Product Preview

3.3 Volt Only Driver/Receiver with an Integrated Standby Mode

EIA-232-E and CCITT V.28

The MC145583 is a CMOS transceiver composed of three drivers and five receivers that fulfills the electrical specifications of EIA–232–E, EIA–562, and CCITT V.28 while operating from a single + 3.3 or + 5.0 V power supply. This transceiver is a high–performance, low–power consumption device that is equipped with a standby function.

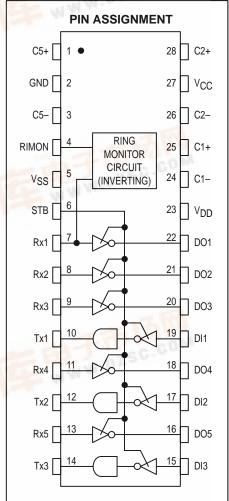
A voltage tripler and inverter converts the + 3.3 V to \pm 8.8 V, or a voltage doubler and inverter converts the + 5.0 V to \pm 8.8 V. This is accomplished through an on–chip 40 kHz oscillator and five inexpensive external capacitors.

Drivers:

- ± 5 V Minimum Output Swing at 3.3 or 5.0 V Power Supply
- 300 Ω Power-Off Impedance
- Output Current Limiting
- Three–State Outputs During Standby Mode

Receivers:

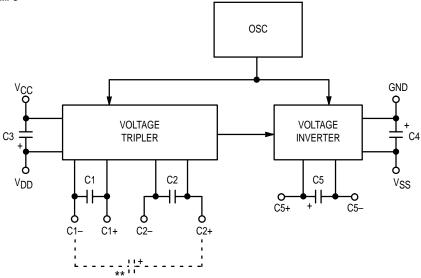
1/96SC.COM

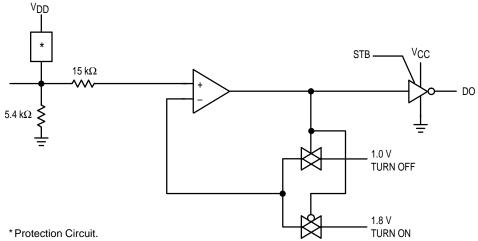

- ± 25 V Input Range
- 3 to 7 kΩ Input Impedance
- 0.8 V Hysteresis for Enhanced Noise Immunity
- Three-State Outputs During Standby Mode

Ring Monitor Circuit:

 Invert the Input Level on Rx1 to Logic Output Level on RIMON at Standby Mode

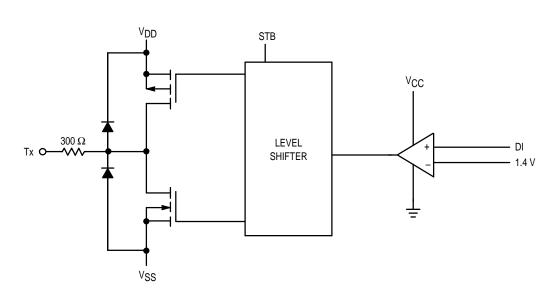
MC145583




This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.

FUNCTION DIAGRAM

CHARGE PUMPS



RECEIVER

 ** Capacitors C1 and C2 are replaced by a 1 μF capacitor at VCC = 5.0 V supply.

DRIVER

MAXIMUM RATINGS (Voltage polarities referenced to GND)

Rating	Symbol	Value	Unit
DC Supply Voltage	Vcc	- 0.5 to + 6.0	V
Input Voltage Rx1 – Rx5 Inputs DI1 – DI3 Inputs	VIR	V _{SS} - 15 to V _{DD} + 15 - 0.5 to V _{CC} + 0.5	V
DC Current per Pin	I	± 100	mA
Power Dissipation	PD	1	W
Operating Temperature Range	TA	- 40 to + 85	°C
Storage Temperature Range	T _{stg}	- 85 to + 150	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, it is recommended that the voltage at the DI and DO pins be constrained to the range GND \leq VDI \leq VCC and GND \leq VDO \leq VCC. Also, the voltage at the Rx pin should be constrained to (VSS - 15 V) \leq VRx1 - Rx5 \leq (VDD + 15 V), and Tx should be constrained to VSS \leq VTx1 - Tx3 \leq VDD.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., GND or V_{CC} for DI, and GND for Rx).

RECOMMENDED OPERATING LIMITS

Parameter	Symbol	Min	Тур	Max	Unit
Power Supply	V _{CC} *	3.0 4.5	3.3 5.0	3.6 5.5	V
Operating Temperature Range	T _A	- 40	_	85	°C

^{*} Capacitors C1 and C2 are replaced by a 1 μ F capacitor at $V_{CC} = 5 \text{ V}$.

