

Product specification

1998 Feb 17

IC24 Data Handbook

74LVC162244A/ 74LVCH162244A

FEATURES

- 5 volt tolerant inputs/outputs for interfacing with 5V logic
- Wide supply voltage range of 1.2V to 3.6V
- Complies with JEDEC standard no. 8-1A
- CMOS low power consumption
- MULTIBYTETM flow-through standard pin-out architecture
- Low inductance multiple power and ground pins for minimum noise and ground bounce
- Direct interface with TTL levels
- Bus Hold on data inputs (74LVCH162244A only)
- Integrated 30Ω termination resistors

DESCRIPTION

The 74LVC(H)162244A is a high-performance, low-power, low-voltage, Si-gate CMOS device, superior to most advanced CMOS compatible TTL families. Inputs can be driven from either 3.3V or 5V devices. In 3-State operation, outputs can handle 5V. These features allow the use of these devices in a mixed 3.3V/5V environment.

The 74LVC(H)162244A is a 16-bit non-inverting buffer/line driver with 3-State outputs. The device can be used as four 4-bit buffers, two 8-bit buffers or one 16-bit buffer. The 3-State outputs are controlled by the output enable inputs $1\overline{OE}$ and $2\overline{OE}$. A HIGH on $n\overline{OE}$ causes the outputs to assume a high impedance OFF-state. The 74LVC(H)162244A is designed with 30Ω series termination resistors in both HIGH and LOW output stages to reduce line noise. The device can be used as four 4-bit buffers, two 8-bit buffers or one 16-bit buffer.

The 74LVCH162244A bus hold data inputs eliminates the need for external pull up resistors to hold unused inputs.

PIN CONFIGURATION

10E 1	48	2 0E
1Y0 2	47	1A0
1Y1 3	46	1A1
GND 4	45	GND
1Y2 5	44	1A2
1Y3 6	43	1A3
V _{CC} 7	42	V _{CC}
2Y0 8	41	2A0
2Y1 9		2A1
GND 10	39	GND
2Y2 11	38	2A2
2Y2 11 2Y3 12	38	2A2
		3A0
		3A0
3Y1 14	33	
GND 15		
3Y2 16	33	3A2
3Y3 17		3A3
V _{CC} 18		V _{CC}
4Y0 19		4A0
4Y1 20		4A1
GND 21	28	GND
4Y2 22	27	4A2
4Y3 23	26	4A3
40E 24	25	3 0E
	SW00194	

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
48-Pin Plastic SSOP Type III	-40°C to +85°C	74LVC162244A DL	VC162244A DL	SOT370-1
48-Pin Plastic TSSOP Type II	-40°C to +85°C	74LVC162244A DGG	VC162244A DGG	SOT362-1
48-Pin Plastic SSOP Type III	-40°C to +85°C	74LVCH162244A DL	VCH162244A DL	SOT370-1
48-Pin Plastic TSSOP Type II	–40°C to +85°C	74LVCH162244A DGG	VCH162244A DGG	SOT362-1

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.5 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	Propagation delay 1An to 1Yn; 2An to 2Yn	$C_L = 50 pF$ $V_{CC} = 3.3 V$	2.9	ns
Cl	Input capacitance		5.0	pF
C _{PD}	Power dissipation capacitance per buffer	$V_I = GND$ to V_{CC}^1	25	pF

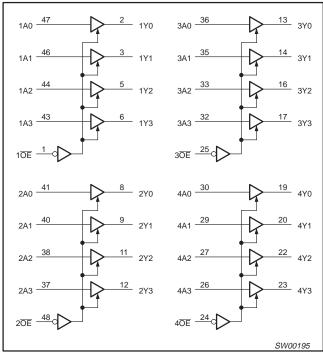
NOTES:

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz; C_L = output load capacity in pF;

 f_0 = output frequency in MHz; V_{CC} = supply voltage in V;


 Σ (C_L × V_{CC}² × f_o) = sum of the outputs.

