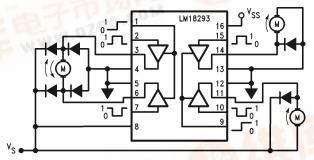


March 1995

LM18293 Four Channel Push-Pull Driver

General Description


The LM18293 is designed to drive DC loads up to one amp. Typical applications include driving such inductive loads as solenoids, relays and stepper motors along with driving switching power transistors and use as a buffer for low level logic signals. The four inputs accept standard TTL and DTL levels for ease of interfacing. Two enable pins are provided that also accept the standard TTL and DTL levels. Each enable controls 2 channels and when an enable pin is disabled (tied low), the corresponding outputs are forced to the TRI-STATE® condition. If the enable pins are not connected (i.e., floating), the circuit will function as if it has been enabled. Separate pins are provided for the main power supply (pin 8), and the logic supply (pin 16). This allows a lower voltage to be used to bias up the logic resulting in reduced power dissipation. The chip is packaged in a specially de-

signed 16 pin power DIP. The 4 center pins of this package are tied together and form the die paddle inside the package. This provides much better heat sinking capability than most other DIP packages available. The device is capable of operating at voltages up to 36 volts.

Features

- 1A output current capability per channel
- Pin for pin replacement for L293B
- Special 16 pin power DIP package
- 36 volt operation
- Internal thermal overload protection
- Logical "0" input voltage up to 1.5 volts results in high noise immunity

Typical Connection

TL/H/8706-

FIGURE 1. Application circuit showing bidirectional and on/off control of a single DC motor using two outputs and unidirectional on/off function of two DC motors using a single output each.

Order Number LM18293N NS Package Number N16A

TRI-STATE® is a registered trademark of National Semiconductor Corp.

RRD-B30M115/Printed in U. S. A.

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $\begin{array}{lll} \text{Output Drive Supply Voltage (V}_{S}) & 36\text{V} \\ \text{Logic Supply Voltage (V}_{S}) & 36\text{V} \\ \text{Input Voltage (V}_{I}) & 7\text{V} \\ \text{Enable Voltage (V}_{E}) & 7\text{V} \\ \end{array}$

Peak Output Current (Non-Repetitive t = 5 ms) 2A Junction Temperature (T_J) +150°C Thermal Resistance Junction to Case (θ_{JC}) 14°C/W 80°C/W Thermal Resistance Junction to Ambient (θ_{JA}) Internal Power Dissipation Internally Limited Operating Temperature Range -40°C to +125°C -65°C to +150°C Storage Temperature Range Lead Temperature (Solder 10 seconds) 260°C

Electrical Characteristics

 $V_S=24V,\,V_{SS}=5V,\,T=25^{\circ}C,\,L=0.4V,\,H=3.5V,\,each\,\,channel,\,unless\,\,otherwise\,\,noted$

Symbol	Parameter	Conditions	Typical	Tested Limit (Note 1)	Design Limit (Note 2)	Units
V _S	Main Supply (Pin 8)	Maximum Supply Voltage		36		Vmax
V _{SS}	Logic Supply (Pin 16)	Minimum Logic Supply Voltage Maximum Logic Supply Voltage		4.5 36		Vmin Vmax
Is	Total Quiescent Supply Current	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 16	6 24 4		mAmax mAmax mAmax
I _{SS}	Total Quiescent Logic Supply Current (pin 16)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44 16 16	60 22 24		mAmax mAmax mAmax
Vı	Input Voltage	$\label{eq:max_value} \begin{tabular}{ll} Min Value of Low \\ Min Value of High \\ Max Value of High (V_{SS} \le 7) \\ Max Value of High (V_{SS} > 7) \\ \end{tabular}$		-0.3 1.5 2.3 V _{SS} 7		Vmin Vmax Vmin Vmax Vmax
II	Input Current	$V_I = L$ $V_I = H$	30	-10 100		μAmax μAmax
VE	Enable Voltage (Pins 1, 9)	$\label{eq:max_value} \begin{tabular}{ll} Min Value of Low \\ Max Value of High \\ Max Value of High (V_{SS} \le 7) \\ Max Value of High (V_{SS} > 7) \\ \end{tabular}$		-0.3 1.5 2.3 V _{SS} 7		Vmin Vmax Vmin Vmax Vmax
IE	Enable Current	$V_E = L$ $V_E = H$	-30	−100 ±10		μAmax μAmax
V _{CE} sat Top	Source Saturation Voltage	$I_0 = -1$ amp	1.4	1.8		Vmax
V _{CE} sat Bottom	Sink Saturation Voltage	I ₀ = 1 amp	1.2	1.8		Vmax
t _r	Rise Time	10%-90% V _o	250			ns
t _f	Fall Time	90%-10% V _o	250			ns
t _{on}	Turn-On Delay	50% V _I to 50% V _O	450			ns
t _{off}	Turn-Off Delay	50% V _I to 50% V _O	200			ns