DC ELECTRICAL CHARACTERISTICS (Voltage polarities referenced to GND = 0 V; C1 - C5 = 1 µF; TA = 25°C)

Parameter		Symbol	Min	Тур	Max	Unit
DC Power Supply		VCC	3.0	3.3	3.6	V
Quiescent Supply Current (Output Unloaded, Input Low)		ICC	_	2.8	6.0	mA
Quiescent Supply Current (Standby Mode; STB = 1, Output Unloade	ed)	ICC(STB)	_	< 5	10	μΑ
Control Signal Input Voltage (STB)		V _{IL} VIH	— V _{CC} – 0.5	_	0.5 —	V
Control Signal Input Current (STB)		l⊩ IH	_	_	10 10	μА
Charge Pumps Output Voltage (V _{CC} = 3 V; C1, C2, C3, C4, C5 = 1 μ F) Output Voltage (V _{DD}) I _{load} = 0 mA I _{load} = 6 mA		V _{DD}	8.5 7.5	8.8 7.9	_ _	V
Output Voltage (V _{SS})	_d = 0 mA _d = 6 mA	V _{SS}		- 8.8 - 7.8	- 8.5 - 7.0	

RECEIVER ELECTRICAL SPECIFICATIONS

(Voltage polarities referenced to GND = 0 V; V_{CC} = + 3.3 V \pm 10%; C1 – C5 = 1 μ F; T_A = 25°C)

Parameter		Symbol	Min	Тур	Max	Unit
Input Turn–On Threshold (V _{DO1} – DO5 = V _{OL} ; Rx1 – Rx5)	3.3 V 5.0 V	V _{on}	1.35 2.00	1.8 2.5	2.35 3.10	V
Input Turn–Off Threshold ($V_{DO1} - DO5 = V_{OH}$; Rx1 – Rx5)	3.3 V 5.0 V	V _{off}	0.75 1.20	1.0 1.5	1.25 1.80	V
Input Resistance		R _{in}	3	5.4	7	kΩ
High-Level Output Voltage (DO1 – DO5) V _{Rx1} – R _{x5} = – 3 to – 25 V	$I_{\text{out}} = -20 \mu\text{A}$ $I_{\text{out}} = -1 \text{mA}$	VOH	V _{CC} - 0.1 V _{CC} - 0.6	 2.7	_ _	V
Low-Level Output Voltage (DO1 – DO5) V _{Rx1} – R _{x5} = + 3 to + 25 V	$I_{out} = + 20 \mu A$ $I_{out} = + 1.6 \text{ mA}$	VOL	_	0.01 0.5	0.1 0.7	V
Ring Monitor Circuit (Input Threshold)		VTH	_	1.1	_	V
High-Level Output Voltage (RIMON)	$I_{\text{out}} = -20 \mu\text{A}$ $I_{\text{out}} = -1 \text{mA}$	VOH	V _{CC} - 0.1 V _{CC} - 0.6	 2.7	_	V
Low-Level Output Voltage (RIMON)	$I_{out} = +20 \mu A$ $I_{out} = +1.6 \text{ mA}$	VOL	_ _	0.01 0.5	0.1 0.7	V

DRIVER ELECTRICAL SPECIFICATIONS

(Voltage polarities referenced to GND = 0 V; V_{CC} = + 3.3 V or + 5.0 V \pm 10%; C1 – C5 = 1 μ F; T_A = 25°C)

Parameter	Symbol	Min	Тур	Max	Unit
Digital Input Voltage DI1 – DI3					V
Logic Low	VIL	–	 	0.7	
Logic High	VIH	1.8	_	_	
Digital Input Current DI1 – DI3					μΑ
$V_{DI} = GND$	IIL	-	7	_	
VDI = VCC	lіН	_	_	± 1.0	
Output High Voltage	Voн				V
Load on All Tx1 – Tx3, R _L = 3 k Ω ; C _P = 2500 pF, V _{Dl1} – D _{l3} = Logic Low		5.0	7.0	_	
No Load		8.5	8.8	_	
Output Low Voltage	VoL				V
Load on All Tx1 – Tx3, R _L = 3 k Ω ; C _P = 2500 pF, V _{Dl1 – Dl3} = Logic High		—	- 7.0	- 5.0	
No Load		-	- 8.8	- 8.5	
Ripple (Refer to V _{DD} – V _{SS} Value) ***	V _{RF}	_	_	± 5%	
Off Source Impedance Tx1 – Tx3	Z _{off}	300	_	_	Ω
Output Short Circuit Current (V _{CC} = 3.3 V or 5.5 V)	Isc				mA
Tx1 – Tx3 Shorted to GND*		–	_	± 60	
Tx1 – Tx3 Shorted to \pm 15 V**		–	-	± 100	

^{*} Specification is for one Tx output to be shorted at a time. Should all three driver outputs be shorted simultaneously, device power dissipation limits could be exceeded.

