

# 74ALVT16501 2.5V/3.3V 18-bit universal bus transceiver (3-State) 

### 2.5V/3.3V 18-bit universal bus transceiver (3-State)

## FEATURES

- 18-bit bidirectional bus interface
- 5V I/O Compatible
- 3-State buffers
- Output capability: +64mA/-32mA
- TTL and LVTTL input and output switching levels
- Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- Power-up reset
- Power-up 3-State
- No bus current loading when output is tied to 5 V bus
- Positive edge triggered clock inputs
- Latch-up protection exceeds 500mA per JEDEC Std 17
- ESD protection exceeds 2000V per MIL STD 883 Method 3015 and 400 V per Machine Model


## DESCRIPTION

The 74ALVT16501 is a high-performance BiCMOS product designed for $\mathrm{V}_{\mathrm{CC}}$ operation at 2.5 V and 3.3 V with $\mathrm{I} / \mathrm{O}$ compatibility up to 5 V .

This device is an 18-bit universal transceiver featuring non-inverting 3 -State bus compatible outputs in both send and receive directions. Data flow in each direction is controlled by output enable (OEAB and OEBA), latch enable (LEAB and LEBA), and clock (CPAB and CPBA) inputs. For $A$-to- $B$ data flow, the device operates in the transparent mode when LEAB is High. When LEAB is Low, the A data is latched if CPAB is held at a High or Low logic level. If LEAB is Low, the A-bus data is stored in the latch/flip-flop on the Low-to-High transition of CPAB. When OEAB is High, the outputs are active. When OEAB is Low, the outputs are in the high-impedance state.
Data flow for $B$-to-A is similar to that of $A$-to- $B$ but uses $\overline{O E B A}$, LEBA and CPBA. The output enables are complimentary (OEAB is active High, and OEBA is active Low).

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

## QUICK REFERENCE DATA

| SYMBOL | PARAMETER | CONDITIONS$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ | TYPICAL |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 2.5 V | 3.3 V |  |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation delay <br> An to Bn or Bn to An | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ | $\begin{aligned} & 1.9 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & 1.4 \\ & 1.8 \end{aligned}$ | ns |
| $\mathrm{C}_{\text {IN }}$ | Input capacitance (Control pins) | $\mathrm{V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}$ | 4 | 4 | pF |
| $\mathrm{C}_{\text {I/O }}$ | I/O pin capacitance | $\mathrm{V}_{1 / \mathrm{O}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}$ | 8 | 8 | pF |
| ICCz | Total supply current | Outputs disabled | 40 | 60 | $\mu \mathrm{A}$ |

## ORDERING INFORMATION

| PACKAGES | TEMPERATURE RANGE | OUTSIDE NORTH AMERICA | NORTH AMERICA | DWG NUMBER |
| :--- | :---: | :---: | :---: | :---: |
| $56-$ Pin Plastic SSOP Type III | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $74 \mathrm{ALVT16501} \mathrm{DL}$ | AV16501 DL | SOT371-1 |
| $56-$ Pin Plastic TSSOP Type II | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | 74 ALVT16501 DGG | AV16501 DGG | SOT364-1 |

## PIN DESCRIPTION

| PIN NUMBER | SYMBOL | NAME AND FUNCTION |
| :---: | :---: | :---: |
| 1 | OEAB | A-to-B Output enable input |
| 27 | OEBA | B-to-A Output enable input (active low) |
| 2,28 | LEAB/LEBA | A-to-B/B-to-A Latch enable input |
| 55,30 | CPAB/CPBA | A-to-B/B-to-A Clock input (active rising edge) |
| $3,5,6,8,9,10,12,13,14,15$, <br> $16,17,19,20,21,23,24,26$ | A0-A17 | Data inputs/outputs (A side) |
| $54,52,51,49,48,47,45,44,43$, <br> $42,41,40,38,37,36,34,33,31$ | B0-B17 | Data inputs/outputs (B side) |
| $4,11,18,25,32,39,46,53,29,56$ | GND | Ground (0V) |
| $7,22,35,50$ | $\mathrm{~V}_{\mathrm{CC}}$ | Positive supply voltage |

PIN CONFIGURATION


LOGIC SYMBOL (IEEE/IEC)


