ADS8401

16－BIT，1．25 MSPS，UNIPOLAR INPUT，MICRO POWER SAMPLING ANALOG－TO－ DIGITAL CONVERTER WITH PARALLEL INTERFACE AND REFERENCE

FEATURES

－ $1.25-\mathrm{MHz}$ Sample Rate
－16－Bit NMC Ensured Over Temperature
－Zero Latency
－Unipolar Single－Ended Input Range： 0 V to $\mathrm{V}_{\text {ref }}$
－Onboard Reference
－Onboard Reference Buffer
－High－Speed Parallel Interface
－Power Dissipation： 155 mW at 1.25 MHz Typ
－Wide Digital Supply
－8－／16－Bit Bus Transfer
－48－Pin TQFP Package

APPLICATIONS

－DWDM

－Instrumentation
－High－Speed，High－Resolution，Zero Latency Data Acquisition Systems
－Transducer Interface
－Medical Instruments
－Communication

DESCRIPTION

The ADS8401 is a 16 －bit， 1.25 MHz A／D converter with an internal 4．096－V reference．The device includes a 16－bit capacitor－based SAR A／D converter with inherent sample and hold．The ADS8401 offers a full 16－bit interface and an 8 －bit option where data is read using two 8－bit read cycles if necessary．

The ADS8401 has a unipolar single－ended input．It is available in a 48－lead TQFP package and is characterized over the industrial $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ temperature range．

ADS8401

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

ORDERING INFORMATION

MODEL	MAXIMUM INTEGRAL LINEARITY (LSB)	MAXIMUM DIFFERENTIAL LINEARITY (LSB)	NO MISSING CODES RESOLU- TION (BIT)	PACKAGE TYPE	PACKAGE DESIGNATOR	TEMPERATURE RANGE	ORDERING INFORMATION	TRANSPORT MEDIA QUANTITY
ADS8401I	± 6	-2~3	15	$\begin{aligned} & 48 \text { Pin } \\ & \text { TQFP } \end{aligned}$	PFB	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$	ADS8401IPFBT	Tape and reel 250
							ADS8401IPFBR	Tape and reel 1000
ADS84011B	± 3.5	-1~2	16	$\begin{aligned} & 48 \mathrm{Pin} \\ & \text { TQFP } \end{aligned}$	PFB	$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$	ADS8401IBPFBT	Tape and reel 250
							ADS8401IBPFBR	Tape and reel 1000

NOTE: For the most current specifications and package information, refer to our website at www.ti.com.
ABSOLUTE MAXIMUM RATINGS
over operating free-air temperature range unless otherwise noted \dagger
Voltage, +IN to AGND $+V A+0.1 \mathrm{~V}$
Voltage, -IN to AGND 0.5 V
Voltage range, +VA to AGND -0.3 V to 7 V
Voltage range, +VBD to BDGND -0.3 V to 7 V
Voltage range, +VA to +VBD -0.3 V to 2.5 V
Digital input voltage to BDGND -0.3 V to $+\mathrm{VBD}+0.3 \mathrm{~V}$
Digital output voltage to BDGND -0.3 V to $+\mathrm{VBD}+0.3 \mathrm{~V}$
Operating free-air temperature range, T_{A} $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage temperature range, $T_{\text {stg }}$ $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Junction temperature ($\mathrm{T}_{\mathrm{J}} \mathrm{max}$) $150^{\circ} \mathrm{C}$
TQFP package: Power dissipation $\left(T_{J} M a x-T_{A}\right) / \theta_{J A}$
θ_{JA} thermal impedance $86^{\circ} \mathrm{C} / \mathrm{W}$
Lead temperature, soldering: Vapor phase (60 sec) $215^{\circ} \mathrm{C}$
Infrared (15 sec) $220^{\circ} \mathrm{C}$
\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

