
1

Copyright  Cirrus Logic, Inc. 1997
(All Rights Reserved)

Cirrus Logic, Inc.
Crystal Semiconductor Products Division
P.O. Box 17847, Austin, Texas 78760
(512) 445 7222 FAX: (512) 445 7581
http://www.crystal.com

AN88

Application Note

Interfacing the CS5525/6/9 to the PIC16F84

By Keith Coffey

INTRODUCTION

This application note details the interface of Crys-
tal Semiconductor’s CS5525/6/9 Analog-to-Digi-
tal Converter (ADC) to the Microchip PIC16
microcontroller series. This note takes the reader
through a simple example describing how to com-
municate with the ADC. All algorithms discussed
are included in the Appendix at the end of this
note.

ADC DIGITAL INTERFACE

The CS5525/6/9 interfaces to the PIC16F84
through either a three-wire or a four-wire interface.
Figure 1 depicts the interface between the two de-
vices. Though this software was written to inter-
face to Port A (RA) on the PIC16F84 with a four-
wire interface, the algorithms can be easily modi-
fied to work with the three-wire format.

The ADC’s serial port consists of four control
lines: CS, SCLK, SDI, and SDO.

CS, Chip Select, is the control line which enables
access to the serial port.

SCLK, Serial Clock, is the bit-clock which controls
the shifting of data to or from the ADC’s serial
port.

SDI, Serial Data In, is the data signal used to trans-
fer data from the PIC16F84 to the ADC.

SDO, Serial Data Out, is the data signal used to
transfer output data from the ADC to the
PIC16F84.

SOFTWARE DESCRIPTION

This note presents algorithms to initialize the
PIC16F84 and the CS5525/6/9, perform a self-off-
set calibration, modify the CS5525/6/9 gain regis-
ter, and then acquire a conversion. Figure 2 depicts

CS5525/6/9 PIC16F84

RA0

RA1

RA2

RA3

CS

SDI

SDO

SCLK

Figure 1. 3-Wire and 4-Wire Interfaces

CS5525/6/9 PIC16F84

NC (RA0)

RA1

RA2

RA3

CS

SDI

SDO

SCLK

NOV ‘97
AN88Rev2

查询an88供应商

http://www.dzsc.com/stock_an8/an88.html

AN88

2 AN88Rev2

a block diagram overview. While reading this ap-
plication note, please refer to the Appendix for the
code listing.

Initialize

Initialize is a subroutine that configures Port A
(RA) on the PIC16F84 and places the CS5525/6/9
in the command-state. First, RA’s data direction is
configured as depicted in Figure 1 (for more infor-
mation on configuring ports refer to Microchip’s
PIC16F8X Data Sheet). After configuring the port,
the controller enters a delay state to allow time for
the CS5525/6/9’s power-on-reset and oscillator to
start-up (oscillator start-up time is typically 500
ms). The last step is to reinitialize the serial port on
the ADC (reinitializing the serial port is unneces-
sary here, it was added for demonstration purposes
only). This is implemented by sending the convert-
er sixteen bytes of logic 1’s followed by one final
byte, with its LSB logic 0. Once sent, the sequence
places the serial port of the ADC into the com-
mand-state, where it awaits a valid command.

After returning to main, the software demonstrates
how to calibrate the converter’s offset.

Self-Offset Calibration

Calibrate is a subroutine that calibrates the con-
verter’s offset. Calibrate first sends 0x000001
(Hex) to the configuration register. This instructs
the converter to perform a self-offset calibration.
Then the Done Flag (DF) bit in the configuration
register is polled until set. Once DF is set, it indi-
cates that a valid calibration was performed. To
minimize digital noise (while performing a calibra-
tion or a conversion), many system designers may
find it advantageous to add a software delay equiv-
alent to a conversion or calibration cycle before
polling the DF bit.

Read/Write Gain Register

To modify the gain register the command-byte and
data-byte variables are first initialized. This is ac-
complished by the MOVLW and MOVWF op-
codes. The subroutine write_register uses these
variables to set the contents of the gain register in
the CS5525/6/9 to 0x800000 (HEX). To do this,
write_register first asserts CS and then it calls
send_spi four times (once for the command-byte
and three additional times for the 24 bits of data).
Send_spi is a subroutine used to ‘bit-bang’ a byte of
information from the PIC16F84 to the CS5525/6/9.
A byte is transferred one bit at a time, MSB (most
significant bit) first, by placing an information bit
on RA1 (SDI) and then pulsing RA3 (SCLK). This
process is repeated eight times. Figure 3 depicts the
timing diagram for the write-cycle in the CS5525/
6/9’s serial port. This algorithm demonstrates how
to write to the gain register. It does not perform a
gain calibration. To perform a gain calibration, fol-
low the procedures outlined in the data sheet.