## LOGIC SYMBOL



## FUNCTION TABLE

| INPUTS |  |  |  | Internal <br> Registers | OUTPUTS | OPERATING MODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OEAB | LEAB | CPAB | An |  | Bn |  |
| L | H | X | X | X | Z | Disabled |
| L | $\downarrow$ | X | h | H | Z |  |
| L | $\downarrow$ | X | 1 | L | Z | Disabled, Latch data |
| L | L | H or L | X | NC | Z | Disabled, Hold data |
| L | L | $\uparrow$ | h | H | Z |  |
| L | L | $\uparrow$ | I | L | Z | Disabled, Clock data |
| H | H | X | H | H | H |  |
| H | H | X | L | L | L | Transparent |
| H | $\downarrow$ | X | h | H | H |  |
| H | $\downarrow$ | X | 1 | L | L | Latch data \& display |
| H | L | $\uparrow$ | h | H | H |  |
| H | L | $\uparrow$ | 1 | L | L | Clock data \& display |
| H | L | H or L | X | H | H |  |
| H | L | H or L | X | L | L | Hold data \& display |

NOTE: A-to-B data flow is shown; B-to-A flow is similar but uses OEBA, LEBA, and CPBA.
H = High voltage level
h = High voltage level one set-up time prior to the Enable or Clock transition
L = Low voltage level
I = Low voltage level one set-up time prior to the Enable or Clock transition
NC= No Change
X = Don't care
Z = High Impedence "off" state
$\downarrow=$ High-to-Low Enable or Clock transition

## LOGIC DIAGRAM



ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

| SYMBOL | PARAMETER | CONDITIONS | RATING | UNIT |
| :---: | :--- | :---: | :---: | :---: |
| $\mathrm{V}_{\text {CC }}$ | DC supply voltage |  | -0.5 to +4.6 | V |
| $\mathrm{I}_{\mathrm{K}}$ | DC input diode current | $\mathrm{V}_{\mathrm{I}}<0$ | -50 | mA |
| $\mathrm{~V}_{\mathrm{I}}$ | DC input voltage ${ }^{3}$ |  | -0.5 to +7.0 | V |
| $\mathrm{I}_{\text {OK }}$ | DC output diode current | $\mathrm{V}_{\mathrm{O}}<0$ | -50 | mA |
| $\mathrm{~V}_{\text {OUT }}$ | DC output voltage ${ }^{3}$ | Output in Off or High state | -0.5 to +7.0 | V |
| $\mathrm{I}_{\text {OUT }}$ | DC output current | Output in Low state | 128 | mA |
|  | Storage temperature range | Output in High state | -64 |  |

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed $150^{\circ} \mathrm{C}$.
3. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

## RECOMMENDED OPERATING CONDITIONS

| SYMBOL | PARAMETER | 2.5V RANGE LIMITS |  | 3.3V RANGE LIMITS |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | MAX | MIN | MAX |  |
| $\mathrm{V}_{\mathrm{CC}}$ | DC supply voltage | 2.3 | 2.7 | 3.0 | 3.6 | V |
| $V_{1}$ | Input voltage | 0 | 5.5 | 0 | 5.5 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High-level input voltage | 1.7 |  | 2.0 |  | V |
| $\mathrm{V}_{\text {IL }}$ | Input voltage |  | 0.7 |  | 0.8 | V |
| $\mathrm{IOH}^{\text {O }}$ | High-level output current |  | -8 |  | -32 | mA |
| loL | Low-level output current |  | 8 |  | 32 | mA |
|  | Low-level output current; current duty cycle $\leq 50 \%$; f $\geq 1 \mathrm{kHz}$ |  | 24 |  | 64 |  |
| $\Delta t / \Delta v$ | Input transition rise or fall rate; Outputs enabled |  | 10 |  | 10 | ns/V |
| $\mathrm{T}_{\text {amb }}$ | Operating free-air temperature range | -40 | +85 | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |

## DC ELECTRICAL CHARACTERISTICS (3.3V $\pm 0.3 \mathrm{~V}$ RANGE)

| SYMBOL | PARAMETER | TEST CONDITIONS |  |  | IMITS |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Temp $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  |  |
|  |  |  |  | MIN | TYP ${ }^{1}$ | MAX |  |
| $\mathrm{V}_{\mathrm{IK}}$ | Input clamp voltage | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{IK}}=-18 \mathrm{~mA}$ |  |  | -0.85 | -1.2 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High-level output voltage | $\mathrm{V}_{\mathrm{CC}}=3.0$ to $3.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$ |  | $\mathrm{V}_{\mathrm{CC}}-0.2$ | $\mathrm{V}_{\text {cc }}$ |  | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$ |  | 2.0 | 2.3 |  |  |
| $\mathrm{V}_{\text {OL }}$ | Low-level output voltage | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$ |  |  | 0.07 | 0.2 | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$ |  |  | 0.25 | 0.4 |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=32 \mathrm{~mA}$ |  |  | 0.3 | 0.5 |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\text {OL }}=64 \mathrm{~mA}$ |  |  | 0.4 | 0.55 |  |
| $\mathrm{V}_{\text {RST }}$ | Power-up output low voltage ${ }^{6}$ | $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND |  |  |  | 0.55 | V |
| 1 | Input leakage current | $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND | Control pins |  | 0.1 | $\pm 1$ | $\mu \mathrm{A}$ |
|  |  | $\mathrm{V}_{\mathrm{CC}}=0$ or 3.6 V ; $\mathrm{V}_{\text {I }}=5.5 \mathrm{~V}$ |  |  | 0.1 | 10 |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$ | Data pins ${ }^{4}$ |  | 0.1 | 20 |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ |  |  | 0.5 | 10 |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V} ; \mathrm{V}_{1}=0 \mathrm{~V}$ |  |  | 0.1 | -5 |  |
| IOFF | Off current | $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}}=0$ to 4.5 V |  |  | 0.1 | $\pm 100$ | $\mu \mathrm{A}$ |
| Ihold | Bus Hold current <br> Data inputs ${ }^{7}$ |  |  | 75 | 130 |  | $\mu \mathrm{A}$ |
|  |  | $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=2.0 \mathrm{~V}$ |  | -75 | -140 |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ to $3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ |  | $\pm 500$ |  |  |  |
| $l_{\text {EX }}$ | Current into an output in the High state when $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$ | $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ |  |  | 10 | 125 | $\mu \mathrm{A}$ |
| IPU/PD | Power up/down 3-State output current ${ }^{3}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \leq 1.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{OE} / \mathrm{OE}=\text { Don't care } \end{aligned}$ |  |  | 1.0 | $\pm 100$ | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{CCH}}$ | Quiescent supply current | $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$; Outputs High, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{l}_{\mathrm{O}}=0$ |  |  | 0.06 | 0.1 | mA |
| $\mathrm{I}_{\text {CCL }}$ |  | $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$; Outputs Low, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{l}_{\mathrm{O}}=0$ |  |  | 3.5 | 5 |  |
| ICCz |  | $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$; Outputs Disabled; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{O}}=0^{5}$ |  |  | 0.06 | 0.1 |  |
| $\Delta^{\text {l }}$ C | Additional supply current per input pin ${ }^{2}$ | $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$ to 3.6 V ; One input a Other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |  |  | 0.04 | 0.4 | mA |

## NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. This is the increase in supply current for each input at the specified voltage level other than $\mathrm{V}_{\mathrm{CC}}$ or GND
3. This parameter is valid for any $\mathrm{V}_{\mathrm{C}}$ between 0 V and 1.2 V with a transition time of up to 10 msec . From $\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ a transition time of $100 \mu \mathrm{sec}$ is permitted. This parameter is valid for $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ only.
4. Unused pins at $\mathrm{V}_{\mathrm{CC}}$ or GND.
5. I ${ }_{C C Z}$ is measured with outputs pulled up to $\mathrm{V}_{C C}$ or pulled down to ground.
6. For valid test results, data must not be loaded into the flip-flops (or latches) after applying power.
7. This is the bus hold overdrive current required to force the input to the opposite logic state.

AC CHARACTERISTICS ( $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ RANGE)
$G N D=0 V ; t_{R}=t_{F}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega ; \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

| SYMBOL | PARAMETER | WAVEFORM | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ |  |  |  |
|  |  |  | MIN | TYP ${ }^{1}$ | MAX |  |
| $\mathrm{f}_{\text {MAX }}$ | Maximum clock frequency | 1 | 150 |  |  | MHz |
| $\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$ | Propagation delay An to Bn or Bn to An | 2 | $\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$ | $\begin{aligned} & 1.4 \\ & 1.8 \end{aligned}$ | $\begin{aligned} & 3.4 \\ & 3.8 \end{aligned}$ | ns |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation delay Clock Low or High LEAB to Bn or LEBA to An | 3 | $\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 2.1 \\ & 2.7 \end{aligned}$ | $\begin{aligned} & 3.4 \\ & 4.0 \end{aligned}$ | ns |
| $\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$ | Propagation delay CPAB to Bn or CPBA to An | 1 | $\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$ | $\begin{aligned} & 1.9 \\ & 2.7 \end{aligned}$ | $\begin{aligned} & 3.2 \\ & 4.4 \end{aligned}$ | ns |
| $\begin{aligned} & \text { tpzH } \\ & \text { tpzL } \end{aligned}$ | Output enable time to High and Low level | $\begin{aligned} & 5 \\ & 6 \end{aligned}$ | $\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$ | $\begin{aligned} & 2.0 \\ & 1.4 \end{aligned}$ | $\begin{aligned} & 3.1 \\ & 3.6 \end{aligned}$ | ns |
| $\begin{aligned} & \text { tphz } \\ & \text { tpLZ } \end{aligned}$ | Output disable time from High and Low Level | $\begin{aligned} & 5 \\ & 6 \end{aligned}$ | $\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$ | $\begin{aligned} & 2.7 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & 4.2 \\ & 4.0 \end{aligned}$ | ns |