Note 1: Tested limits are guaranteed and 100% production tested.

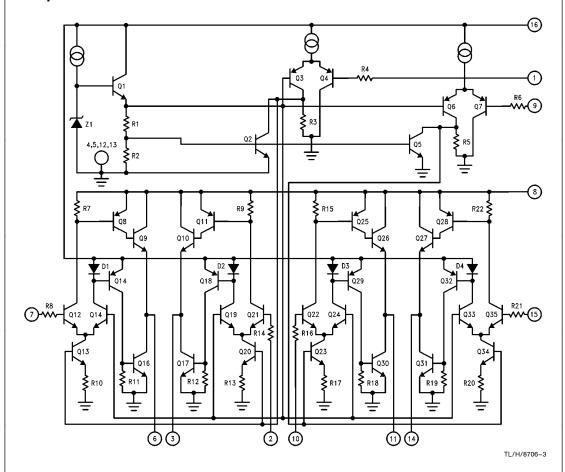
Note 2: Design limits are guaranteed (but not 100% production tested) over the full supply and temperature range. These limits are not used to calculate outgoing quality levels.

Connection Diagram

		\ /		
ENABLE 1	1	_	16	v _{ss}
INPUT 1	2		15	INPUT 4
OUTPUT 1	3		14	OUTPUT 4
GROUND	4		13	GROUND
GROUND	5		12	GROUND
OUTPUT 2	6		-11	OUTPUT 3
INPUT 2	7		10	INPUT 3
٧s	8		9	ENABLE 2

Enable 1 activates outputs 1 & 2

Enable 2 activates outputs 3 & 4

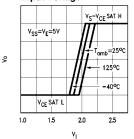

Input/Output Truth Table

V _E (**)	V _I (Each Channel)	v _o
Н	Н	Н
Н	L	L
L	Н	X (*)
L	L	X (*)

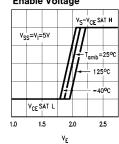
(*) High output impedance.

(**) Relative to the pertinent channel.

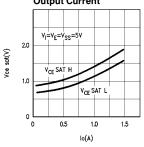
Simplified Schematic

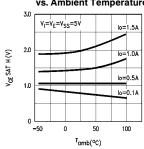


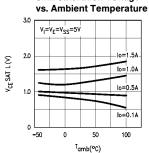
TL/H/8706-2

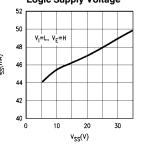

Typical Performance Characteristics V_S in all cases = 24V

°

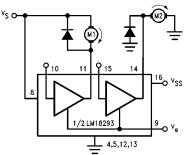

Output Voltage vs. Input Voltage


Output Voltage vs. Enable Voltage

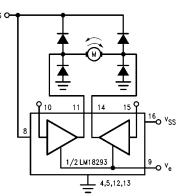

Saturation Voltage vs. Output Current


Source Saturation Voltage vs. Ambient Temperature

Sink Saturation Voltage


Quiescent Logic Supply Current vs. Logic Supply Voltage

TL/H/8706-4


Typical Applications

DC motor controls (with connections to ground and to the supply voltages)