SPECIFICATIONS

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C},+\mathrm{VA}=5 \mathrm{~V},+\mathrm{VBD}=3 \mathrm{~V}$ or $5 \mathrm{~V}, \mathrm{~V}_{\text {ref }}=4.096 \mathrm{~V}$, fSAMPLE $=1.25 \mathrm{MHz}$ (unless otherwise noted)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Analog Input						
Full-scale input voltage (see Note 1)		$+\mathrm{IN}--\mathrm{IN}$	0		$\mathrm{V}_{\text {ref }}$	V
Absolute input voltage		+IN	-0.2		$\mathrm{V}_{\text {ref }}+0.2$	V
		-IN	-0.2		0.2	
Input capacitance			25			pF
Input leakage current			0.5			nA
System Performance						
Resolution			16			Bits
No missing codes	ADS8401I		15			Bits
	ADS8401IB		16			
Integral linearity (see Notes 2 and 3)	ADS8401I		-6	± 2.5	6	LSB
	ADS8401IB		-3.5	± 2	3.5	
Differential linearity	ADS8401I		-2	± 1	3	LSB
	ADS8401IB		-1	± 0.75	2	
Offset error (see Note 4)	ADS8401I		-1.5	± 0.5	1.5	mV
	ADS8401IB		-0.75	± 0.25	0.75	mV
Gain error (see Notes 4 and 5)	ADS8401I		-0.15		0.15	\%FS
	ADS8401IB		-0.098		0.098	
Noise			60			$\mu \mathrm{V}$ RMS
DC Power supply rejection ratio		At FFFFFh output code, $+\mathrm{VA}=4.75 \mathrm{~V}$ to 5.25 V , Vref $=4.096 \mathrm{~V}$, See Note 4	2			LSB
Sampling Dynamics						
Conversion time					610	ns
Acquisition time			150			ns
Throughput rate					1.25	MHz
Aperture delay			2			ns
Aperture jitter			25			ps
Step response			100			ns
Over voltage recovery			100			ns

NOTES: 1. Ideal input span, does not include gain or offset error.
2. LSB means least significant bit
3. This is endpoint INL, not best fit.
4. Measured relative to an ideal full-scale input $(+1 \mathrm{~N}--\mathrm{IN})$ of 4.096 V
5. This specification does not include the internal reference voltage error and drift.

ADS8401

SLAS376A- DECEMBER 2002 - FEBRUARY 2003

SPECIFICATIONS (CONTINUED)

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
Dynamic Characteristics						
Total harmonic distortion (THD) (see Note 1)		$\mathrm{V}_{\text {IN }}=4 \mathrm{~V}_{\mathrm{pp}}$ at 100 kHz		-93		dB
Signal-to-noise ratio (SNR)		$\mathrm{V}_{\text {IN }}=4 \mathrm{~V}_{\mathrm{pp}}$ at 100 kHz		86		dB
Signal-to-noise + distortion (SINAD)		$\mathrm{V}_{\text {IN }}=4 \mathrm{~V}_{\mathrm{pp}}$ at 100 kHz		85		dB
Spurious free dynamic range (SFDR)		$\mathrm{V}_{\text {IN }}=4 \mathrm{~V}_{\mathrm{pp}}$ at 100 kHz		110		dB
-3dB Small signal bandwidth				5		MHz
External Voltage Reference Input						
Reference voltage at REFIN, $\mathrm{V}_{\text {ref }}$			2.5	4.096	4.2	V
Reference resistance (see Note 2)				100		$\mathrm{k} \Omega$
Internal Reference Output						
Internal reference startup time		from 95\% (+VA), with $1 \mu \mathrm{~F}$ storage capacitor			120	ms
$\mathrm{V}_{\text {ref }}$ range		IOUT = 0	4.065	4.096	4.13	V
Source Current		Static load			10	$\mu \mathrm{A}$
Line Regulation		+VA $=4.75 \sim 5.25 \mathrm{~V}$		0.6		mV
Drift		IOUT = 0		36		PPM/C
Digital Input/Output						
Logic family			CMOS			
Logic level	$\mathrm{V}_{\text {IH }}$	$\mathrm{I}_{\mathrm{IH}}=5 \mu \mathrm{~A}$	+VBD-1		+VBD + 0.3	V
	V_{IL}	$\mathrm{I}_{\mathrm{IL}}=5 \mu \mathrm{~A}$	-0.3		0.8	
	V_{OH}	$\mathrm{IOH}=2 \mathrm{TTL}$ loads	+VBD - 0.6		+VBD	
	VOL	$\mathrm{IOL}=2$ TTL loads	0		0.4	
Data format			Straight Binary			
Power Supply Requirements						
Power supply voltage	+VBD (see Notes 3 and 4)		2.95	3.3	5.25	V
	+VA (see Note 4)		4.75	5	5.25	V
+VA Supply current (see Note 5)		$\mathrm{f}_{\mathrm{S}}=1.25 \mathrm{MHz}$		31	34	mA
Power dissipation (see Note 5)		$\mathrm{f}_{\mathrm{S}}=1.25 \mathrm{MHz}$		155		mW
Temperature Range						
Operating free-air			-40		85	${ }^{\circ} \mathrm{C}$

NOTES: 1. Calculated on the first nine harmonics of the input frequency
2. Can vary $\pm 30 \%$
3. The difference between +VA and +VBD should not be less than 2.3 V , i.e., if +VA is 5.25 V , +VBD should be minimum of 2.95 V .
4. $+\mathrm{VBD} \geq+\mathrm{VA}-2.3 \mathrm{~V}$
5. This includes only VA+ current. +VBD current is typically 1 mA with 5 pF load capacitance on output pins.

