DATA SHEET

74LV374

Octal D-type flip-flop; positive edge-trigger (3-State)

Product specification Supersedes data of 1996 Feb IC24 Data Handbook

Octal D-type flip-flop; positive edge-trigger (3-State)

74LV374

FEATURES

- Wide operating voltage: 1.0 to 5.5V
- Optimized for Low Voltage applications: 1.0 to 3.6V
- Accepts TTL input levels between V_{CC} = 2.7V and V_{CC} = 3.6V
- Typical V_{OLP} (output ground bounce) < 0.8V @ V_{CC} = 3.3V, $T_{amb} = 25^{\circ}C$
- Typical V_{OHV} (output V_{OH} undershoot) > 2V @ V_{CC} = 3.3V, $T_{amb} = 25^{\circ}C$
- Common 3-State output enable input
- Output capability: bus driver
- I_{CC} category: MSI

DESCRIPTION

The 74LV374 is a low-voltage Si-gate CMOS device and is pin and function compatible with 74HC/HCT374.

The 74LV374 is an octal D-type flip-flop featuring separate D-type inputs for each flip-flop and 3-state outputs for bus oriented applications. A clock (CP) and an output enable (OE) input are common to all flip-flops.

The eight flip-flops will store the state of their individual D-inputs that meet the set-up and hold times requirements on the LOW-to-HIGH CP transition.

When \overline{OE} is LOW, the contents of the eight flip-flops is available at the outputs. When \overline{OE} is HIGH, the outputs go to the high impedance OFF-state. Operation of the OE input does not affect the state of the flip-flops.

QUICK REFERENCE DATA

GND = 0V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.5 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t _{PHL} /t _{PLH}	Propagation delay CP to Q _n	$C_L = 15pF$ $V_{CC} = 3.3V$	14	ns
f _{max}	Maximum clock frequency		77	MHz
C _I	Input capacitance		3.5	pF
C _{PD}	Power dissipation capacitance per flip-flop	Notes 1 and 2	25	pF

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW)

 $P_D = C_{PD} \times V_{CC}^2 x f_i + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where: $f_i = \text{input frequency in MHz}$; $C_L = \text{output load capacity in pF}$;

 f_o = output frequency in MHz; V_{CC} = supply voltage in V; Σ ($C_L \times V_{CC}^2 \times f_o$) = sum of the outputs.

2. The condition is $V_I = GND$ to V_{CC}

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	PKG. DWG. #
20-Pin Plastic DIL	-40°C to +125°C	74LV374 N	74LV374 N	SOT146-1
20-Pin Plastic SO	-40°C to +125°C	74LV374 D	74LV374 D	SOT163-1
20-Pin Plastic SSOP Type II	-40°C to +125°C	74LV374 DB	74LV374 DB	SOT339-1

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
1	ŌĒ	Output enable input (active-LOW)
2, 5, 6, 9, 12, 15, 16, 19	Q0 to Q7	3-State flip-flop outputs
3, 4, 7, 8, 13, 14, 17, 18	D0 to D7	Data inputs
10	GND	Ground (0V)
11	СР	Clock input (LOW-to-HIGH, edge-triggered)
20	V _{CC}	Positive supply voltage

FUNCTION TABLE

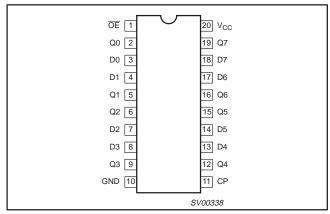
OPERATING	11	NPUT:	S	INTERNAL	OUTPUTS
MODES	OE	СР	Dn	FLIP-FLOPS	Q0 to Q7
Load and read register	L	\uparrow	l h	L H	L H
Load register and disable outputs	HH	↑	l h	L H	Z Z

HIGH voltage level

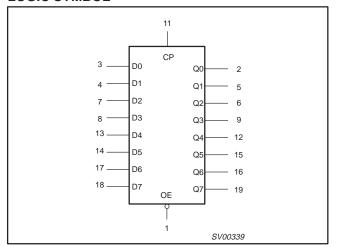
= HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition h