SWITCHING CHARACTERISTICS (V $_{CC}$ = + 3.3 V or + 5 V, \pm 10%; C1 – C5 = 1 μF ; TA = 25°C)

Parameter		Symbol	Min	Тур	Max	Unit
Drivers						
Propagation Delay Time Low–to–High $(R_L = 3 k\Omega, C_L = 50 pF or 2500 pF)$	Tx1 – Tx3	^t DPLH	_	0.5	1	μs
High-to-Low (R _L = 3 k Ω , C _L = 50 pF or 2500 pF)		^t DPHL	_	0.5	1	1
Output Slew Rate (Source R = 300Ω) Loading: R _L = $3 - 7 k\Omega$; C _L = $2500 pF$	Tx1 – Tx3	SR	± 4	_	± 30	V/µs
Output Disable Time*		^t DAZ	_	4	10	μs
Output Enable Time*		^t DZA	_	25	50	ms
Receivers						
Propagation Delay Time Low-to-High	DO1 – DO5	^t RPLH	_	_	1	μs
High-to-Low		^t RPHL	_	_	1	
Output Rise Time	DO1 – DO5	t _r	_	120	200	ns
Output Fall Time	DO1 – DO5	t _f	_	40	100	ns
Output Disable Time*		t _{RAZ}	_	4	10	μs
Output Enable Time*		^t RZA	_	25	50	ms

^{*} Including the charge pump setup time.

TRUTH TABLES Drivers

DI	STB	Tx
Х	Η	Z*
Н	L	L
L	L	Н

^{*} $V_{SS} \le V_{Tx} \le V_{DD}$ X = Don't Care

Receivers

Rx	STB	DO
Х	Н	Z*
Н	L	L
L	L	Н

^{*} $GND \le V_{DO} \le V_{CC}$ X = Don't Care

^{**} This condition could exceed package limitations.

^{***} Ripple VRF would not exceed $\pm\,5\%$ of (VDD - VSS).

PIN DESCRIPTIONS

VCC

Digital Power Supply (Pin 27)

This digital supply pin is connected to the logic power supply. This pin should have a not less than 0.33 μF capacitor GND.

GND

Ground (Pin 2)

Ground return pin is typically connected to the signal ground pin of the EIA–232–E connector (Pin 7) as well as to the logic power supply ground.

V_{DD}

Positive Power Supply (Pin 23)

This is the positive output of the on–chip voltage tripler and the positive power supply input of the driver/receiver sections of the device. This pin requires an external storage capacitor to filter the 50% duty cycle voltage generated by the charge pump.

VSS

Negative Power Supply (Pin 5)

This is the negative output of the on-chip voltage tripler/inverter and the negative power supply input of the driver/ receiver sections of the device. This pin requires an external storage capacitor to filter the 50% duty cycle voltage generated by the charge pump.

RIMON

Ring Monitor Circuit (Pin 4)

The Ring Monitor Circuit will convert the input level on Rx1 pin at standby mode and output on the RIMON pin.

STB

Standby Mode (Pin 6)

The device enters the standby mode while this pin is connected to the logic high level. During the standby mode,

driver and receiver output pins become high-impedance state. In this condition, supply current I_{CC} is below 5 µA (typ).

C5+, C5-, C2+, C2-, C1+, C1-Voltage Tripler and Inverter (Pins 1, 3, 28, 26, 25, 24)

These are the connections to the internal voltage tripler and inverter, which generate the V_{DD} and V_{SS} voltages.

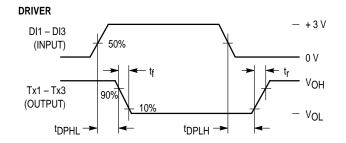
Rx1, Rx2, Rx3, Rx4, Rx5 Receive Data Inputs (Pins 7, 8, 9, 11, 13)

These are the EIA–232–E receive signal inputs. A voltage between + 3 and + 25 V is decoded as a space, and causes the corresponding DO pin to swing to GND (0 V). A voltage between – 3 and – 25 V is decoded as a mark, and causes the DO pin to swing up to V_{CC} .

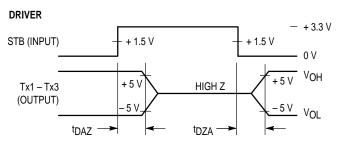
DO1, DO2, DO3, DO4, DO5 Data Outputs (Pins 22, 21, 20, 18, 16)

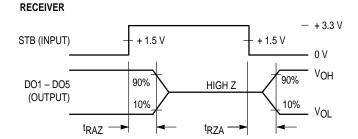
These are the receiver digital output pins, which swing from V_{CC} to GND. Output level of these pins is high impedance while in standby mode.

