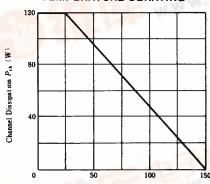

SILICON N-CHANNEL MOS FET

HIGH SPEED POWER SWITCHING

■ FEATURES

- Low On-Resistance
- High Speed Switching
- **Low Drive Current**
- No Secondary Breakdown
- Suitable for Switching Regulator, DC-DC Converter and Motor Driver



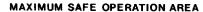
BABSOLUTE MAXIMUM RATINGS $(Ta=25^{\circ}C)$

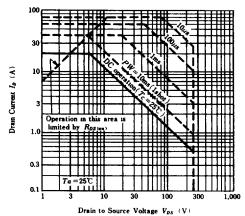
Item	Symbol	Rating	Unit V	
Drain-Source Voltage	Voss	250		
Gate-Source Voltage	Voss	±20	v	
Drain Current	I _D	20	A	
Drain Peak Current	In (pulse) *	80	A	
Body-Drain Diode		0.754		
Reverse Drain Current	IDR	20	A	
Channel Dissipation	Pch**	120	W	
Channel Temperature	Tch	150	°C	
Storage Temperature	Tets	-55~+150	•C	

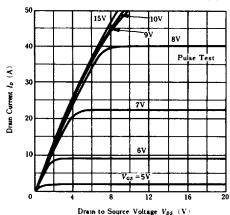
[•]PW≤10µs, duty cycle≤1%

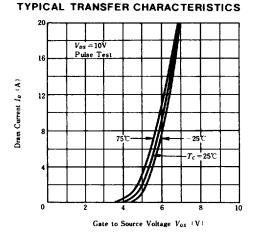
POWER VS. TEMPERATURE DERATING

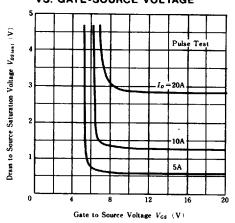
Case Temperature Tc (°C)


■ ELECTRICAL CHARACTERISTICS $(Ta=25^{\circ}C)$

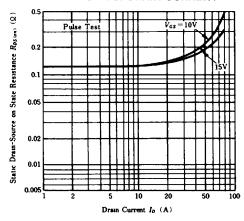

Item	Symbol	Test Condition	min.	typ.	max.	Unit
Drain-Source Breakdown Voltage	V(BR) DSS	ID-10mA, VGS-0	250	_	<u> </u>	V
Gate-Source Breakdown Voltage	V(BR)GSS	$I_{G} = \pm 100 \mu A$, $V_{DS} = 0$	±20		_	V
Gate-Source Leak Current	Icss	$V_{GS}=\pm 16$ V, $V_{DS}=0$	T -		±10	μA
Zero Gate Voltage Drain Current	Inss	$V_{DS} = 200 \text{ V}, V_{GS} = 0$	_	_	250	μA
Gate-Source Cutoff Voltage	V _{GS(*ff)}	$I_D=1$ mA, $V_{DS}=10$ V	2.0		4.0	V
Static Drain-Source on State Resistance	Rps(en)	$I_D = 10 \text{A}, V_{GS} = 10 \text{V}^{\bullet}$	T -	0.12	0.15	Ω
Forward Transfer Admittance		I _D -10A, V _{DS} -10V*	7	12	_	S
Input Capacitance	C			2000		pF
Output Capacitance	Coss	$V_{DS}=10$ V, $V_{GS}=0$, $f=1$ MHz		950	_	pF
Reverse Transfer Capacitance	C-24	- 1		270	-11	pF
Turn-on Delay Time	td(on)	77.77	-	25	_	ns
Rise Time	t.	1	_	200	-	ns
Turn-off Delay Time	ta(e//)	$I_D=10A, V_{GS}=10V, R_L=3\Omega$	_	200		ns
Fall Time	tı	TO BE COM	_	160	_	ns
Body-Drain Diode	1-0.7	-750-	_	1.2	-	v
Forward Voltage	VDF	$I_F=20$ A, $V_{GS}=0$				
Body-Drain Diode						
Reverse Recovery Time	$I_F=20A$, $V_{GS}=0$, $di_F/dt=50A/\mu_S$		-	450	_	ns

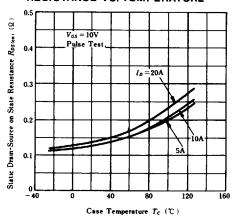

^{**}Value at Tc-25°C


HITACHI/(OPTOELECTRONICS)

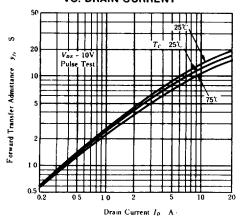


TYPICAL OUTPUT CHARACTERISTICS

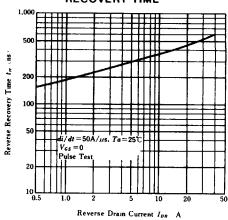



DRAIN-SOURCE SATURATION VOLTAGE
VS. GATE-SOURCE VOLTAGE

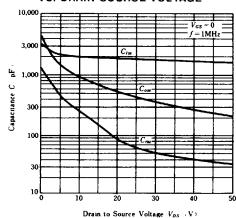
STATIC DRAIN-SOURCE ON STATE RESISTANCE VS. DRAIN CURRENT

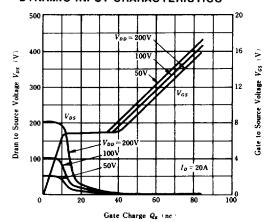


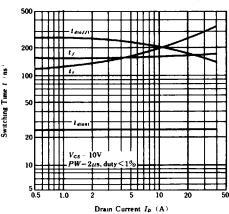
STATIC DRAIN-SOURCE ON STATE RESISTANCE VS. TEMPERATURE

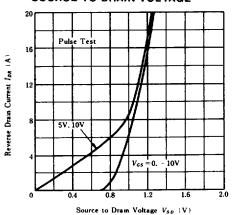


HITACHI/(OPTOELECTRONICS)

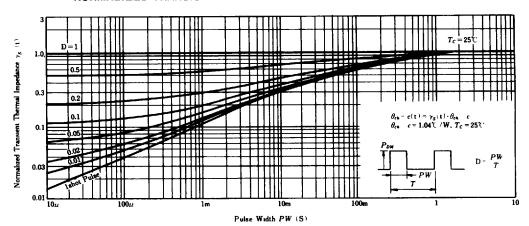

FORWARD TRANSFER ADMITTANCE VS. DRAIN CURRENT


BODY-DRAIN DIODE REVERSE RECOVERY TIME

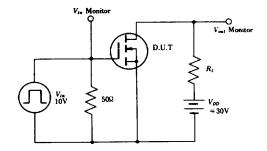

TYPICAL CAPACITANCE VS. DRAIN-SOURCE VOLTAGE


DYNAMIC INPUT CHARACTERISTICS

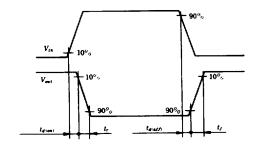
SWITCHING CHARACTERISTICS



REVERSE DRAIN CURRENT VS. SOURCE TO DRAIN VOLTAGE



HITACHI/(OPTOELECTRONICS)


NORMALIZED TRANSIENT THERMAL IMPEDANCE VS. PULSE WIDTH

SWITCHING TIME TEST CIRCUIT

WAVEFORMS