LOW voltage level ı

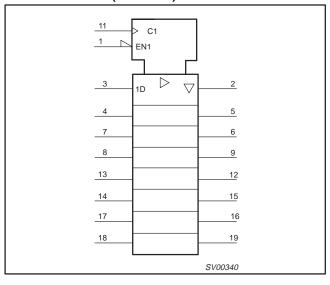
LOW voltage level one set-up time prior to the

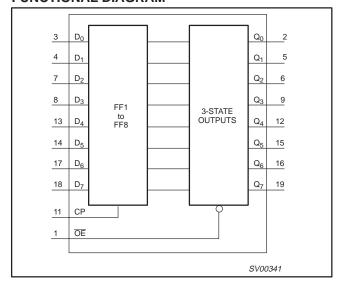

LOW-to-HIGH CP transition Z ↑ High impedance OFF-state

LOW-to-HIGH clock transition


Octal D-type flip-flop; positive edge-trigger (3-State)

74LV374


PIN CONFIGURATION


LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

FUNCTIONAL DIAGRAM

LOGIC DIAGRAM

Octal D-type flip-flop; positive edge-trigger (3-State)

74LV374

ABSOLUTE MAXIMUM RATINGS1, 2

In accordance with the Absolute Maximum Rating System (IEC 134)

Voltages are referenced to GND (ground = 0V)

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
V _{CC}	DC supply voltage		-0.5 to +7.0	V
±I _{IK}	DC input diode current	$V_{I} < -0.5 \text{ or } V_{I} > V_{CC} + 0.5V$	20	mA
±I _{OK}	DC output diode current	$V_{O} < -0.5 \text{ or } V_{O} > V_{CC} + 0.5V$	50	mA
±I _O	DC output source or sink current – standard outputs – bus driver outputs	-0.5V < V _O < V _{CC} + 0.5V	25 35	mA
±I _{GND} , ±I _{CC}	DC V _{CC} or GND current for types with -standard outputs -bus driver outputs		50 70	mA
T _{stg}	Storage temperature range		-65 to +150	°C
Ртот	Power dissipation per package -plastic DIL -plastic mini-pack (SO) -plastic shrink mini-pack (SSOP and TSSOP)	for temperature range: -40 to +125°C above +70°C derate linearly with 12mW/K above +70°C derate linearly with 8 mW/K above +60°C derate linearly with 5.5 mW/K	750 500 400	mW

NOTES:

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP.	MAX	UNIT
V _{CC}	DC supply voltage	See Note1	1.0	3.3	5.5	V
V _I	Input voltage		0	-	V _{CC}	V
Vo	Output voltage		0	-	V _{CC}	V
T _{amb}	Operating ambient temperature range in free air	See DC and AC characteristics per device	-40 -40		+85 +125	°C
t _r , t _f	Input rise and fall times except for Schmitt-trigger inputs	$V_{CC} = 1.0V \text{ to } 2.0V$ $V_{CC} = 2.0V \text{ to } 2.7V$ $V_{CC} = 2.7V \text{ to } 3.6V$ $V_{CC} = 3.6V \text{ to } 5.5V$	-	- - - -	500 200 100 50	ns/V

NOTES:

^{1.} Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

^{1.} The LV is guaranteed to function down to $V_{CC} = 1.0V$ (input levels GND or V_{CC}); DC characteristics are guaranteed from $V_{CC} = 1.2V$ to $V_{CC} = 5.5V$.