DI1, DI2, DI3 Data Inputs (Pins 19, 17, 15)


These are the high impedance digital input pins to the drivers. Input voltage levels on these pins must be between VCC and GND.

Tx1, Tx2, Tx3 Transmit Data Output (Pins 10, 12, 14)


These are the EIA–232–E transmit signal output pins, which swing toward V_{DD} and V_{SS} . A logic 1 at a DI input causes the corresponding Tx output to swing toward V_{SS} . The actual levels and slew rate achieved will depend on the output loading (R_L/C_L).


The minimum output impedance is 300 Ω when turned off.

SWITCHING CHARACTERISTICS

RECEIVER Rx1 - Rx5 (INPUT) 50% 0 V TRPHL 90% OUTPUT) 10% VOH

ESD PROTECTION

ESD protection on IC devices that have their pins accessible to the outside world is essential. High static voltages applied to the pins when someone touches them either directly or indirectly can cause damage to gate oxides and transistor junctions by coupling a portion of the energy from the I/O pin to the power supply buses of the IC. This coupling

will usually occur through the internal ESD protection diodes which are designed to do just that. The key to protecting the IC is to shunt as much of the energy to ground as possible before it enters the IC. Figure 1 shows a technique which will clamp the ESD voltage at approximately \pm 15 V using the MMBZ15VDLT1. Any residual voltage which appears on the supply pins is shunted to ground through the capacitors C1 and C2.

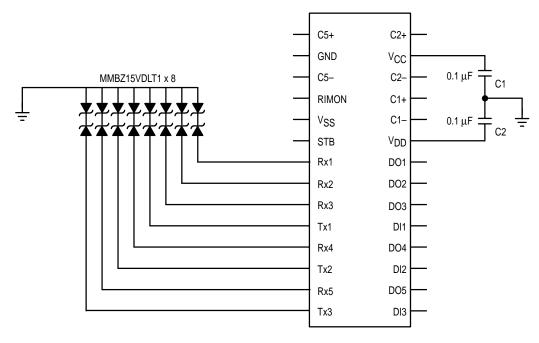
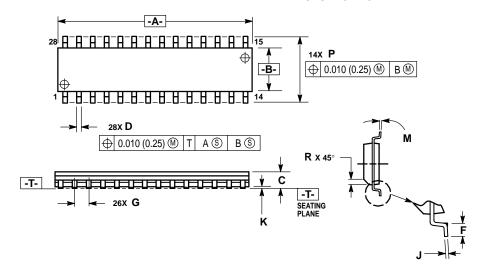
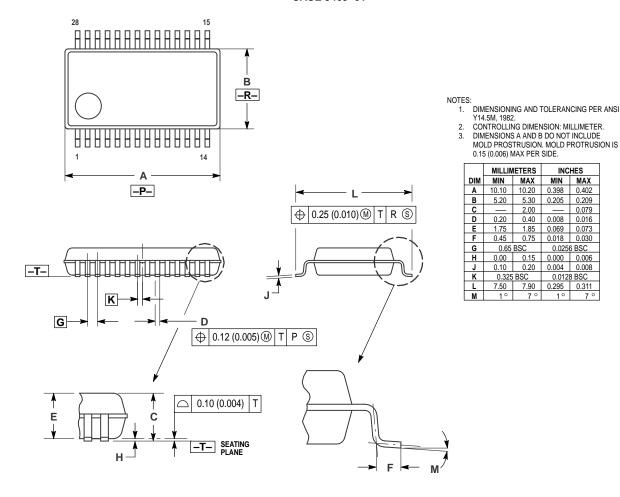



Figure 1. ESD Protection Scheme

PACKAGE DIMENSIONS


DW SUFFIX SOG PACKAGE CASE 751F-04

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE MOLD
- PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15
- (0.006) PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	17.80	18.05	0.701	0.711
В	7.40	7.60	0.292	0.299
С	2.35	2.65	0.093	0.104
D	0.35	0.49	0.014	0.019
F	0.41	0.90	0.016	0.035
G	1.27 BSC		0.050	BSC
J	0.23	0.32	0.009	0.013
K	0.13	0.29	0.005	0.011
M	0°	8°	0°	8°
Р	10.05	10.55	0.395	0.415
R	0.25	0.75	0.010	0.029

VF SUFFIX SSOP CASE 940J-01

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3–14–2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03–3521–8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, I51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