74LVC162244A/ 74LVCH162244A

PIN DESCRIPTION

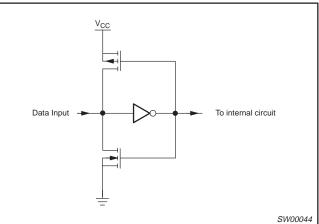
PIN NUMBER	SYMBOL	NAME AND FUNCTION
1	1 0E	Output enable input (active LOW)
2, 3, 5, 6	1Y0 to 1Y3	Data outputs
4, 10, 15, 21, 28, 34, 39, 45	GND	Ground (0V)
7, 18, 31, 42	V _{CC}	Positive supply voltage
8, 9, 11, 12	2Y0 to 2Y3	Data outputs
13, 14, 16, 17	3Y0 to 3Y3	Data outputs
19, 20, 22, 23	4Y0 to 4Y3	Data outputs
24	4 0E	Output enable input (active LOW)
25	3 0E	Output enable input (active LOW)
30, 29, 27, 26	4A0 to 4A3	Data inputs
36, 35, 33, 32	3A0 to 3A3	Data inputs
41, 40, 38, 37	2A0 to 2A3	Data inputs
47, 46, 44, 43	1A0 to 1A3	Data inputs
48	2 0E	Output enable input (active LOW)

LOGIC SYMBOL

FUNCTION TABLE

INP	OUTPUT	
nOE	nAn	nYn
L	L	L
L	Н	Н
Н	Х	Z

H = HIGH voltage level L = LOW voltage level


X = don't care

Z = high impedance OFF-state

LOGIC SYMBOL (IEEE/IEC)

1 0E	1	1EN				
2 <u>0E</u>	48					
3 0E	25	3EN				
4 0E	24	4EN				
	47	5				
1A0	47	_	1	1 🗸	2	1Y0
1A1	46	_			3	1Y1
1A2	44	_			5	1Y2
1A3	43	_			6	1Y3
2A0	41	_	1	2 ∇	8	2Y0
2A1	40	_			9	2Y1
2A2	38				11	2Y2
2A3	37				12	2Y3
3A0	36		1	3 🗸	13	3Y0
3A1	35	_			14	3Y1
3A2	33	_			16	3Y2
3A3	32				17	3Y3
4A0	30		1	4 ∇	19	4Y0
4A1	29	_			20	4Y1
4A2	27				22	4Y2
4A3	26				23	4Y3
		L			SWO	00056

BUSHOLD CIRCUIT

74LVC162244A/ 74LVCH162244A

ABSOLUTE MAXIMUM RATINGS¹

In accordance with the Absolute Maximum Rating System (IEC 134) Voltages are referenced to GND (ground = 0V)

SYMBOL	PARAMETER	TER CONDITIONS		LIMITS		
		CONDITIONS	MIN	MAX	UNIT	
V _{CC}	DC supply voltage		-0.5	+6.5	V	
I _{IK}	DC input diode current	V ₁ < 0	-	-50	mA	
VI	DC input voltage	Note 2	-0.5	+6.5	V	
I _{OK}	DC output diode current	$V_{\rm O} > V_{\rm CC}$ or $V_{\rm O} < 0$	-	± 50	mA	
Vo	DC output voltage; output HIGH or LOW state	Note 2	-0.5	V _{CC} + 0.5	V	
Vo	DC output voltage; output 3-State	Note 2	-0.5	6.5	V	
I _O	DC output source or sink current	$V_{O} = 0$ to V_{CC}	-	± 50	mA	
I _{GND} , I _{CC}	DC V _{CC} or GND current		-	±100	mA	
T _{stg}	Storage temperature range		-65	+150	°C	
P _{tot}	Power dissipation per package – SSOP and TSSOP package	Above +60°C derate linearly 5.5mW/K		500	mW	

NOTES:

 Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

2. The input and output voltage ratings may be exceeded if the input and output clamp current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	LIM	UNIT	
STWDUL	PARAMETER	CONDITIONS	MIN.	MAX.	
V _{CC}	DC supply voltage (for max. speed performance)		2.7	3.6	V
V _{CC}	DC supply voltage (for low-voltage applications)		1.2	3.6	V
VI	DC Input voltage range		0	5.5	V
V _O	DC output voltage range; output HIGH or LOW state		0	V _{CC}	V
Vo	DC output voltage range; output 3-State		0	5.5	V
T _{amb}	Operating ambient temperature range in free air	See DC and AC characteristics for individual device	-40	+85	°C
t _r , t _f	Input rise and fall times	$V_{CC} = 1.2 \text{ to } 2.7 \text{V}$ $V_{CC} = 2.7 \text{ to } 3.6 \text{V}$	0 0	20 10	ns/V

74LVC162244A/

74LVCH162244A

16-bit buffer/line driver; with 30Ω series termination resistors; 5V input/output tolerant (3-State)

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltages are referenced to GND (ground = 0V)