TIMING CHARACTERISTICS
All specifications typical at $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C},+\mathrm{VA}=+\mathrm{VBD}=5 \mathrm{~V}$ (see Notes 1,2 , and 3)

	PARAMETER	MIN	TYP	MAX	UNIT
tconv	Conversion time		600	610	ns
${ }^{\text {t }}$ ACQ	Acquisition time	150			ns
$\mathrm{t}_{\mathrm{pd} 1}$	CONVST low to conversion started (BUSY high)			35	ns
$\mathrm{t}_{\mathrm{pd} 2}$	Propagation delay time, End of conversion to BUSY low			20	ns
$\mathrm{t}_{\mathrm{w} 1}$	Pulse duration, $\overline{\text { CONVST }}$ low	20			ns
$\mathrm{t}_{\text {su } 1}$	Setup time, $\overline{\mathrm{CS}}$ low to $\overline{\mathrm{CONVST}}$ low	0			ns
$\mathrm{t}_{\mathrm{w} 2}$	Pulse duration, $\overline{\text { CONVST }}$ high	20			ns
	$\overline{\text { CONVST }}$ falling edge jitter			10	ps
tw3	Pulse duration, BUSY signal low	Min(tACQ)			ns
$\mathrm{t}_{\mathrm{w} 4}$	Pulse duration, BUSY signal high			630	ns
th1	Hold time, First data bus data transition ($\overline{\mathrm{RD}}$ low, $\overline{\text { or CS }}$ low for read cycle, or BYTE input changes) after CONVST low	40			ns
$\mathrm{t}_{\mathrm{d} 1}$	Delay time, $\overline{\mathrm{CS}}$ low to $\overline{\mathrm{RD}}$ low	0			ns
$\mathrm{t}_{\text {su2 }}$	Setup time, $\overline{\mathrm{RD}}$ high to $\overline{\mathrm{CS}}$ high	0			ns
$\mathrm{t}_{\mathrm{w} 5}$	Pulse duration, $\overline{\mathrm{RD}}$ low time	50			ns
$t_{\text {en }}$	Enable time, $\overline{\mathrm{RD}}$ low (or $\overline{\mathrm{CS}}$ low for read cycle) to data valid			20	ns
$\mathrm{t}_{\mathrm{d} 2}$	Delay time, data hold from $\overline{\mathrm{RD}}$ high	0			ns
$\mathrm{t}_{\mathrm{d} 3}$	Delay time, BYTE rising edge or falling edge to data valid	2		20	ns
$\mathrm{t}_{\mathrm{w} 6}$	$\overline{\mathrm{RD}}$ high	20			ns
th2	Hold time, last $\overline{\mathrm{RD}}$ (or $\overline{\mathrm{CS}}$ for read cycle) rising edge to $\overline{\mathrm{CONVST}}$ falling edge	50			ns
$t_{\text {pd4 }}$	Propagation delay time, BUSY falling edge to next $\overline{\mathrm{RD}}$ (or $\overline{\mathrm{CS}}$ for read cycle) falling edge	$\operatorname{Max}\left(\mathrm{t}_{\mathrm{d} 5}\right)$			ns
$\mathrm{t}_{\text {su3 }}$	Setup time, BYTE rising edge to $\overline{\mathrm{RD}}$ falling edge	0			ns
th3	Hold time, BYTE falling edge to $\overline{\text { RD }}$ falling edge	0			ns
$\mathrm{t}_{\text {dis }}$	Disable time, $\overline{\mathrm{RD}}$ High ($\overline{\mathrm{CS}}$ high for read cycle) to 3-stated data bus			20	ns
$\mathrm{t}_{\mathrm{d} 5}$	Delay time, BUSY low to MSB data valid			0	ns
$\mathrm{t}_{\text {su4 }}$	Setup time, BYTE change before BUSY falling edge	2		20	ns

NOTES: 1. All input signals are specified with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}(10 \%$ to 90% of +VBD$)$ and timed from a voltage level of $\left(\mathrm{V}_{\mathrm{IL}}+\mathrm{V}_{\mathrm{IH}}\right) / 2$.
2. See timing diagrams.
3. All timings are measured with 20 pF equivalent loads on all data bits and BUSY pins.