To verify if 0x800000 (HEX) was written to the
gain register, read_register is called. It duplicates
the read-cycle timing diagram depicted in Figure 4.
Read_register first asserts CS and then calls
send_spi once to transfer the command-byte to the
CS5525/6/9. This places the converter into the

START

INITIALIZE

SELF-OFFSET CAL.

MODIFY GAIN

ACQUIRE CONVERSION

MICROCONTROLLER/CS5525/6/9

Figure 2. CS5525/6/9 Software Flowchart

AN88

AN88Rev2 3

data-state where it waits until data is read from its
serial port. To receive the data, read_register calls
receive_spi three times. Receive_spi is a subroutine
used to ‘bit-bang’ a byte of information from the
ADC to the PIC16F84. Similar to send_spi,
receive_spi acquires this information one bit at a
time MSB first. When the transfer is complete, the
variables highbyte, midbyte, and lowbyte contain
the CS5525/6/9’s 24-bit gain register.

Acquire Conversion

To acquire a conversion the subroutine convert is
called. Convert sends the command-byte 0x0C to
the converter. This instructs the converter to per-
form a single conversion. Then the Done Flag (DF)

bit in the configuration register is polled. When set,
DF indicates that a conversion was performed.
Once DF is set, the controller reads the conversion
data register to acquire the conversion.Figure 6 de-
picts how 16-bit and 20-bit conversion words are
stored in the microcontroller.

An alternate method can be used to acquire a con-
version. By setting the Port Flag bit (PF, the fifth
bit in the configuration register), SDO’s function is
modified to fall to logic 0 when a conversion is
complete (refer to Figure 5). By tying SDO to the
controller’s interrupt pin, conversions can be ac-
quired via an interrupt service routine.

Figure 3. Write-Cycle Timing

Figure 4. Read-Cycle Timing

AN88

4 AN88Rev2

MAXIMUM SCLK RATE

A machine cycle in the PIC16F84 consists 4 oscil-
lator periods or 400 ns if the microcontroller’s os-
cillator frequency is 10 MHz. Since the CS5525/6/
9’s maximum SCLK rate is 2MHz, additional no
operation (NOP) delays may be necessary to re-
duce the transfer rate if the microcontroller system
requires higher rate oscillators.

SERIAL PERIPHERAL INTERFACE

The Serial Peripheral Interface (SPI) developed for
Microchip’s controllers wasn’t designed to be as
flexible as the SPI port on Motorola’s 68HC05. To
get the Microchip’s SPI port to function with the
CS5525/6/9, the port needs to be initialized to idle
high, and the CS5525/6/9’s serial port needs to be
reset anytime information is transmitted between
the microcontroller and the converter.

DEVELOPMENT TOOL DESCRIPTION

The code in this application note was developed
using MPLABTM, an integrated software
development package from Microchip, Inc.

Command Time
8 SCLKs

8 SCLKs Clear SDO Flag

Data SDO Continuous Conversion Read (PF bit = 1)

SDO

SCLK

SDI

t *d

Data Time
24 SCLKs

MSB LSB

* td = XIN/OWR clock cycles for each conversion except the
first conversion which will take XIN/OWR + 7 clock cycles

XIN/OWR
Clock Cycles

Figure 5. Conversion/Acquisition Cycle with the PF Bit Asserted

MSB High-Byte

Mid-Byte

Low-Byte

A) 20-Bit Conversion Data Word

MSB High-Byte

Mid-Byte

Low-Byte

B) 16-Bit Conversion Data Word

 0- always zero, 1- always one,

OD - Oscillation Detect, OF - Overflow

Figure 6. Bit Representation/Storage in PIC16F84

D19 D18 D17 D16 D15 D14 D13 D12

D11 D10 D9 D8 D7 D6 D5 D4

D3 D2 D1 D0 0 0 OD OF

D15 D14 D13 D12 D11 D10 D9 D8

D7 D6 D5 D4 D3 D2 D1 D0

1 1 1 1 0 0 OD OF

AN88

AN88Rev2 5

CONCLUSION

This application note presents an example of how
to interface the CS5525/6/9 to the PIC16F84. It is
divided into two main sections: hardware and soft-
ware. The hardware section illustrates both a three-
wire and a four-wire interface. The three-wire is
SPITM and MICROWIRETM compatible. The soft-
ware, developed with development tools from Mi-
crochip, Inc., illustrates how to initialize the
converter and microcontroller, calibrate the con-

