

ILC7071

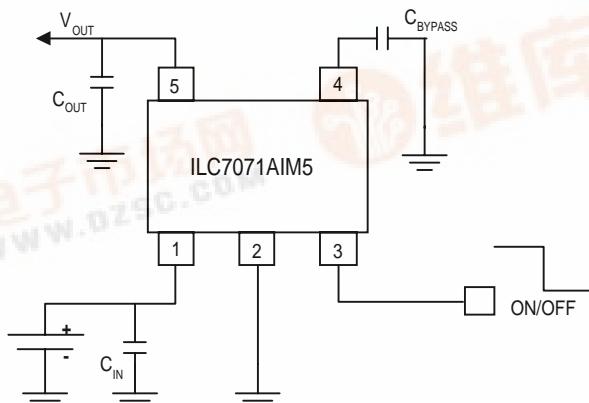
100mA SOT-23-5 Ultra Low Noise CMOS RF-LDO™ Regulator

Features

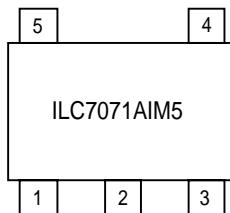
- 1% output voltage accuracy
- Only $10\mu\text{V}_{\text{RMS}}$ noise from 300Hz to 100kHz
- Uses low ESR ceramic or Tantalum output capacitor to minimize noise and output ripple
- Only $90\mu\text{A}$ ground current at 100mA load
- Ripple rejection up to 70dB at 1kHz, 60dB at 1MHz
- Excellent line and load transient response
- Guaranteed to 100mA output current
- Industry standard five lead SOT-23-5 packages
- Fixed 2.8V, 3.0V, 3.3V, 3.6V, 4.7V, 5.0V, output voltage options
- Metal mask option available for custom voltages between 2.5V and 8V

Applications

- Cellular phones
- Wireless communicators
- PDAs / palmtops / organizers
- Battery powered portable electronics


Description

The ILC7071 is a 100mA, Ultra Low Noise, Low Dropout (LDO) linear regulator, designed and processed in Impala's proprietary CMOS process technology. This process combines the best CMOS features of low quiescent current, small size and low dropout voltage with the best bipolar features of high ripple rejection, ultra low noise and power handling capability. The ILC7071 offers a quiescent current of less than $100\mu\text{A}$, a logic level enable (regulator on/off) pin, and a low dropout voltage of 50mV at 10mA. With better than 70dB (1kHz) of ripple rejection, ultra low noise of $10\mu\text{V}_{\text{RMS}}$ and 1% output voltage accuracy, the ILC7071 sets a new standard in linear regulators for communications and personal electronics applications.


The ILC7071 is designed to operate with small, low cost, ceramic capacitors and is stable over a wide range of ESR values. In addition to the output capacitor, the ILC7071 requires only a $1\mu\text{F}$ input capacitor. The enable pin can be tied to V_{IN} for easy device layout. The ILC7071 is available in a number of fixed output voltages ranging from 2.5V to 8V. An adjustable version will be available shortly.

The ILC7071 is ideally suited for use in small size cordless and cellular handsets as well as many other low battery powered electronic devices. Please contact Fairchild for samples and application information.

Typical Applications

Pin Assignments

Pin Definitions

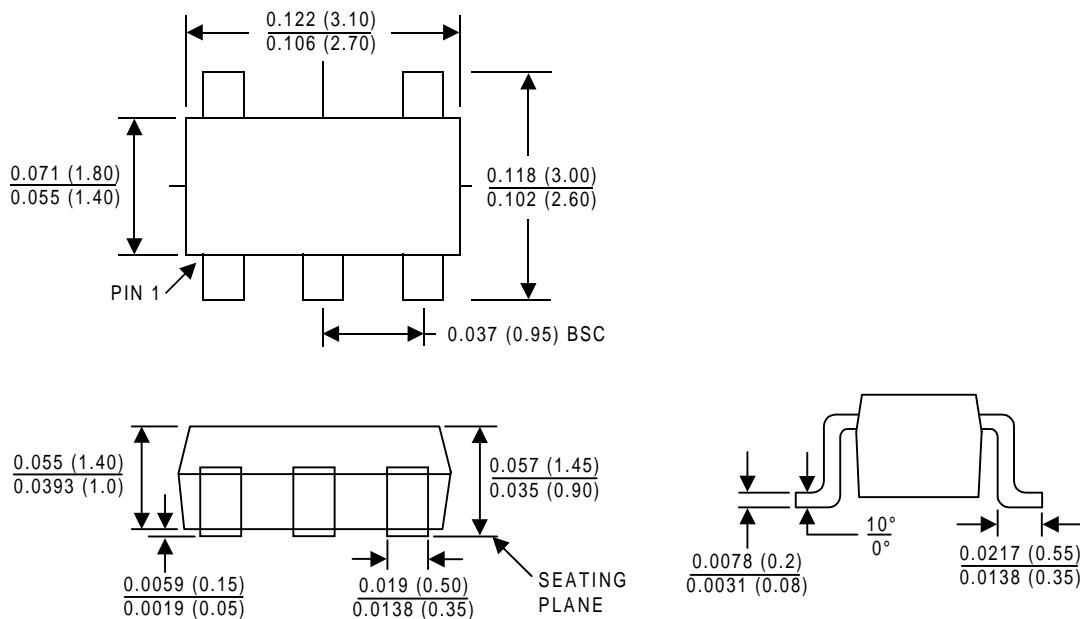
Pin Number	Pin Name	Pin Function Description
1	V_{IN}	Connect Directly to Supply
2	GND	Ground pin. Local ground for C_{OUT}
3	On/Off	On $> 1.0V$, off $< 0.4V$. Can be connected to V_{IN}
4	C_{NOISE}	Noise Bypass Capacitor. Do Not Pin Connect Directly to GND
5	V_{OUT}	Regulator Output, Connect C_{OUT} between this pin and the GND (pin 3)