			L			
SYMBOL	PARAMETER	TEST CONDITIONS	Temp = -40°C to +85°C			דואט
		MIN	TYP ¹	MAX	1	
M		$V_{CC} = 1.2V$	V _{CC}			
VIH	HIGH level Input voltage	V _{CC} = 2.7 to 3.6V	2.0			
M		$V_{CC} = 1.2V$			GND	V
V_{IL}	LOW level Input voltage	V _{CC} = 2.7 to 3.6V			0.8	1 [×]
		$V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -6mA$	V _{CC} -0.5			
V _{OH}	HIGH level output voltage	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -100 \mu A$	V _{CC} -0.2	V _{CC}		V
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} I_O = 12mA$	V _{CC} -0.8			1
		$V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 6\text{mA}$			0.40	
V _{OL}	LOW level output voltage	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$			0.20	 v
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} I_O = 12mA$			0.55	1
ł	Input leakage current	$V_{CC} = 3.6V; V_I = 5.5V \text{ or } GND^6$		±0.1	±5	μA
I _{OZ}	3-State output OFF-state current	$V_{CC} = 3.6V; V_I = V_{IH} \text{ or } V_{IL}; V_O = 5.5V \text{ or GND}$		0.1	±5	μA
I _{off}	Power off leakage supply	$V_{CC} = 0.0V; V_1 \text{ or } V_0 = 5.5V$		0.1	±10	μA
I _{CC}	Quiescent supply current	$V_{CC} = 3.6V; V_I = V_{CC} \text{ or GND}; I_O = 0$		0.1	20	μA
ΔI_{CC}	Additional quiescent supply current per control pin	$V_{CC} = 2.7V$ to 3.6V; $V_{I} = V_{CC} - 0.6V$; $I_{O} = 0$		5	500	μΑ
ΔI_{CC}	Additional quiescent supply current per data input pin	$V_{CC} = 2.7V$ to 3.6V; $V_{I} = V_{CC} - 0.6V$; $I_{O} = 0$		150	750	μA
I _{BHL}	Bus hold LOW sustaining current	$V_{CC} = 3.0V; V_I = 0.8V^{2, 3, 4}$	75			μA
I _{BHH}	Bus hold HIGH sustaining current	$V_{CC} = 3.0V; V_I = 2.0V^{2, 3, 4}$	-75			μA
I _{BHLO}	Bus hold LOW overdrive current	V _{CC} = 3.6V ^{2, 35}	450			μA
I _{BHHO}	Bus hold HIGH overdrive current	V _{CC} = 3.6V ^{2, 3, 5}	-450			μA

NOTES:

1. All typical values are at $V_{CC} = 3.3V$ and $T_{amb} = 25^{\circ}C$. 2. Valid for data inputs of bus hold parts (LVCH16-A) only. 3. For data inputs only, control inputs do not have a bus hold circuit.

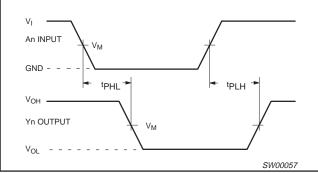
4. The specified sustaining current at the data input holds the input below the specified V₁ level.

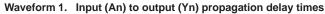
The specified overdrive current at the data input forces the data input to the opposite logic input state.
For bus hold parts, the bus hold circuit is switched off when V_i exceeds V_{CC} allowing 5.5V on the input terminal.

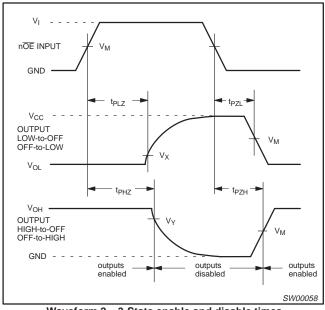
74LVC162244A/ 74LVCH162244A

AC CHARACTERISTICS

GND = 0V; $t_R = t_F = 2.5ns$; $C_L = 50pF$; $R_L = 500\Omega$; $T_{amb} = -40^{\circ}C$ to +85°C.

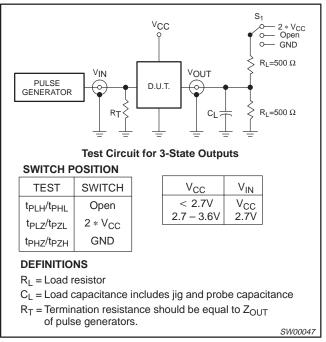

					LIMITS			
SYMBOL	PARAMETER	WAVEFORM	Vc	_C = 3.3V ±0.	3V	V _{CC} =	: 2.7V	UNIT
			MIN	TYP ¹	MAX	MIN	MAX	
t _{PHL} t _{PLH}	Propagation delay 1An to 1Yn; 2An to 2Yn	1	1.5	2.9	6.3	1.5	7.3	ns
^t PZH ^t PZL	3-State output enable time 1OE to 1Yn; 2OE to 2Yn	2, 3	1.5	3.4	7.1	1.5	8.1	ns
t _{PHZ} t _{PLZ}	3-State output disable time 1OE to 1Yn; 2OE to 2Yn	2, 3	1.5	2.8	5.0	1.5	6.0	ns