verters offset, write to and read from the ADC’s in-
ternal register, and acquire a conversion. The
software is modularized and illustrates important
subroutines, e.g. write_register and read_register.
The software described in the note is included in
the Appendix at the end of this document.

SPITM is a trademark of Motorola.

MICROWIRETM is a trademark of National Semiconductor.

MPLABTM is a trademark of Microchip.

AN88

6 AN88Rev2

APPENDIX

PIC16F84 Microcode to Interface to the CS5525/6/9

;***
;* File: 55261684.asm
;* Date: November 15, 1996
;* Programmer:Keith Coffey
;* Revision: 0
;* Processor: PIC16F84
;* Program entry point at routine "main". The entry point is address 0x05.
;***
;* Program is designed as an example to interface a PIC16F84 to a CS5525/6/9
;* ADC. The program interfaces via a software SPI which controls the
;* serial communications, calibration, and conversion signals. Other ADC’s
;* (16-bit and 20-bit) in the product family can be used.
;***
;******** Memory Map Equates
INDF equ 0x00 ; Indirect Address Register
STATUS equ 0x03 ; STATUS register equate
FSR equ 0x04 ; File Select Register
PORTA equ 0x05 ; General Purpose I/O Port
TRISA equ 0x85 ; Data Direction Control For Port A
RP0 equ 0x05 ; Register Bank Select Bit
CS equ 0x00 ; Port A bit 0
SDI equ 0x01 ; Port A bit 1
SDO equ 0x02 ; Port A bit 2
SCLK equ 0x03 ; Port A bit 3
LED equ 0x04 ; Port A bit 4
TRUE equ 0x01 ; Represents logic 1
HIGHBYTE equ 0x0C ; Upper 8 bits of Conversion Register
MIDBYTE equ 0x0D ; Middle 8 bits of Conversion Register
LOWBYTE equ 0x0E ; Lowest 8 Bits of Conversion Register
COMMANDBYTE equ 0x0F ; One byte RAM storage location
TEMP equ 0x10 ; A Temporary Data Storage Register
COUNT equ 0x11 ; Used to store count for delay routine
SPDR equ 0x12 ; Reserved for Serial Peripheral Data Reg.
CARRY_BIT equ 0x00 ; Represents the Carry Bit in Status Reg.

AN88

AN88Rev2 7

;***
;* Program Code
;***

processor 16C84 ; Set Processor Type
org 0x00 ; Reset Vector
goto Main ; Start at Main

;***
;* Routine - Main
;* Input - none
;* Output - none
;* This is the entry point to the program.
;***

org 0x05
Main ; Start from Reset Vector

;******** Initialize System and Perform SELF OFFSET Calibration
CALL initialize ; Initialize the system
CALL calibrate ; Calibrate the ADC Offset

;******** Write to the GAIN Register
MOVLW 0x82 ; Prepare COMMANDBYTE
MOVWF COMMANDBYTE
MOVLW 0x80 ; Prepare HIGHBYTE
MOVWF HIGHBYTE
CLRF MIDBYTE ; Prepare MIDBYTE
CLRF LOWBYTE ; Prepare LOWBYTE
CALL write_register ; Write to Gain Register

;******** Read from the GAIN Register
MOVLW 0x92 ; Prepare COMMANDBYTE
MOVWF COMMANDBYTE
CALL read_register ; Read the Gain Register

;******** Perform Single Conversions
LOOP CALL convert ; Convert Analog input

goto LOOP ; Repeat Loop
;******** End MAIN

AN88

8 AN88Rev2

;***
;* Subroutines
;***
;***
;* Routine - initialize
;* Input - none
;* Output - none
;* This subroutine initializes port A for interfacing to the CS5525/6/9 ADC.
;* It provides a time delay for oscillator start-up/wake-up period.
;* A typical start-up time for a 32768 Hz crystal, due to high Q, is 500 ms.
;* Also 1003 XIN clock cycles are allotted for the ADC’s power on reset. The
;* total delay is 555 ms upon power-up (assume uC start-up time is zero).
;***
initialize CLRF PORTA ; Initialize PORTA by setting output