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Units
Input Voltage ILC7071	V_{IN}	-0.3 to 9V	V
ON/OFF Input Voltage	$V_{ON/OFF}$	-0.3 to V_{IN}	V
Output Current	I_{OUT}	Short Circuit Protected	mA
Output Voltage	V_{OUT}	-0.3 to $V_{IN} + 0.3$	V
Package Power Dissipation	P_D	TBD	mW
Maximum Junction Temp. Range	$T_{J(MAX)}$	-40 to +125	°C
Storage Temperature	T_{STG}	-40 to +125	°C
Operation Ambient Temperature	T_{AMB}	-40 to +85	°C

Electrical Characteristics ILC7071

Unless otherwise specified, all limits are at $T_A = 25^\circ\text{C}$, $V_{IN} = V_{OUT(NOM)} + 1\text{V}$, $I_{OUT} = 1\text{mA}$, $C_{OUT} = 1\mu\text{F}$, $V_{ON/OFF} = 2\text{V}$


Parameter	Symbol	Conditions	Typ.	Units
Input Voltage Range	V_{IN}		2.5-8	V
Output Voltage Accuracy			± 1	%
Line Regulation	$\Delta V_{OUT}/(V_{OUT} * \Delta V_{IN})$	$V_{OUT(NOM)} + < 8\text{V}$	0.007	%/V
Dropout Voltage (Note 3)	$\Delta V_{IN} V_{OUT} V_{DO}$	$I_{OUT} = 10\mu\text{a}$	0.1	mV
		$I_{OUT} = 10\text{mA}$	50	
		$I_{OUT} = 20\text{mA}$	70	
		$I_{OUT} = 100\text{mA}$	235	
Ground Pin Current	I_{GND}	$I_{OUT} = 0\text{mA}$	66	μA
		$I_{OUT} = 10\text{mA}$	67	
		$I_{OUT} = 100\text{mA}$	90	
Shutdown (OFF) Current	$I_{ON/OFF}$	$V_{ON/OFF} = 0\text{V}$	0.1	μA
ON/OFF Input Voltage	$V_{ON/OFF}$	High = Regulator On	1.5	V
		Low = Regulator Off	0.6	
ON/OFF Pin Input Current (Note 5)	$I_{IN\ ON/OFF}$	$V_{ON/OFF} 0.6\text{V}$ Regulator OFF	0.3	μA
		$V_{ON/OFF} 2\text{V}$ Regulator ON	1	
Peak Output Current (Note 4)	$I_{OUT\ (peak)}$	$V_{OUT} \leq 0.95V_{OUT(NOM)}$, $t_{PW} = 2\text{ms}$	120	mA
Output Noise Voltage (RMS)	e_N	$BW = 300\text{Hz}$ to 50kHz , $C_{IN} = 1\mu\text{F}$ $C_{NOISE} = 0.01\mu\text{F}$, $C_{OUT} = 1.0\mu\text{F}$, $I_{OUT} = 10\text{mA}$	TBD	μV_{RMS}
Ripple Rejection	$\Delta V_{OUT}/\Delta V_{IN}$	$C_{OUT} = 1.0\mu\text{F}$	Freq = 1kHz	70
		$I_{OUT} = 100\text{mA}$	Freq = 10kHz	50
			Freq = 1MHz	65
Dynamic Line Regulation	$\Delta V_{OUT(\text{line})}$	$V_{IN}: V_{OUT(NOM)} + 1\text{V}$ to $V_{OUT(NOM)} + 2\text{V}$, $t_{r/t} = 2\mu\text{s}$; $I_{OUT} = 80\text{mA}$		14
Dynamic Load Regulation	$\Delta V_{OUT(\text{load})}$	I_{OUT} : 1mA to 100mA, $t_{r,5\mu\text{s}}$		40
Short Circuit Current	I_{SC}	$V_{OUT} = 0\text{V}$		200
Resistance Shutdown Discharge				1.5
				$\text{k}\Omega$

Notes:

- 1: Absolute maximum ratings indicate limits which when exceeded may result in damage to the component. Electrical specifications do not apply when operating the device outside of its rated operating conditions.
- 2: Specified Min/Max limits are production tested or guaranteed through correlation based on statistical control methods. Measurements are taken at constant junction temperature as close to ambient as possible using low duty pulse testing.
- 3: Dropout voltage is defined as the input to output differential voltage at which the output voltage drops 2% below the nominal value measured with a 1V differential.
- 4: Guaranteed by design
- 5: The device's shutdown pin includes a $2\text{M}\Omega$ internal pull down resistor connected to ground.

Package Dimensions

Dimensions shown in inches and (mm)
5-Lead plastic surface mount (SOT-23-5)

SOT-23-5 Package Markings ILC7071AIM5-xx

Output Voltage	Grade	Order Information	Supplied As:
2.8	A	ILC7071AIM5-28	3K Units on Tape and Reel
3.0	A	ILC7071AIM5-30	3K Units on Tape and Reel
3.3	A	ILC7071AIM5-33	3K Units on Tape and Reel
3.6	A	ILC7071AIM5-36	3K Units on Tape and Reel
4.7	A	ILC7071AIM5-47	3K Units on Tape and Reel
5.0	A	ILC7071AIM5-50	3K Units on Tape and Reel

Ordering Information ($T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$)

Product Number	Package
ILC7071AIM5-X	100mA, fixed voltage, SOT-23 package

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.