ADS8401

SLAS376A- DECEMBER 2002 - FEBRUARY 2003
TIMING CHARACTERISTICS
All specifications typical at $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C},+\mathrm{VA}=5 \mathrm{~V},+\mathrm{VBD}=3 \mathrm{~V}$ (see Notes 1,2 , and 3)

	PARAMETER	MIN	TYP	MAX	UNIT
tconv	Conversion time		600	610	ns
${ }^{\text {t }}$ ACQ	Acquisition time	150			ns
tpd1	$\overline{\text { CONVST }}$ low to conversion started (BUSY high)			40	ns
tpd2	Propagation delay time, end of conversion to BUSY low			20	ns
$\mathrm{t}_{\mathrm{w} 1}$	Pulse duration, CONVST low	20			ns
$\mathrm{t}_{\text {su1 }}$	Setup time, $\overline{\mathrm{CS}}$ low to $\overline{\mathrm{CONVST}}$ low	0			ns
t_{w} 2	Pulse duration, $\overline{\text { CONVST }}$ high	20			ns
	CONVST falling edge jitter			10	ps
tw3	Pulse duration, BUSY signal low	$\operatorname{Min}\left(\mathrm{t}_{\text {ACQ }}\right)$			ns
tw4	Pulse duration, BUSY signal high			630	ns
th1	Hold time, first data bus transition ($\overline{\mathrm{RD}}$ low, $\overline{\text { or CS }}$ low for read cycle, or BYTE or BUS 16/16 input changes) after CONVST low	40			ns
$\mathrm{t}_{\mathrm{d} 1}$	Delay time, $\overline{\mathrm{CS}}$ low to $\overline{\mathrm{RD}}$ low	0			ns
$\mathrm{t}_{\text {su2 }}$	Setup time, $\overline{\mathrm{RD}}$ high to $\overline{\mathrm{CS}}$ high	0			ns
tw5	Pulse duration, $\overline{\mathrm{RD}}$ low	50			ns
$\mathrm{t}_{\text {en }}$	Enable time, $\overline{\mathrm{RD}}$ low (or $\overline{\mathrm{CS}}$ low for read cycle) to data valid			30	ns
$\mathrm{t}_{\mathrm{d} 2}$	Delay time, data hold from $\overline{\mathrm{RD}}$ high	0			ns
$\mathrm{t}_{\mathrm{d} 3}$	Delay time, BUS16/16 or BYTE rising edge or falling edge to data valid	2		30	ns
tw6	Pulse duration, $\overline{\mathrm{RD}}$ high time	20			ns
th2	Hold time, last $\overline{\mathrm{RD}}$ (or $\overline{\mathrm{CS}}$ for read cycle) rising edge to $\overline{\mathrm{CONVST}}$ falling edge	50			ns
tpd4	Propagation delay time, BUSY falling edge to next $\overline{\mathrm{RD}}$ (or $\overline{\mathrm{CS}}$ for read cycle) falling edge	Max(td5)			ns
$\mathrm{t}_{\text {su3 }}$	Setup time, BYTE rising edge to $\overline{\mathrm{RD}}$ falling edge	0			ns
th3	Hold time, BYTE falling edge to $\overline{\mathrm{RD}}$ falling edge	0			ns
$\mathrm{t}_{\text {dis }}$	Disable time, $\overline{\mathrm{RD}}$ High ($\overline{\mathrm{CS}}$ high for read cycle) to 3 -stated data bus			30	ns
$\mathrm{t}_{\mathrm{d} 5}$	Delay time, BUSY low to MSB data valid delay time			0	ns
$\mathrm{t}_{\text {su4 }}$	Setup time, BYTE change before BUSY falling edge	2		30	ns

NOTES: 1. All input signals are specified with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=5 \mathrm{~ns}(10 \%$ to 90% of +VBD$)$ and timed from a voltage level of $\left(\mathrm{V}_{\mathrm{IL}}+\mathrm{V}_{\mathrm{IH}}\right) / 2$.
2. See timing diagrams.
3. All timings are measured with 10-pF equivalent loads on all data bits and BUSY pins.

PIN ASSIGNMENTS

PFB PACKAGE (TOP VIEW)		
RESET	38 23	DB8
BYTE	39 22	DB9
CONVST	4021	DB10
$\overline{\mathrm{RD}}$	41 20	DB11
$\overline{\mathrm{CS}}$		DB12
+VA	43 - 18	DB13
AGND	44	DB14
AGND	45	DB15
+VA	46	AGND
REFM	47 (14	AGND