## NOTE:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

AC SETUP REQUIREMENTS ( $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ RANGE)
$G N D=0 V ; t_{R}=t_{F}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega ; \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

| SYMBOL | PARAMETER | WAVEFORM | LIMITS |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ |  |  |
|  |  |  | MIN | TYP |  |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{ts}_{\mathrm{S}}(\mathrm{~L}) \end{aligned}$ | Setup time, High or Low An to CPAB or Bn to CPBA | 4 | $\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$ | $\begin{aligned} & 0.5 \\ & 0.7 \end{aligned}$ | ns |
| $\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$ | Hold time, High or Low <br> An to CPAB or Bn to CPBA | 4 | $\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$ | $\begin{aligned} & -0.6 \\ & -0.3 \end{aligned}$ | ns |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{S}}(\mathrm{~L}) \end{aligned}$ | Setup time, High or Low An to LEAB or Bn to LEBA | 4 | $\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$ | $\begin{aligned} & -0.6 \\ & -0.1 \end{aligned}$ | ns |
| $\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$ | Hold time, High or Low An to LEAB or Bn to LEBA | 4 | $\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & \hline 0.1 \\ & 0.6 \end{aligned}$ | ns |
| $\begin{aligned} & \hline \mathrm{tw}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{tw}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$ | Pulse width, High or Low CPAB or CPBA | 1 | $\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$ |  | ns |
| $\mathrm{t}_{\mathrm{W}}(\mathrm{H})$ | LEAB or LEBA pulse width, High | 3 | 1.5 |  | ns |

## DC ELECTRICAL CHARACTERISTICS (2.5V $\pm 0.2 \mathrm{~V}$ RANGE)

| SYMBOL | PARAMETER | TEST CONDITIONS |  | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Temp $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  |  |
|  |  |  |  | MIN | TYP ${ }^{1}$ | MAX |  |
| $\mathrm{V}_{\mathrm{IK}}$ | Input clamp voltage | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{I}_{\mathrm{IK}}=-18 \mathrm{~mA}$ |  |  | -0.85 | -1.2 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | High-level output voltage | $\mathrm{V}_{\mathrm{CC}}=2.3$ to 3.6 V ; $\mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$ |  | $\mathrm{V}_{\mathrm{cc}}-0.2$ |  |  | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$ |  | 1.8 |  |  |  |
| VoL | Low-level output voltage | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$ |  |  | 0.07 | 0.2 | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$ |  |  | 0.3 | 0.5 |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{IOL}=8 \mathrm{~mA}$ |  |  |  | 0.4 |  |
| $\mathrm{V}_{\text {RST }}$ | Power-up output low voltage ${ }^{7}$ | $\mathrm{V}_{C C}=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND |  |  |  | 0.55 | V |
| 1 | Input leakage current | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND | Control pins |  | 0.1 | $\pm 1$ | $\mu \mathrm{A}$ |
|  |  | $\mathrm{V}_{\mathrm{CC}}=0$ or $2.7 \mathrm{~V} ; \mathrm{V}_{1}=5.5 \mathrm{~V}$ |  |  | 0.1 | 10 |  |
|  |  | $\mathrm{V}_{C C}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ | Data pins ${ }^{4}$ |  | 0.1 | 1 |  |
|  |  |  |  |  | 0.1 | -5 |  |
| IOFF | Off current | $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}} \text { or } \mathrm{V}_{\mathrm{O}}=0 \text { to } 4.5 \mathrm{~V}$ |  |  | 0.1 | $\pm 100$ | $\mu \mathrm{A}$ |
| IHold | Bus Hold current Data inputs ${ }^{6}$ | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0.7 \mathrm{~V}$ |  |  | 90 |  | $\mu \mathrm{A}$ |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=1.7 \mathrm{~V}$ |  |  | -75 |  |  |
| $l_{\text {EX }}$ | Current into an output in the High state when $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$ | $\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ |  |  | 5 | 125 | $\mu \mathrm{A}$ |
| IPU/PD | Power up/down 3-State output current ${ }^{3}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \leq 1.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{OE} / \mathrm{OE}=\text { Don't care } \end{aligned}$ |  |  | 4 | 100 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{CCH}}$ | Quiescent supply current | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$; Outputs High, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{O}=0}$ |  |  | 0.04 | 0.1 | mA |
| $\mathrm{I}_{\text {CCL }}$ |  | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$; Outputs Low, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{O}}=0$ |  |  | 2.5 | 4.5 |  |
| ICCz |  | $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$; Outputs Disabled; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{O}}=0^{5}$ |  |  | 0.04 | 0.1 |  |
| $\Delta_{\text {l }}$ | Additional supply current per input pin ${ }^{2}$ | $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V ; One input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$, Other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND |  |  | 0.01 | 0.4 | mA |

## NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ and $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
2. This is the increase in supply current for each input at the specified voltage level other than $\mathrm{V}_{\mathrm{CC}}$ or GND
3. This parameter is valid for any $\mathrm{V}_{C C}$ between 0 V and 1.2 V with a transition time of up to 10 msec . From $\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$ a transition time of $100 \mu \mathrm{sec}$ is permitted. This parameter is valid for $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ only.
4. Unused pins at $\mathrm{V}_{\mathrm{cc}}$ or GND.
5. I $I_{C C Z}$ is measured with outputs pulled up to $\mathrm{V}_{\mathrm{CC}}$ or pulled down to ground.
6. Not guaranteed.
7. For valid test results, data must not be loaded into the flip-flops (or latches) after applying power.

AC CHARACTERISTICS ( $2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ RANGE)
$G N D=0 V ; t_{R}=t_{F}=2.5 n s ; C_{L}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega ; \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

| SYMBOL | PARAMETER | WAVEFORM | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ |  |  |  |
|  |  |  | MIN | TYP1 | MAX |  |
| $\mathrm{f}_{\text {MAX }}$ | Maximum clock frequency | 1 | 150 |  |  | MHz |
| $\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \end{aligned}$ | Propagation delay <br> An to Bn or Bn to An | 2 | $\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$ | $\begin{aligned} & 1.9 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 3.8 \end{aligned}$ | ns |
| $\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \end{aligned}$ | Propagation delay Clock Low or High LEAB to Bn or LEBA to An | 3 | $\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$ | $\begin{aligned} & 4.5 \\ & 5.4 \end{aligned}$ | ns |
| $\begin{aligned} & \text { tpLH } \\ & t_{\text {PHL }} \end{aligned}$ | Propagation delay CPAB to Bn or CPBA to An | 1 | $\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$ | $\begin{aligned} & 2.9 \\ & 3.7 \end{aligned}$ | $\begin{aligned} & 4.9 \\ & 5.7 \end{aligned}$ | ns |
| $\begin{aligned} & \text { tpZH } \\ & t_{\text {pZZL }} \end{aligned}$ | Output enable time to High and Low level | $\begin{aligned} & 5 \\ & 6 \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 3.1 \\ & 2.1 \end{aligned}$ | $\begin{aligned} & 4.5 \\ & 2.9 \end{aligned}$ | ns |
| $\begin{aligned} & \text { tpHZ } \\ & \text { tpLZ } \end{aligned}$ | Output disable time from High and Low Level | $\begin{aligned} & 5 \\ & 6 \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 3.0 \\ & 2.4 \end{aligned}$ | $\begin{aligned} & 4.2 \\ & 3.6 \end{aligned}$ | ns |