Octal D-type flip-flop; positive edge-trigger (3-State)

74LV374

DC CHARACTERISTICS FOR THE LV FAMILY

Over recommended operating conditions voltages are referenced to GND (ground = 0V)

					LIMITS			_
SYMBOL	PARAMETER	TEST CONDITIONS	-40)°C to +8	5°C	-40°C to	o +125°C	TINU
			MIN	TYP ¹	MAX	MIN	MAX	
		V _{CC} = 1.2V	0.9			0.9		
V_{IH}	HIGH level Input	V _{CC} = 2.0V	1.4			1.4		_ v
٧ІП	voltage	V _{CC} = 2.7 to 3.6V	2.0			2.0] `
		V _{CC} = 4.5 to 5.5V	0.7*V _{CC}			0.7*V _{CC}		
		V _{CC} = 1.2V			0.3		0.3	_
V_{IL}	LOW level Input	V _{CC} = 2.0V			0.6		0.6	J _V
- 12	voltage	$V_{CC} = 2.7 \text{ to } 3.6 \text{V}$			0.8		0.8]
		V _{CC} = 4.5 to 5.5			0.3*V _{CC}		0.3*V _{CC}	
		$V_{CC} = 1.2V; V_I = V_{IH} \text{ or } V_{IL}; -I_O = 100 \mu A$		1.2				_
	HIGH level output	$V_{CC} = 2.0V$; $V_I = V_{IH}$ or V_{IL} ; $-I_O = 100\mu A$	1.8	2.0		1.8		_
V_{OH}	voltage; all outputs	$V_{CC} = 2.7V$; $V_I = V_{IH}$ or V_{IL} ; $-I_O = 100\mu A$	2.5	2.7		2.5		V
		$V_{CC} = 3.0V$; $V_I = V_{IH}$ or V_{IL} ; $-I_O = 100\mu A$	2.8	3.0		2.8		
		$V_{CC} = 4.5V; V_I = V_{IH} \text{ or } V_{IL}; -I_O = 100 \mu A$	4.3	4.5		4.3		
V _{OH}	HIGH level output voltage;	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; -I_O = 6\text{mA}$	2.40	2.82		2.20		
	STANDARD outputs	$V_{CC} = 4.5V; V_I = V_{IH} \text{ or } V_{IL}; -I_O = 12\text{mA}$	3.60	4.20		3.50		
V	HIGH level output voltage; BUS driver	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; -I_O = 8mA$	2.40	2.82		2.20		
V _{OH}	outputs	$V_{CC} = 4.5V; V_I = V_{IH} \text{ or } V_{IL}; -I_O = 16\text{mA}$	3.60	4.20		3.50		1 <u> </u>
		$V_{CC} = 1.2V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$		0				_
	LOW level output	$V_{CC} = 2.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$		0	0.2		0.2	_
V_{OL}	voltage; all outputs	$V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL;} I_O = 100 \mu A$		0	0.2		0.2	٧
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$		0	0.2		0.2	_
		$V_{CC} = 4.5V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu A$		0	0.2		0.2	
V _{OL}	LOW level output voltage;	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 6\text{mA}$		0.25	0.40		0.50	
·OL	STANDARD outputs	$V_{CC} = 4.5V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 12\text{mA}$		0.35	0.55		0.65	Ĺ
V_{OL}	LOW level output voltage; BUS driver	$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 8\text{mA}$		0.20	0.40		0.50	
V OL	outputs	$V_{CC} = 4.5V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 16\text{mA}$		0.35	0.55		0.65	<u> </u>
I _I	Input leakage current	$V_{CC} = 5.5V$; $V_I = V_{CC}$ or GND			1.0		1.0	μΑ
I _{OZ}	3-State output OFF-state current	$V_{CC} = 5.5V$; $V_I = V_{IH}$ or V_{IL} ; $V_O = V_{CC}$ or GND			5		10	μА
	Quiescent supply current; SSI	$V_{CC} = 5.5V; V_{I} = V_{CC} \text{ or GND}; I_{O} = 0$			20.0		40	
Icc	Quiescent supply current; flip-flops	$V_{CC} = 5.5V; V_I = V_{CC} \text{ or GND}; I_O = 0$			20.0		80	μΑ
	Quiescent supply current; MSI	$V_{CC} = 5.5V; V_I = V_{CC} \text{ or GND}; I_O = 0$			20.0		160	
I _{CC}	Quiescent supply current; LSI	$V_{CC} = 5.5V; V_I = V_{CC} \text{ or GND}; I_O = 0$			500		1000	μΑ
Δl _{CC}	Additional quiescent supply current per input	$V_{CC} = 2.7V$ to 3.6V; $V_{I} = V_{CC} - 0.6V$			500		850	μА

NOTE:

^{1.} All typical values are measured at T_{amb} = 25°C.