NC - No connection

ADS8401

TERMINAL FUNCTIONS

NAME	NO.	I/O	DESCRIPTION		
AGND	$\begin{gathered} \hline 5,8,11,12, \\ 14.15 .44 .45 \end{gathered}$	-	Analog ground		
BDGND	25, 35	-	Digital ground for bus interface digital supply		
BUSY	36	0	Status output. High when a conversion is in progress.		
BYTE	39	I	Byte select input. Used for 8-bit bus reading. 0 : No fold back 1: Low byte $D[7: 0]$ of the 16 most significant bits is folded back to high byte of the 16 most significant pins DB[15:8].		
$\overline{\text { CONVST }}$	40	I	Convert start		
$\overline{\overline{C S}}$	42	1	Chip select		
Data Bus			8-Bit Bus		16-Bit Bus
			BYTE $=0$	BYTE = 1	BYTE $=0$
DB15	16	0	D15 (MSB)	D7	D15 (MSB)
DB14	17	0	D14	D6	D14
DB13	18	0	D13	D5	D13
DB12	19	0	D12	D4	D12
DB11	20	0	D11	D3	D11
DB10	21	0	D10	D2	D10
DB9	22	0	D9	D1	D9
DB8	23	0	D8	D0 (LSB)	D8
DB7	26	0	D7	All ones	D7
DB6	27	0	D6	All ones	D6
DB5	28	0	D5	All ones	D5
DB4	29	0	D4	All ones	D4
DB3	80	0	D3	All ones	D3
DB2	31	0	D2	All ones	D2
DB1	32	0	D1	All ones	D1
DB0	33	0	D0 (LSB)	All ones	D0 (LSB)
-IN	7	I	Inverting input channel		
$+\mathrm{IN}$	6	I	Non inverting input channel		
NC	3	-	No connection		
REFIN	1	1	Reference input		
REFM	47, 48	1	Reference ground		
REFOUT	2	0	Reference output. Add $1 \mu \mathrm{~F}$ capacitor between the REFOUT pin and REFM pin when internal reference is used.		
$\overline{\text { RESET }}$	38	I	Current conversion will be aborted and output latches are cleared (set to zeros) when this pin is asserted low. $\overline{R E S E T}$ works independantly of $\overline{\mathrm{CS}}$.		
$\overline{\mathrm{RD}}$	41	I	Synchronization pulse for the parallel output.		
+VA	$\begin{gathered} 4,9,10,13, \\ 43,46 \end{gathered}$	-	Analog power supplies, 5-V dc		
+VBD	24, 34, 37	-	Digital power supply for bus		

ADS8401

TIMING DIAGRAMS

\dagger Signal internal to device
Figure 1. Timing for Conversion and Acquisition Cycles With $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ Toggling

ADS8401

SLAS376A- DECEMBER 2002 - FEBRUARY 2003
TIMING DIAGRAMS (CONTINUED)

\dagger Signal internal to device
Figure 2. Timing for Conversion and Acquisition Cycles With $\overline{\mathbf{C S}}$ Toggling, $\overline{\mathrm{RD}}$ Tied to BDGND

ADS8401

TIMING DIAGRAMS (CONTINUED)

†Signal internal to device
Figure 3. Timing for Conversion and Acquisition Cycles With $\overline{\mathbf{C S}}$ Tied to BDGND, $\overline{\mathrm{RD}}$ Toggling

ADS8401

SLAS376A- DECEMBER 2002 - FEBRUARY 2003
TIMING DIAGRAMS (CONTINUED)

†Signal internal to device
Figure 4. Timing for Conversion and Acquisition Cycles With $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ Tied to BDGND—Auto Read

ADS8401

TIMING DIAGRAMS (CONTINUED)

Figure 5. Detailed Timing for Read Cycles

TYPICAL CHARACTERISTICS \dagger

$\dagger \mathrm{At}-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C},+\mathrm{VA}=5 \mathrm{~V},+\mathrm{VBD}=5 \mathrm{~V}$, REFIN $=4.096 \mathrm{~V}$ (internal reference used) and $\mathrm{f}_{\text {sample }}=1.25 \mathrm{MHz}$ (unless otherwise noted)

TYPICAL CHARACTERISTICS \dagger

Figure 10

SIGNAL-TO-NOISE PLUS DISTORTION
vs INPUT FREQUENCY

Figure 12

SIGNAL-TO-NOISE RATIO
vs
INPUT FREQUENCY

Figure 11

Figure 13
$\dagger \mathrm{At}-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C},+\mathrm{VA}=5 \mathrm{~V},+\mathrm{VBD}=5 \mathrm{~V}$, REFIN $=4.096 \mathrm{~V}$ (internal reference used) and $\mathrm{f}_{\text {sample }}=1.25 \mathrm{MHz}$ (unless otherwise noted)

