Philips Components Signetics

Document No.	853-0033
ECN No.	96054
Date of Issue	March 14, 1989
Status	Product Specification
Memory Produ	octs

<u>捷多邦,专业PCB打样工厂,24小时</u> 82LS135 加急出货 2K-bit TTL bipolar PROM

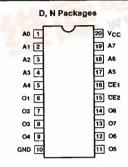
DESCRIPTION

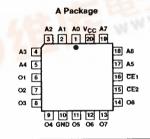
The 82LS135 is field programmable, which means that custom patterns are immediately available by following the Signetics Generic I fusing procedure. The standard devices are supplied with all outputs at logical Low. Outputs are programmed to a logic High level at any specified address by fusing the Ni-Cr link matrix.

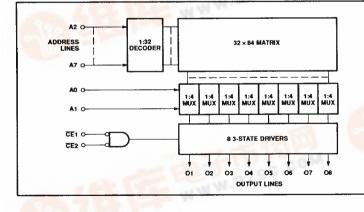
The 82LS135 includes on-chip decoding and two Chip Enable inputs for ease of memory expansion, and features 3-State outputs for optimization of word expansion in bused organizations.

Ordering information can be found on the following page.

BLOCK DIAGRAM


FEATURES


- Address access time: 100ns max
- Power dissipation: 200µW/bit typ
- Input loading: -100µA max
- Two Chip Enable inputs
- On-chip address decoding
- No separate fusing pins
- Fully TTL compatible
- Unprogrammed outputs are Low level
- Outputs: 3-State


APPLICATIONS

- Prototyping/volume production
- Sequential controllers
- Microprogramming
- Hardwired algorithms
- Control store
- Random logic
- Code conversion

PIN CONFIGURATIONS

2K-bit TTL bipolar PROM (256 × 8)

82LS135

ORDERING INFORMATION

DESCRIPTION	ORDER CODE
20-Pin Plastic Dual-In-Line 300mil-wide	N82LS135 N
20-Pin Plastic Small Outline 300mil-wide	N82LS135 D
20-Pin Plastic Leaded Chip Carrier 350mil-square	N82LS135 A

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	+7.0	V _{DC}
VIN	input voltage	+5.5	V _{DC}
Vo	Output voltage Off-State	+5.5	V _{DC}
Tamb	Operating temperature range	0 to +75	℃
T _{stg}	Storage temperature range	-65 to +150	°C

$\begin{array}{l} \textbf{DC ELECTRICAL CHARACTERISTICS} \\ 0^{\circ}C \leq T_{amb} \leq +75^{\circ}C, \ 4.75V \leq V_{CC} \leq 5.25V \end{array}$

			LIMITS			
SYMBOL	PARAMETER	TEST CONDITIONS ^{1,2}	Min	Typ ³	Max	UNIT
Input volt	age		•			
VL	Low				0.8	v
VIH	High		2.0			v
VIC	Clamp	I _{IN} = -12mA			-1.2	v
Output vo	oltage					
VOL	Low	I _{OUT} = 16mA			0.5	v
V _{OH}	High	I _{OUT} = -2mA, High stored	2.4			v
Input cur	rent					
I _{IL}	Low	V _{IN} = 0.45V			-100	μA
Iн	High	V _{IN} = 5.5V			40	μA
Output cu	urrent				•	
loz Hi-Z state		CE1, CE2 = High, V _{OUT} = 0.5V			-40	μA
		CE1, CE2 = High, V _{OUT} = 5.5V	1		40	μA
los	Short circuit ⁴	CE1, CE2 = Low, V _{OUT} = 0V, High stored	-15		-75	mA
Supply cu	urrent ⁵					
lcc		V _{CC} = 5.25V		80	100	mA
Capacita)Ce		•	•	•	
		V _{CC} = 5.0V, CE = High				
C _{IN}	Input	V _{IN} = 2.0V		5		рF
COUT	Output	$V_{OUT} = 2.0V$		8		pF

NOTES:

1. Positive current is defined as into the terminal referenced.

2. All voltages with respect to network ground. 3. Typical values are at $V_{CC} = 5V$, $T_{amb} = +25^{\circ}C$. 4. Duration of short circuit should not exceed 1 second. 5. Measured with all inputs grounded and all outputs open.

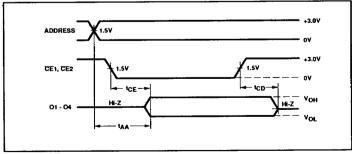
2K-bit TTL bipolar PROM (256 × 8)

82LS135

AC ELECTRICAL CHARACTERISTICS


 $R_1 = 270\Omega$, $R_2 = 600\Omega$, $C_L = 30pF$, $0^{\circ}C \le T_{amb} \le +75^{\circ}C$, $4.75V \le V_{CC} \le 5.25V$

	то	FROM	LIMITS			
PARAMETER			Min	Typ1	Max	UNIT
2						
	Output	Address		70	100	ns
	Output	Chip Enable		30	50	ns
3						
	Output	Chip Disable		30	60	ns
	2	2 Output Output 3	Output Address Output Chip Enable	Cutput Address Output Chip Enable	PARAMETER TO FROM Min Typ1 0	PARAMETER TO FROM Min Typ1 Max 0 Output Address 70 100 Output Chip Enable 30 50


NOTES:

1. Typical values are at V_{CC} = 5V, T_{amb} = +25°C. 2. Tested at an address cycle time of 1 μ s. 3. Measured at a delta of 0.5V from Logic Level with R₁ = 750 Ω , R₂ = 750 Ω , C_L = 5pF.

TEST LOAD CIRCUIT

VOLTAGE WAVEFORMS