Octal D-type flip-flop; positive edge-trigger (3-State)

74LV374

AC CHARACTERISTICS

 $GND = 0V; \, t_r = t_f = 2.5 ns; \, C_L = 50 pF; \, R_L = 500 \Omega$

SYMBOL	PARAMETER	WAVEFORM	CONDITION	-4	LIMITS 40 to +85	°C		IITS +125 °C	UNIT
			V _{CC} (V)	MIN	TYP	MAX	MIN	MAX	
			1.2	-	90	-	-	-	
			2.0	-	31	39	-	49	
t _{PHL} /t _{PLH}	Propagation delay CP to Qn	Figure 1	2.7	_	23	29	_	36	ns
	0. 10 0		3.0 to 3.6	-	17 ²	23	_	29	
			4.5 to 5.5	_	_	19	_	24	
			1.2	_	75	-	_	-	
			2.0	_	26	34	-	43	
t _{PZH} /t _{PZL}	Propagation delay OE to Qn	Figure 2	2.7	_	19	25	-	31	ns
	OL to Qii		3.0 to 3.6	-	14 ²	20	-	25	
			4.5 to 5.5	-	-	17	-	21	
			1.2	-	80	-	-	-	
	t _{PHZ} /t _{PLZ} Propagation delay OE to Qn		2.0	_	29	39	-	48	
t _{PHZ} /t _{PLZ}		Figure 2	2.7	-	22	29	-	36	ns
	OL to an		3.0 to 3.6	_	17 ²	24	-	29	
			4.5 to 5.5	_	_	20	_	24	
			2.0	34	12	-	41	-	
t _W	Clock pulse width HIGH or LOW	Figure 1	2.7	25	9	-	30	-	ns
	111011012011		3.0 to 3.6	20	7 ²	-	24	-	
			1.2	_	25	-	_	-	
4	Set-up time	Figure 2	2.0	22	9	-	26	-	no
t _{su}	Dn to CP	Figure 3	2.7	16	6	-	19	-	ns
			3.0 to 3.6	13	5 ²	-	15	-	
			1.2	-	-10	-	-	-	
4	Hold time	Figure 2	2.0	5	-3	-	5	-	no
чh	t _h Dn to CP	Figure 3	2.7	5	-2	-	5	-	ns
			3.0 to 3.6	5	-2 ²	-	5	-	
			2.0	15	40	-	12	-	
f _{max}	Maximum clock	Figure 2	2.7	19	58	-	16	-	MHz
	pulse frequency		3.0 to 3.6	24	70 ²	<u> </u>	20	-	

NOTE:

^{1.} Unless otherwise stated, all typical values are at T_{amb} = 25°C.

^{2.} Typical value measured at V_{CC} = 3.3V.

^{3.} Typical value measured at V_{CC} = 5.0V.

Octal D-type flip-flop; positive edge-trigger (3-State)

74LV374

AC WAVEFORMS

 V_M = 1.5V at $V_{CC} \ge 2.7V \le 3.6V$ V_M = 0.5V * V_{CC} at $V_{CC} < 2.7V$ and $\ge 4.5V$

 V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

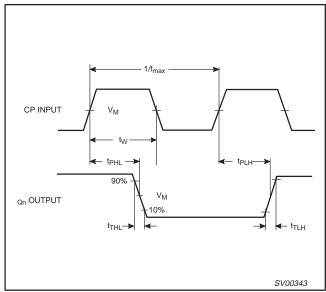


Figure 1. Waveforms showing the clock (CP) to output (Qn) propagation delays, the clock pulse width, output transition times and the maximum clock pulse frequency