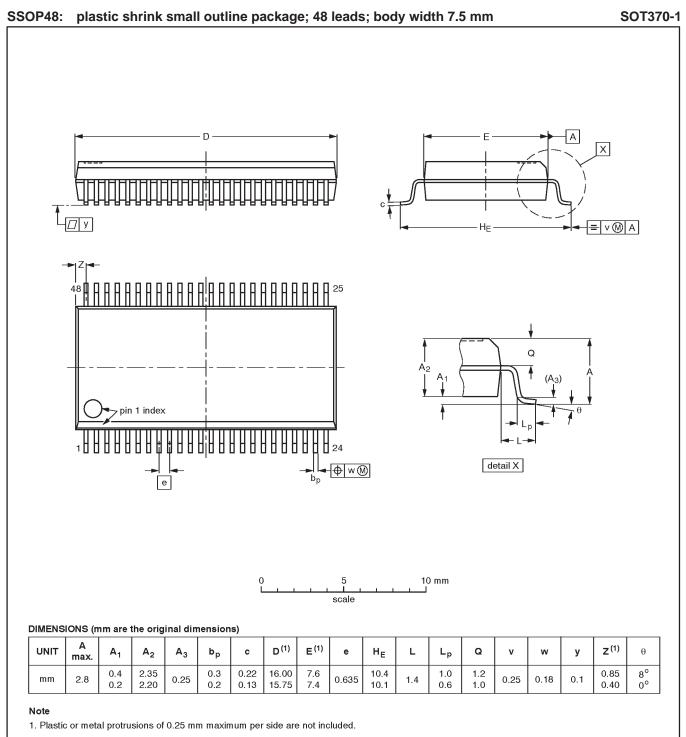

NOTE:


1. All typical values are at V_{CC} = 3.3V and T_{amb} = 25° C.

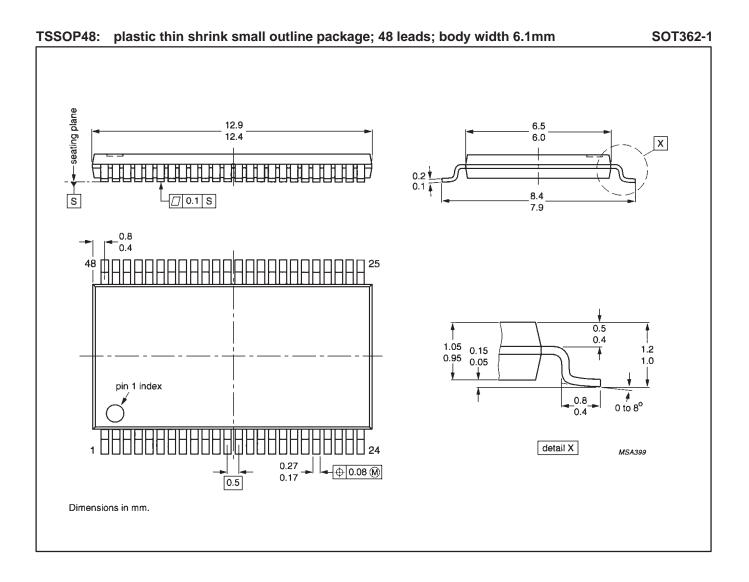
AC WAVEFORMS

 V_M = 1.5V at $V_{CC} \ge 2.7V$; V_M = 0.5 V_{CC} at $V_{CC} < 2.7V$. V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load. $V_X = V_{OL} + 0.3V$ at $V_{CC} \ge 2.7V$; $V_X = V_{OL} + 0.1$ V_{CC} at $V_{CC} < 2.7V$. $V_Y = V_{OH} - 0.3V$ at $V_{CC} \ge 2.7V$; $V_Y = V_{OH} - 0.1$ V_{CC} at $V_{CC} < 2.7V$.




Waveform 2. 3-State enable and disable times

TEST CIRCUIT


Waveform 3. Load circuitry for switching times

74LVC162244A/ 74LVCH162244A

OUTLINE		REFERENCES			EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ		PROJECTION	1550E DATE
SOT370-1		MO-118AA				-93-11-02- 95-02-04

74LVC162244A/ 74LVCH162244A

74LVC162244A/ 74LVCH162244A

NOTES

74LVC162244A/ 74LVCH162244A

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code

Document order number:

9397-750-04529

Date of release: 05-96

Let's make things better.

PHILIPS