## NOTE:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

AC SETUP REQUIREMENTS ( $2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ RANGE)
$G N D=0 V ; t_{R}=t_{F}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega ; \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

| SYMBOL | PARAMETER | WAVEFORM | LIMITS |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ |  |  |
|  |  |  | MIN | TYP |  |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{ts}_{\mathrm{S}}(\mathrm{~L}) \end{aligned}$ | Setup time, High or Low An to CPAB or Bn to CPBA | 4 | $\begin{aligned} & 1.9 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & 0.4 \\ & 1.2 \end{aligned}$ | ns |
| $\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$ | Hold time, High or Low <br> An to CPAB or Bn to CPBA | 4 | $\begin{gathered} 0 \\ 1.0 \end{gathered}$ | $\begin{aligned} & -1.2 \\ & -0.4 \end{aligned}$ | ns |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{S}}(\mathrm{~L}) \end{aligned}$ | Setup time, High or Low An to LEAB or Bn to LEBA | 4 | $\begin{gathered} 0 \\ 1.0 \end{gathered}$ | $\begin{aligned} & -1.0 \\ & -0.5 \end{aligned}$ | ns |
| $\begin{aligned} & t_{n}(H) \\ & t_{h}(L) \end{aligned}$ | Hold time, High or Low An to LEAB or Bn to LEBA | 4 | $\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$ | $\begin{gathered} \hline-0.5 \\ 1.0 \end{gathered}$ | ns |
| $\begin{aligned} & \hline \mathrm{tw}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{tw}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$ | Pulse width, High or Low CPAB or CPBA | 1 | $\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$ |  | ns |
| $\mathrm{t}_{\mathrm{W}}(\mathrm{H})$ | LEAB or LEBA pulse width, High | 3 | 1.5 |  | ns |

## AC WAVEFORMS

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{M}}=\mathrm{V}_{\mathrm{CC}} / 2$ at $\mathrm{V}_{\mathrm{CC}} \leq 2.7 \mathrm{~V}$
$\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{OL}}+0.150 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \leq 2.7 \mathrm{~V}$ $\mathrm{V}_{\mathrm{Y}}=\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{Y}}=\mathrm{V}_{\mathrm{OH}}-0.150 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \leq 2.7 \mathrm{~V}$


Waveform 1. Propagation Delay, Clock Input to Output, Clock Pulse Width, and Maximum Clock Frequency


Waveform 2. Propagation Delay, Transparent Mode


Waveform 3. Propagation Delay, Enable to Output, and Enable Pulse Width


Waveform 4. Data Setup and Hold Times


Waveform 5. 3-State Output Enable Time to High Level and Output Disable Time from High Level


Waveform 6. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

## TEST CIRCUIT




DIMENSIONS (mm are the original dimensions)

| UNIT | $\underset{\text { max. }}{\mathrm{A}}$ | $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{3}$ | $\mathrm{b}_{\mathrm{p}}$ | c | $\mathrm{D}^{(1)}$ | $E^{(1)}$ | e | $\mathrm{H}_{\mathrm{E}}$ | L | $L_{p}$ | Q | v | w | y | $\mathbf{Z}^{(1)}$ | $\theta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 2.8 | $\begin{aligned} & 0.4 \\ & 0.2 \end{aligned}$ | $\begin{aligned} & 2.35 \\ & 2.20 \end{aligned}$ | 0.25 | $\begin{aligned} & 0.3 \\ & 0.2 \end{aligned}$ | $\begin{aligned} & 0.22 \\ & 0.13 \end{aligned}$ | $\begin{aligned} & 18.55 \\ & 18.30 \end{aligned}$ | $\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$ | 0.635 | $\begin{aligned} & 10.4 \\ & 10.1 \end{aligned}$ | 1.4 | $\begin{aligned} & 1.0 \\ & 0.6 \end{aligned}$ | $\begin{aligned} & 1.2 \\ & 1.0 \end{aligned}$ | 0.25 | 0.18 | 0.1 | $\begin{aligned} & 0.85 \\ & 0.40 \end{aligned}$ | 8 $0^{\circ}$ |

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

| OUTLINE <br> VERSION | REFERENCES |  |  |  | EUROPEAN | ISSUE DATE |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | EIAJ |  |  |  |
| SOT371-1 |  | MO-118AB |  |  |  |  |


detail X


Dimensions in mm.

## NOTES

Data sheet status

| Data sheet <br> status | Product <br> status | Definition [1] |
| :--- | :--- | :--- |
| Objective <br> specification | Development | This data sheet contains the design target or goal specifications for product development. <br> Specification may change in any manner without notice. |
| Preliminary <br> specification | Qualification | This data sheet contains preliminary data, and supplementary data will be published at a later date. <br> Philips Semiconductors reserves the right to make chages at any time without notice in order to <br> improve design and supply the best possible product. |
| Product <br> specification | Production | This data sheet contains final specifications. Philips Semiconductors reserves the right to make <br> changes at any time without notice in order to improve design and supply the best possible product. |

[1] Please consult the most recently issued datasheet before initiating or completing a design.

## Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

## Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

## Philips Semiconductors

811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381