; data latches.
BSF STATUS, RP0 ; Select Bank 1
MOVLW 0x04 ; Value used to initialize direction
MOVWF TRISA ; Set RA2 as inputs

; RA0, RA1, RA3, & RA4 as outputs

BCF STATUS, RP0 ; Select Bank 0
BCF PORTA,SDO ; Clear SDO
MOVLW 0x32 ; Load W with delay count
CALL delay ; Delay, Power on Reset 1003 XIN
MOVLW 0xFF ; Load W with delay count
CALL delay ; Delay, Oscillator start-up 158 ms
CALL delay ; Delay, Oscillator start-up 158 ms
CALL delay ; Delay, Oscillator start-up 158 ms
CALL delay ; Delay, Oscillator start-up 158 ms
MOVLW 0x0F ; Reset Serial Port on ADC
MOVWF TEMP

BCF PORTA,CS ; Clear CS
loop MOVLW 0xFF ; Load W with 0xFF

CALL send_spi ; Send 15 0xFF through SPI
DECFSZ TEMP,1 ; Decrement the counter
goto loop ; Repeat loop if counter not zero
MOVLW 0xFE ; Load W with last byte
CALL send_spi ; Move 0xFE to SPDR
BSF PORTA,CS ; Clear CS
RETURN ; Exit subroutine

AN88

AN88Rev2 9

;***
;* Routine - calibrate
;* Input - none
;* Output - none
;* This subroutine instructs the CS5525/6/9 to perform self-offset calibration.
;***
calibrate MOVLW 0x84 ; set command byte for config write

MOVWF COMMANDBYTE ; set COMMAND BYTE
CLRF HIGHBYTE ; clear HIGHBYTE
CLRF MIDBYTE ; clear MIDBYTE
MOVLW 0x01 ; get ready for self offset cal
MOVWF LOWBYTE ; set LOWBYTE
CALL write_register ; Write to Config Register

MOVLW 0x94 ; set command byte for config read
MOVWF COMMANDBYTE ; set COMMAND BYTE

poll_done: CALL read_register ; Poll done flag until cal complete
BTFSS LOWBYTE,3 ; repeat if flag not set
goto poll_done
RETURN ; Exit subroutine

;***
;* Routine - convert
;* Input - none
;* Output - Conversion results in memory locations HIGHBYTE, MIDBYTE and
;* LOWBYTE. This algorithm performs only single conversions. If
;* continuous conversions are needed the routine needs to be
;* modified. Port flag is zero.
;* HIGHBYTE MIDBYTE LOWBYTE
;* 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
;* 16-bit results MSB LSB 1 1 1 1 0 0 OD OF
;* 20-bit results MSB LSB 0 0 OD OF
;* This subroutine initiates a single conversion.
;***
convert MOVLW 0xC0 ; Set COMMANDBYTE for single CONV

MOVWF COMMANDBYTE
BCF PORTA,CS ; Clear Chip Select
CALL send_spi ; Transmit command out SPI
MOVLW 0x94 ; Set command byte for config read
MOVWF COMMANDBYTE ; Send COMMAND BYTE

done1 CALL read_register ; Poll done flag until CONV complete
BTFSS LOWBYTE,3 ; Repeat if Done Flag not Set
goto done1

MOVLW 0x96 ; Set Byte to Read Conversion Reg.
MOVWF COMMANDBYTE ; Store COMMAND BYTE
CALL read_register ; Acquire the Conversion
BSF PORTA,CS ; Set Chip Select
RETURN ; Exit subroutine

AN88

10 AN88Rev2

;***
;* Routine - write_register
;* Input - COMMANDBYTE, HIGHBYTE, MIDBYTE, LOWBYTE
;* Output - none
;*
;* This subroutine instructs the CS5525/6/9 to write to an internal register.
;***
write_register BCF PORTA,CS ; Clear Chip Select