TYPICAL CHARACTERISTICS \dagger

Figure 14

SUPPLY CURRENT
vS
SAMPLE RATE

Figure 16

TOTAL HARMONIC DISTORTION
INPUT FREQUENCY

Figure 15

GAIN ERROR vs SUPPLY VOLTAGE

Figure 17
$\dagger \mathrm{At}-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C},+\mathrm{VA}=5 \mathrm{~V},+\mathrm{VBD}=5 \mathrm{~V}$, REFIN $=4.096 \mathrm{~V}$ (internal reference used) and f sample $=1.25 \mathrm{MHz}$ (unless otherwise noted)

TYPICAL CHARACTERISTICS \dagger

Figure 18

GAIN ERROR
vs
FREE-AIR TEMPERATURE

Figure 20

Figure 19

OFFSET ERROR
vs
FREE-AIR TEMPERATURE

Figure 21
\dagger At $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C},+\mathrm{VA}=5 \mathrm{~V},+\mathrm{VBD}=5 \mathrm{~V}$, REFIN $=4.096 \mathrm{~V}$ (internal reference used) and $\mathrm{f}_{\text {sample }}=1.25 \mathrm{MHz}$ (unless otherwise noted)

ADS8401

TYPICAL CHARACTERISTICS \dagger

Figure 22

DIFFERENTIAL NONLINEARITY (MIN)
vS
FREE-AIR TEMPERATURE

Figure 24

DIFFERENTIAL NONLINEARITY (MAX)
vs
FREE-AIR TEMPERATURE

Figure 23

INTEGRAL NONLINEARITY (MAX) vs
FREE-AIR TEMPERATURE

Figure 25

[^0]
TYPICAL CHARACTERISTICS \dagger

Figure 28
$\dagger \mathrm{At}-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C},+\mathrm{VA}=5 \mathrm{~V},+\mathrm{VBD}=5 \mathrm{~V}$, REFIN $=4.096 \mathrm{~V}$ (internal reference used) and $\mathrm{f}_{\text {sample }}=1.25 \mathrm{MHz}$ (unless otherwise noted)

ADS8401

TYPICAL CHARACTERISTICS \dagger

Figure 29

Figure 30
FFT SPECTRUM RESPONSE

32768 Points, $\mathrm{f}=1.25 \mathrm{MHz}$,
Internal Reference $=4.096 \mathrm{~V}($ REFIN $)$,
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz},(+\mathrm{IN}--\mathrm{IN})=$ Full Scale

Figure 31
$\dagger \mathrm{At}-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C},+\mathrm{VA}=5 \mathrm{~V},+\mathrm{VBD}=5 \mathrm{~V}$, REFIN $=4.096 \mathrm{~V}$ (internal reference used) and $\mathrm{f}_{\text {sample }}=1.25 \mathrm{MHz}$ (unless otherwise noted)

APPLICATION INFORMATION

MICROPROCESSOR INTERFACING

ADS8401 to 8-Bit Microprocessor Interface

Figure 32 shows a parallel interface between the ADS8401 and a typical micro controller using the 8-bit data bus.
The BUSY signal is used as a falling-edge interrupt to the microprocessor.

Figure 32. ADS8401 Application Circuitry (using external reference)

Figure 33. Use Internal Reference

ADS8401

PRINCIPLES OF OPERATION

The ADS8401 is a high-speed successive approximation register (SAR) analog-to-digital converter (ADC). The architecture is based on charge redistribution which inherently includes a sample/hold function. See Figure 32 for the application circuit for the ADS8401.
The conversion clock is generated internally. The conversion time of 630 ns is capable of sustaining a $1.25-\mathrm{MHz}$ throughput.
The analog input is provided to two input pins: + IN and -IN. When a conversion is initiated, the differential input on these pins is sampled on the internal capacitor array. While a conversion is in progress, both inputs are disconnected from any internal function.

REFERENCE

The ADS8401 can operate with an external 4.096-V reference for a corresponding full-scale range of 4.096 V . When internal reference is used, pin 2 (REFOUT) should be connected to pin 1 (REFIN) with an $0.1 \mu \mathrm{~F}$ decoupling capacitor and $1 \mu \mathrm{~F}$ storage capacitor between pin 2 (REFOUT) and pins 47 and 48 (REFM) (see Figure 33). The internal reference of the converter is double buffered. If an external reference is used, the second buffer provides isolation between the external reference and the CDAC. This buffer is also used to recharge all of the capacitors of the CDAC during conversion. Pin 2 (REFOUT) can be left unconnected (floating) if external reference is used.