TL/H/8706-5

Bidirectional DC motor control

TL/H/8706-6

VE	Pin 10	Pin 15	М1	M2
Н	Ι	Η	Fast Motor Stop	Run
Н	Ι	L	Fast Motor Stop	Fast Motor Stop
Н	┙	Η	Run	Run
Н	L	L	Run	Fast Motor Stop
L	Х	Х	Free Running Motor Stop	Free Running Motor Stop

= Low	H = High	X = Don't c	are

	Inputs	Function	
	Pin 10 = H Pin 15 = L	Turn CW	
$V_{E} = H$	Pin 10 = L Pin 15 = H	Turn CCW	
	Pin 10 = Pin 15	Fast Motor Stop	
$V_{E} = L$	Pin 10 = X Pin 15 = X	Free Running Motor Stop	

L = Low H = High X = Don't care

Bipolar Stepping Motor Control

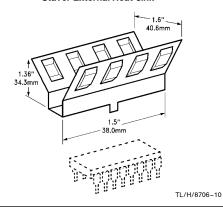
Step Sequencing Tables

Full Step *

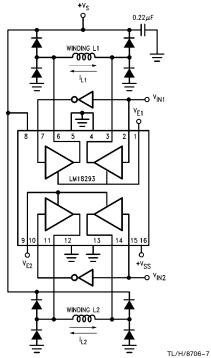
V _{IN} 1	V _{IN} 2	Step		
L	L	1		
L	Н	2		
Н	Н	3		
Н	L	4		
- 1	1	1		

 $^*V_{\hbox{\scriptsize E}}$ 1 and $V_{\hbox{\scriptsize E}}$ 2 = H

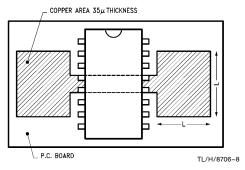
Half Step


V _E 1	V _E 2	V _{IN} 1	V _{IN} 2	Step
Н	L	L	x	1
Н	Н	L	L	2
L	Н	x	L	3
Н	Н	Н	L	4
Н	L	Н	Х	5
Н	Н	Н	Н	6
L	Н	Х	Н	7
Н	Н	L	Н	8
Н	L	L	Х	1

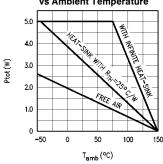
 $H \,=\, High \quad L \,=\, Low \quad X \,=\, Don't \; care$


Mounting Instructions

The junction to ambient thermal resistance of the LM18293 can be reduced by soldering the ground pins to a suitable copper area of the printed circuit board or to an external heatsink. The graph below, which shows the maximum power dissipated and junction to ambient thermal resistance as a function of the side "i" of two equal square copper areas having a thickness of 35μ , illustrates this. In addition, it is possible to use an external heatsink (see illustration below). During soldering the pins temperature must not exceed $230^{\circ}\mathrm{C}$ and the soldering time must not be longer than 12 seconds. The external heatsink or printed circuit copper area must be connected to electrical ground.

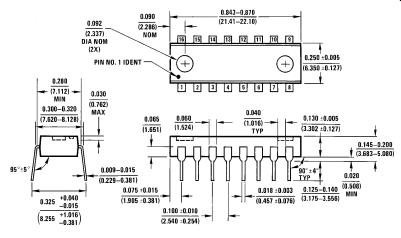

Staver External Heat-sink

Motor Control Block Diagram


Maximum power dissipated and junction to ambient

TL/H/8706-9

Mounting Instructions (Continued)


Maximum Allowable Power Dissipation vs Ambient Temperature

TL/H/8706-11

Physical Dimensions inches (millimeters)

Lit. # 108380

N16A (REV E)

Molded Dual-In-Line Package (N) Order Number LM18293N NS Package Number N16A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959

Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Email: onlyge@tevm2.nsc.com
Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 78 32 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408