MOVF COMMANDBYTE,0 ; Load W with COMMANDBYTE
CALL send_spi ; transfer byte
MOVF HIGHBYTE,0 ; Load W with HIGHBYTE
CALL send_spi ; transfer byte
MOVF MIDBYTE,0 ; Load W with MIDBYTE
CALL send_spi ; transfer byte
MOVF LOWBYTE,0 ; Load W with LOWBYTE
CALL send_spi ; transfer byte
BSF PORTA,CS ; Set Chip Select
RETURN ; Exit Subroutine

;***
;* Routine - read_register
;* Input - COMMANDBYTE
;* Output - HIGHBYTE, MIDBYTE, LOWBYTE
;* This subroutine reads an internal register of the ADC.
;***
read_register BCF PORTA,CS ; Clear Chip Select

MOVF COMMANDBYTE,0 ; Load W with COMMANDBYTE
CALL send_spi ; transfer byte
CALL receive_spi ; receive byte
MOVWF HIGHBYTE ; Move W to HIGHBYTE
CALL receive_spi ; receive byte
MOVWF MIDBYTE ; Move W to MIDBYTE
CALL receive_spi ; receive byte
MOVWF LOWBYTE ; Move W to LOWBYTE
BSF PORTA,CS ; Set Chip Select
RETURN ; Exit Subroutine

AN88

AN88Rev2 11

;***
;* Routine - send_spi
;* Input - Byte to be transmitted is placed in W
;* Output - None
;* This subroutine sends a byte to the ADC.
;***
send_spi: MOVWF SPDR ; Move W to SPDR

MOVLW 0x08 ; Set COUNT to count to 8
MOVWF COUNT ; to transmit byte out SPI
BCF PORTA,SCLK ; Clear SCLK

wait0 ; Send Bit
RLF SPDR,1 ; Rotate SPDR, send MSB 1st
BTFSC STATUS,CARRY_BIT ; If bit low skip next instruct.
BSF PORTA,SDI ; Set SDI
BTFSS STATUS,CARRY_BIT ; If bit high, skip next instruct.
BCF PORTA,SDI ; Clear SDI

BSF PORTA,SCLK ; Toggle Clock
BCF PORTA,SCLK
DECFSZ COUNT,1 ; Loop until byte is transmitted
goto wait0
BCF PORTA,SDI ; Return Pin low
RETURN ; Exit Subroutine

;***
;* Routine - receive_spi
;* Input - none
;* Output - Byte received is placed in W
;* This subroutine receives a byte from the ADC.
;***
receive_spi: MOVLW 0x08 ; Set COUNT to count to 8

MOVWF COUNT ; to transmit byte out SPI
BCF PORTA,SCLK ; Clear SCLK

wait1: ; Receive bit
BTFSC PORTA,SDO ; If bit low skip next instruct.
BSF STATUS,CARRY_BIT ; Set SDI
BTFSS PORTA,SDO ; If bit high, skip next instruct.
BCF STATUS,CARRY_BIT ; Clear SDI
RLF SPDR,1 ; Rotate SPDR, Receive MSB 1st
BSF PORTA,SCLK ; Toggle Clock
BCF PORTA,SCLK
DECFSZ COUNT,1 ; Loop until byte is transmitted
goto wait1

MOVF SPDR,0 ; Put byte attained in W
RETURN ; Exit Subroutine

AN88

12 AN88Rev2

;***
;* Routine - delay
;* Input - Count in register A
;* Output - none
;* This subroutine delays by using count from register W. The PIC16F84
;* development board uses a 10 MHz clock (E = 2.5 MHz), thus each cycle is
;* 400 nS. This delay is approximately equivalent to
;* (400ns)*(1545)*(count value), (a count of 720 provides a 445ms delay).
;***
delay MOVWFCOUNT ; Put the delay count into COUNT
outlp CLRF TEMP ; TEMP used as inner loop count
innlp NOP ; 1 cycle

NOP ; 1 cycle
NOP ; 1 cycle
NOP ; 1 cycle
DECFSZ TEMP,1 ; FF-FE, FE-FD,1-0 256 loops

; 10 cycles*256*500ns=1.28 ms
goto innlp ; If count not done repeat loop
DECFSZ COUNT,1 ; Countdown the accumulator
goto outlp ; 2569 cycles*500ns*A
RETURN ; Exit subroutine

;***
;* Interrupt Vectors
;***
NOT_USED RETFIE

ORG 0x04 ; Originate Interrupt Vector here
goto NOT_USED ; No Interrupts Enabled

end ; End Program Listing

• Notes •