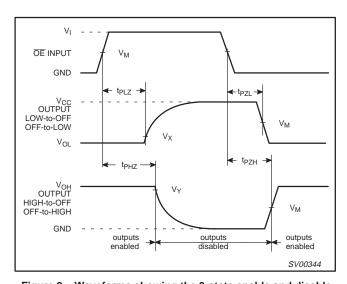


Figure 2. Waveforms showing the 3-state enable and disable times

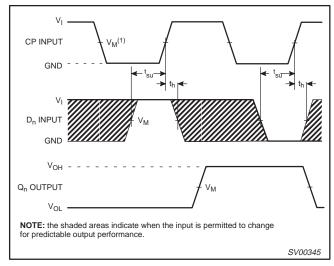


Figure 3. Waveforms showing the data set-up and hold times for the Dn input to the CP input

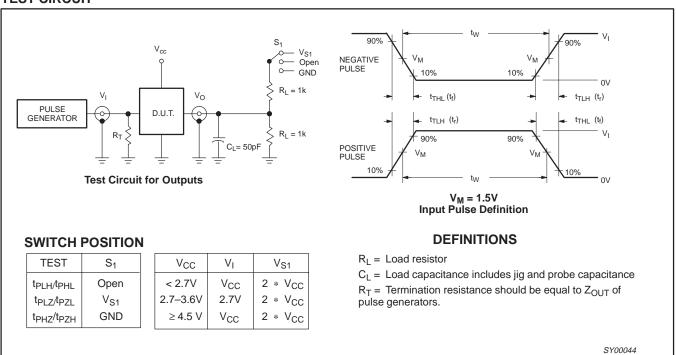
NOTE:

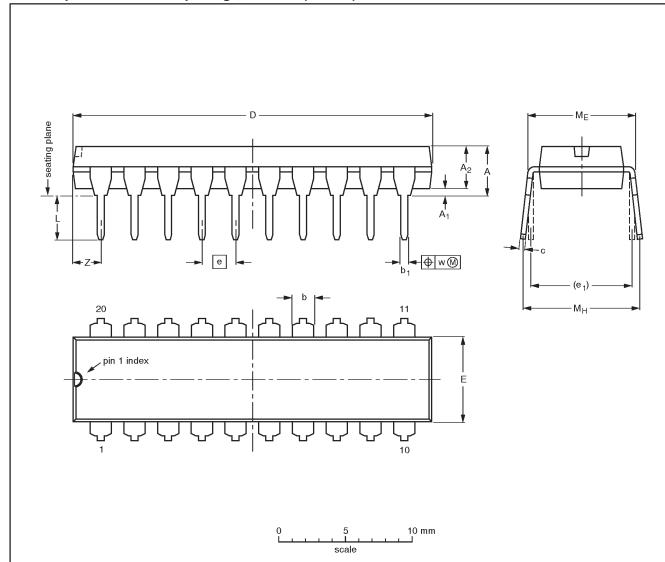
The shaded areas indicate when the input is permitted to change for predictable output performance.

Octal D-type flip-flop; positive edge-trigger (3-State)

74LV374

TEST CIRCUIT




Figure 4. Load circuitry for switching times

Octal D-type flip-flop; positive edge-trigger (3-State)

74LV374

DIP20: plastic dual in-line package; 20 leads (300 mil)