ANALOG INPUT

When the converter enters the hold mode, the voltage difference between the +IN and -IN inputs is captured on the internal capacitor array. The voltage on the -IN input is limited between -0.2 V and 0.2 V , allowing the input to reject small signals which are common to both the $+\mathbb{I N}$ and $-I N$ inputs. The $+\mathbb{I N}$ input has a range of -0.2 V to $\mathrm{V}_{\text {ref }}+0.2 \mathrm{~V}$. The input span ($+\mathrm{IN}-(-\mathrm{IN})$) is limited to 0 V to $\mathrm{V}_{\text {ref }}$.
The input current on the analog inputs depends upon a number of factors: sample rate, input voltage, and source impedance. Essentially, the current into the ADS8401 charges the internal capacitor array during the sample period. After this capacitance has been fully charged, there is no further input current. The source of the analog input voltage must be able to charge the input capacitance (25 pF) to an 16 -bit settling level within the acquisition time (150 ns) of the device. When the converter goes into the hold mode, the input impedance is greater than 1 G Ω.
Care must be taken regarding the absolute analog input voltage. To maintain the linearity of the converter, the +IN and -IN inputs and the span $(+\mathrm{IN}-(-\mathrm{IN}))$ should be within the limits specified. Outside of these ranges, the converter's linearity may not meet specifications. To minimize noise, low bandwidth input signals with low-pass filters should be used.

Care should be taken to ensure that the output impedance of the sources driving +IN and -IN inputs are matched. If this is not observed, the two inputs could have different setting time. This may result in offset error, gain error and linearity error which changes with temperature and input voltage.
When the converter enters the hold mode, the voltage difference between the +IN and -IN inputs is captured on the internal capacitor array.

DIGITAL INTERFACE

Timing And Control

See the timing diagrams in the specifications section for detailed information on timing signals and their requirements.
The ADS8401 uses an internal oscillator generated clock which controls the conversion rate and in turn the throughput of the converter. No external clock input is required.

PRINCIPLES OF OPERATION

Timing And Control (continued)

Conversions are initiated by bringing the CONVST pin low for a minimum of 20 ns (after the 20 ns minimum requirement has been met, the $\overline{\mathrm{CONVST}}$ pin can be brought high), while $\overline{\mathrm{CS}}$ is low. The ADS8401 switches from the sample to the hold mode on the falling edge of the CONVST command. A clean and low jitter falling edge of this signal is important to the performance of the converter. The BUSY output is brought high immediately following CONVST going low. BUSY stays high through the conversion process and returns low when the conversion has ended.
Sampling starts with the falling edge of the BUSY signal when $\overline{\mathrm{CS}}$ is tied low or starts with the falling edge of $\overline{\mathrm{CS}}$ when BUSY is low.

Both $\overline{\mathrm{RD}}$ and $\overline{\mathrm{CS}}$ can be high during and before a conversion with one exception ($\overline{\mathrm{CS}}$ must be low when $\overline{\mathrm{CONVST}}$ goes low to initiate a conversion). Both the $\overline{\mathrm{RD}}$ and $\overline{\mathrm{CS}}$ pins are brought low in order to enable the parallel output bus with the conversion.

Reading Data

The ADS8401 outputs full parallel data in straight binary format as shown in Table 1. The parallel output is active when $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ are both low. There is a minimal quiet zone requirement around the falling edge of CONVST. This is 100 ns prior to the falling edge of $\overline{\text { CONVST }}$ and 40 ns after the falling edge. No data read should attempted within this zone. Any other combination of $\overline{\mathrm{CS}}$ and $\overline{\mathrm{RD}}$ sets the parallel output to 3-state. BYTE is used for multiword read operations. BYTE is used whenever lower bits on the bus are output on the higher byte of the bus. Refer to Table 1 for ideal output codes.

Table 1. Ideal Input Voltages and Output Codes

DESCRIPTION	ANALOG VALUE		DIGITAL OUTPUT STRAIGHT BINARY	
FULL SCALE RANGE	$\mathrm{V}_{\text {ref }}$			
Least significant bit (LSB)	$\mathrm{V}_{\mathrm{ref}} / 65536$	BINARY CODE		HEX CODE
Full scale	$\mathrm{V}_{\text {ref }}-1 \mathrm{LSB}$	111111111111111	FFFF	
Midscale	$\mathrm{V}_{\mathrm{ref}} / 2$	1000000000000000	8000	
Midscale - 1 LSB	$\mathrm{V}_{\mathrm{ref}} / 2-1 \mathrm{LSB}$	0111111111111111	7FFF	
Zero	0 V	0000000000000000	0000	

The output data is a full 16 -bit word (D15-D0) on DB15-DB0 (MSB-LSB) if BYTE is low.
The result may also be read on an 8-bit bus for convenience. This is done by using only pins DB15-DB8. In this case two reads are necessary: the first as before, leaving BYTE low and reading the 8 most significant bits on pins DB15-DB8, then bringing BYTE high. When BYTE is high, the low bits (D7-D0) will appear on pins DB15-D8.

