INFORMATION

This product is designed to operate over a wide temperature range when used with a heat sink and is suited for commercial applications such as central office equipment.


Table 37 Industrial Application Thermal Information

Maximum long-term operating junction temperature to ensure adequate long-term life	105 °C
Maximum junction temperature for short-term excursions with guaranteed continued functional performance ¹ . This condition will typically be reached when the local ambient temperature reaches 70 °C.	125 °C
Minimum ambient temperature	-40 °C

Device Compact Model ²	
θ_{JA} (°C/W)	# 1
θ_{JB} (°C/W)	# 4

Operating power is dissipated in package (watts) at worst-case power supply. Please refer to high power values in Section 21.	
Power (watts)	5.5

θ_{SA} and θ_{CS} required for long-term operation ³	
$\theta_{SA} + \theta_{CS}$ (°C/W) ⁴	#5

Notes

1. Short-term is used as defined in Bellcore Generic Requirement GR-1209-CORE.
2. θ_{JC} , the junction-to-case thermal resistance, is a measured nominal value plus two sigma. θ_{JB} , the junction-to-board thermal resistance, is obtained by simulating conditions described in JEDEC Standard JESD 51.
3. θ_{SA} is the thermal resistance of the heat sink to ambient. θ_{CS} is the thermal resistance of the heat sink attached material.
4. The actual θ_{SA} required may vary according to the air speed at the location of the device in the system with all the components in place.

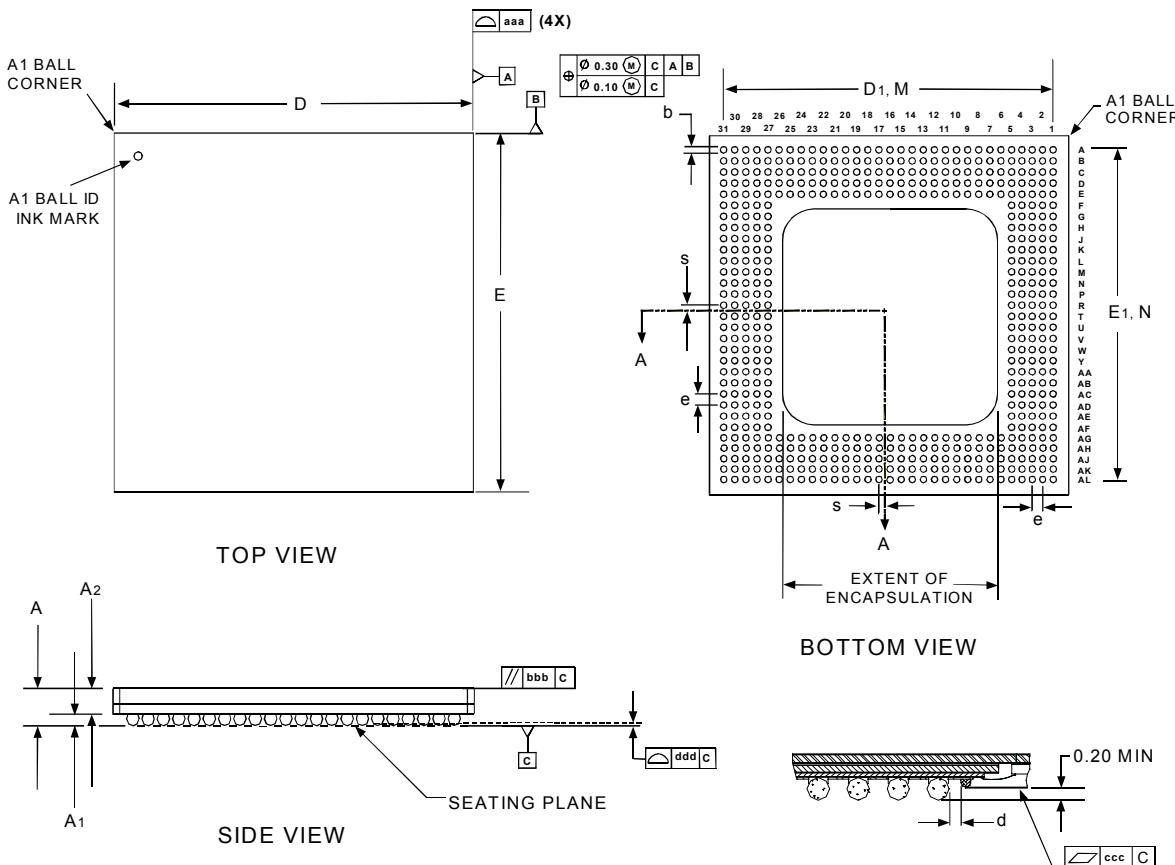
Table 38 Industrial Application Thermal Information