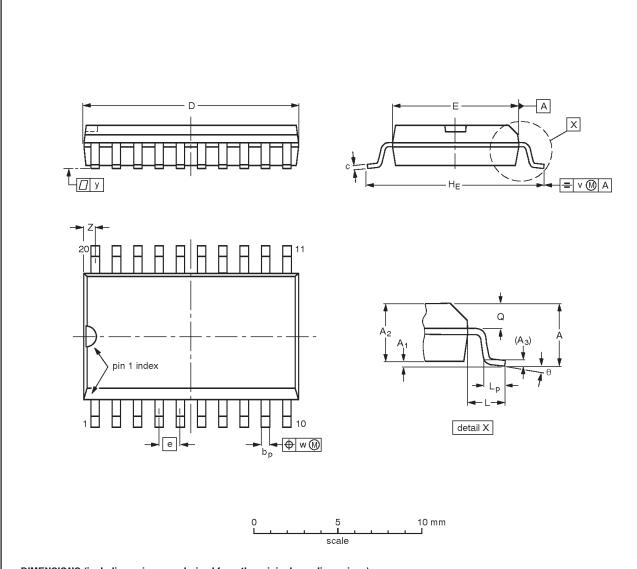
SOT146-1

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	0.36 0.23	26.92 26.54	6.40 6.22	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.0
inches	0.17	0.020	0.13	0.068 0.051	0.021 0.015	0.014 0.009	1.060 1.045	0.25 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.078

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE		REFER	RENCES	EUROPEAN PROJECTION	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT146-1			SC603		92-11-17 95-05-24

Octal D-type flip-flop; positive edge-trigger (3-State)

74LV374

SO20: plastic small outline package; 20 leads; body width 7.5 mm

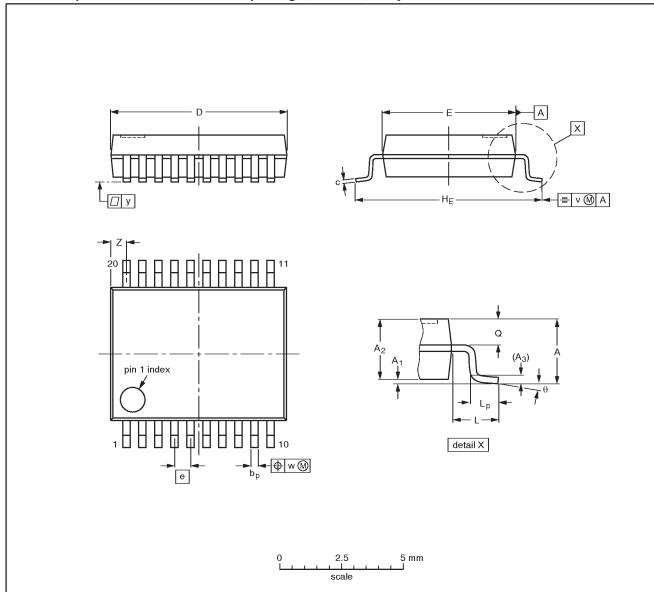
SOT163-1

${\color{red} {\sf DIMENSIONS}} \ ({\sf inch \ dimensions} \ {\sf are \ derived \ from \ the \ original \ mm \ dimensions})$

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	٧	w	у	z ⁽¹⁾	θ
mm	2.65	0.30 0.10	2.45 2.25	0.25	0.49 0.36	0.32 0.23	13.0 12.6	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
inches	0.10	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.51 0.49	0.30 0.29	0.050	0.42 0.39	0.055	0.043 0.016	0.043 0.039	0.01	0.01	0.004	0.035 0.016	o°

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.


OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE
SOT163-1	075E04	MS-013AC			92-11-17 95-01-24

Octal D-type flip-flop; positive edge-trigger (3-State)

74LV374

SSOP20: plastic shrink small outline package; 20 leads; body width 5.3 mm

SOT339-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	Α1	A ₂	А3	р _р	O	D ⁽¹⁾	E ⁽¹⁾	Ф	HE	L	Lp	œ	v	w	у	Z ⁽¹⁾	θ
mm	2.0	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	7.4 7.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	0.9 0.5	8° 0°

Note

1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	EIAJ		PROJECTION	1990E DATE	
SOT339-1		MO-150AE				93-09-08 95-02-04	

Octal D-type flip-flop; positive edge-trigger (3-State)

74LV374

DEFINITIONS						
Data Sheet Identification	Product Status	Definition				
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.				
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.				
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.				

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1997 All rights reserved. Printed in U.S.A.

print code Date of release: 05-96

Document order number: 9397-750-04448

Let's make things better.

Philips Semiconductors