These multiword read operations can be done with multiple active $\overline{\mathrm{RD}}$ (toggling) or with $\overline{\mathrm{RD}}$ tied low for simplicity.

BYTE	DATA READ OUT	
	DB15-DB8	DB7-DB0
High	D7-D0	All one's
Low	D15-D8	D7-D0

ADS8401

PRINCIPLES OF OPERATION

RESET

$\overline{R E S E T}$ is an asynchronous active low input signal (that works independantly of $\overline{\mathrm{CS}}$). Minimum $\overline{\mathrm{RESET}}$ low time is 20 ns. Current conversion will be aborted no later than 50 ns after the converter is in the reset mode. In addition, all output latches are cleared (set to zero's) after RESET. The converter goes back to normal operation mode no later than 20 ns after RESET input is brought high.

The converter will start the first sampling period 20 ns after the rising edge of RESET. Any sampling period except for the one immediately after a RESET is started with the falling edge of the previous BUSY signal or the falling edge of CS whichever is later.

POWER-ON INITIALIZATION

One good $\overline{\text { RESET }}$ followed by three conversion cycles must be given to the converter after powerup to ensure proper operation. The first RESET after all supply power on can be issued once the power ($+\mathrm{V}_{\mathrm{A}}$ and $+\mathrm{V}_{\mathrm{BD}}$) reaches 95% of its minimum value.

LAYOUT

For optimum performance, care should be taken with the physical layout of the ADS8401 circuitry.
As the ADS8401 offers single-supply operation, it will often be used in close proximity with digital logic, microcontrollers, microprocessors, and digital signal processors. The more digital logic present in the design and the higher the switching speed, the more difficult it is to achieve good performance from the converter.

The basic SAR architecture is sensitive to glitches or sudden changes on the power supply, reference, ground connections and digital inputs that occur just prior to latching the output of the analog comparator. Thus, driving any single conversion for an n-bit SAR converter, there are at least n windows in which large external transient voltages can affect the conversion result. Such glitches might originate from switching power supplies, nearby digital logic, or high power devices.
The degree of error in the digital output depends on the reference voltage, layout, and the exact timing of the external event.

On average, the ADS8401 draws very little current from an external reference as the reference voltage is internally buffered. If the reference voltage is external and originates from an op amp, make sure that it can drive the bypass capacitor or capacitors without oscillation. $\mathrm{A} 0.1-\mu \mathrm{F}$ bypass capacitor and a $1-\mu \mathrm{F}$ storage capacitor are recommended from pin 1 (REFIN) directly to pin 48 (REFM). REFM and AGND should be shorted on the same ground plane under the device.

The AGND and BDGND pins should be connected to a clean ground point. In all cases, this should be the analog ground. Avoid connections which are too close to the grounding point of a microcontroller or digital signal processor. If required, run a ground trace directly from the converter to the power supply entry point. The ideal layout consists of an analog ground plane dedicated to the converter and associated analog circuitry.
As with the AGND connections, +VA should be connected to a 5-V power supply plane or trace that is separate from the connection for digital logic until they are connected at the power entry point. Power to the ADS8401 should be clean and well bypassed. A $0.1-\mu \mathrm{F}$ ceramic bypass capacitor should be placed as close to the device as possible. See Table 2 for the placement of the capacitor. In addition, a $1-\mu \mathrm{F}$ to $10-\mu \mathrm{F}$ capacitor is recommended. In some situations, additional bypassing may be required, such as a $100-\mu \mathrm{F}$ electrolytic capacitor or even a Pi filter made up of inductors and capacitors-all designed to essentially low-pass filter the $5-\mathrm{V}$ supply, removing the high frequency noise.

ADS8401

PRINCIPLES OF OPERATION

Table 2. Power Supply Decoupling Capacitor Placement

POWER SUPPLY PLANE	CONVERTER ANALOG SIDE	CONVERTER DIGITAL SIDE
SUPPLY PINS		
Pin pairs that require shortest path to decoupling capacitors	$(4,5),(8,9),(10,11),(13,15)$, $(43,44),(45,46)$	$(24,25),(34,35)$
Pins that require no decoupling	12,14	37

ADS8401

MECHANICAL DATA

PFB (S-PQFP-G48)
PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026

MECHANICAL DATA

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-026

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using Tl components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

[^0]: \dagger At $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C},+\mathrm{VA}=5 \mathrm{~V},+\mathrm{VBD}=5 \mathrm{~V}$, REFIN $=4.096 \mathrm{~V}$ (internal reference used) and f sample $=1.25 \mathrm{MHz}$ (unless otherwise noted)