Maximum long-term operating junction temperature to ensure adequate long-term life	105 °C
Maximum junction temperature for short-term excursions with guaranteed continued functional performance ¹ . This condition will typically be reached when the local ambient temperature reaches 70 °C.	125 °C

local ambient reaches 85 °C.	
Minimum ambient temperature	-40 °C

Thermal Resistance vs. Air Flow ²			
Airflow	Natural Convection	200 LFM	400 LFM
θ_{JA} (°C/W)	20	17	15

Device Compact Model ³	
θ_{JT} (°C/W)	# 1
θ_{JB} (°C/W)	# 4


Operating power is dissipated in package (watts) at worst-case power supply. Please refer to high power values in Section 21.	
Power (watts)	5.5

Notes

1. Short-term is used as defined in Bellcore Generic Requirements GR-63-Core
2. θ_{JA} , the total junction to ambient thermal resistance, is measured according to JEDEC Standard JESD51 (2S2P)
3. θ_{JB} , the junction-to-board thermal resistance, and θ_{JT} , the residual junction to ambient thermal resistance, are obtained by simulating conditions described in JEDEC Standard JESD 15-8

20 MECHANICAL INFORMATION

Figure 62: Mechanical Drawing 520 in Super Ball Grid Array (SBGA)

NOTES: 1) ALL DIMENSIONS IN MILLIMETER.
 2) DIMENSION aaa DENOTES PACKAGE BODY PROFILE.
 3) DIMENSION bbb DENOTES PARALLEL.
 4) DIMENSION ccc DENOTES FLATNESS.
 5) DIMENSION ddd DENOTES COPLANARITY.

A-A SECTION VIEW

PACKAGE TYPE : 520 THERMALLY ENHANCED BALL GRID ARRAY - SBGA																
BODY SIZE : 40 x 40 x 1.54 MM																
Dim.	A	A1	A2	D	D1	E	E1	M,N	b	d	e	aaa	bbb	ccc	ddd	S
Min.	1.30	0.50	0.80	39.90	38.00	39.90	38.00		0.60	0.5	-	-	-	-	-	
Nom.	1.51	0.60	0.91	40.00	38.10	40.00	38.10	31x31	0.75	-	1.27	-	-	-	0.00	
Max.	1.70	0.70	1.00	40.10	38.20	40.10	38.20		0.90	-	-	0.20	0.25	0.20	0.20	

21 POWER CONSUMPTION DERIVATION

$T_J = -40^{\circ}\text{C}$ to $+120^{\circ}\text{C}$, $V_{DDI} = 2.5\text{V} \pm 5\%$, $V_{DD} = 3.3\text{V} \pm 8\%$, $V_{AVD} = 3.3\text{V} \pm 5\%$,

(Typical conditions: $T_C = 25^{\circ}\text{C}$, $V_{DDI} = 2.5\text{V}$, $V_{DD} = 3.3\text{V}$, $V_{AVD} = 3.3\text{V}$)

(Worst conditions: $T_C = 80^{\circ}\text{C}$, $V_{DDI} = 2.63\text{V}$, $V_{DD} = 3.56\text{V}$, $V_{AVD} = 3.47\text{V}$)

Table 39: Device Power Consumption

		2.63V Worst Case	3.56V Worst Case	2.5V Typical Case	3.3V Typical Case
Total ATM Mode	W	4.40	5.00	3.94	3.73
Total POS Mode	W	4.40	5.00	3.94	3.73
Total ATM Mode w/o APS	W	3.88	4.10	3.47	3.16
Total POS Mode w/o APS	W	3.88	4.10	3.47	3.16

		Total Worst Case	Total Typical Case
Device ATM Mode	W	9.40	7.67
Device POS Mode	W	9.40	7.67
Device ATM Mode w/o APS	W	7.98	6.63
Device POS Mode w/o APS	W	7.98	6.63
Device ATM Mode (unloaded)	W	8.42	6.83
Device POS Mode (unloaded)	W	8.42	6.83
Device ATM Mode w/o APS (unloaded)	W	7.00	5.79
Device POS Mode w/o APS (unloaded)	W	7.00	5.79

PRELIMINARY
S/UNI-16X155
DATASHEET
PMC-2000495

ISSUE 2

PM5382
S/UNI-16X155

SATURN USER NETWORK INTERFACE (16X155)

NOTES

CONTACTING PMC-SIERRA, INC.

PMC-Sierra, Inc.
105-8555 Baxter Place Burnaby, BC
Canada V5A 4V7

Tel: (604) 415-6000

Fax: (604) 415-6200

Document Information: document@pmc-sierra.com

Corporate Information: info@pmc-sierra.com

Application Information: apps@pmc-sierra.com

Web Site: <http://www.pmc-sierra.com>