Philips Semiconductors

DESCRIPTION

Vertical power TrenchMOS Low on-state resistance CMOS logic compatible

Very low quiescent current Overtemperature protection

Overvoltage and undervoltage

Load current limiting

Latched overload and

short circuit protection

shutdown with hysteresis On-state open circuit load

Diagnostic status indication

Voltage clamping for turn off

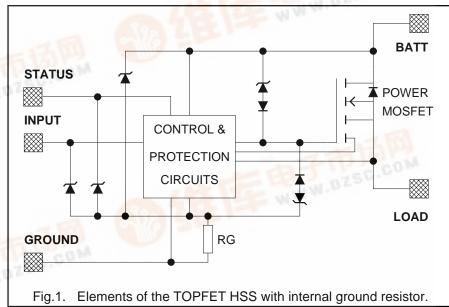
Reverse battery, overvoltage

ESD protection on all pins

and transient protection

FEATURES

•


•

PowerMOS transistor **TOPFET high side switch**

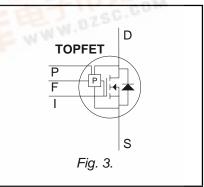
QUICK REFERENCE DATA

Monolithic single channel high side	SYMBOL	PARAMETER	MIN.	UNIT
protected power switch in TOPFET2 technology assembled in a 5 pin plastic package.	IL	Nominal load current (ISO)	9	A
APPLICATIONS	SYMBOL	PARAMETER	MAX.	UNIT
General controller for driving lamps, motors, solenoids, heaters.	V _{BG} IL Tj R _{ON}	Continuous off-state supply voltageContinuous load currentContinuous junction temperatureOn-state resistance $T_i = 25^{\circ}C$	50 20 150 38	V A °C mΩ

FUNCTIONAL BLOCK DIAGRAM

PINNING - SOT263B-01

PIN CONFIGURATION


mb

12345

Front view

Fig. 2.

MBL267

BUK210-50Y

detection

of inductive loads

.dzsc.com

SYMBOL

捷多邦,专业PCB打样工厂,24小时加急出货

BUK210-50Y

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{BG}	Continuous supply voltage		0	50	V
IL.	Continuous load current	T _{mb} ≤95°C	-	20	А
P _D	Total power dissipation	T _{mb} ≤25°C	-	67	W
T _{stg}	Storage temperature		-55	175	°C
T _j	Continuous junction temperature ¹		-	150	°C
T_{sold}	Lead temperature	during soldering	-	260	°C
	Reverse battery voltages ²				
-V _{BG}	Continuous reverse voltage		-	16	V
-V _{BG}	Peak reverse voltage		-	32	V
	Application information				
R _I , R _s	External resistors ³	to limit input, status currents	3.2	-	kΩ
	Input and status				
I _I , I _S	Continuous currents		-5	5	mA
I _I , I _S	Repetitive peak currents	$\delta \leq 0.1$, tp = 300 μ s	-50	50	mA
	Inductive load clamping	$I_{L} = 10 \text{ A}, V_{BG} = 16 \text{ V}$			
E _{BL}	Non-repetitive clamping energy	$T_j = 150^{\circ}C$ prior to turn-off	-	150	mJ

ESD LIMITING VALUE

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _c	Electrostatic discharge capacitor voltage	Human body model; C = 250 pF; R = 1.5 k Ω	-	2	kV

THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
	Thermal resistance⁴					
R _{th j-mb}	Junction to mounting base	-	-	1.52	1.86	K/W
R _{th j-a}	Junction to ambient	in free air	-	60	75	K/W

¹ For normal continuous operation. A higher T_j is allowed as an overload condition but at the threshold $T_{j(TO)}$ the over temperature trip operates to protect the switch.

4 Of the output power MOS transistor.

² Reverse battery voltage is allowed only with external resistors to limit the input and status currents to a safe value. The connected load must limit the reverse load current. The internal ground resistor limits the reverse battery ground current. Power is dissipated and the T_j rating must be observed.

³ To limit currents during reverse battery and transient overvoltages (positive or negative).

PowerMOS transistor
TOPFET high side switch

STATIC CHARACTERISTICS

Limits are at -40 °C \leq T_{mb} \leq 150 °C and typicals at T_{mb} = 25 °C unless otherwise stated.

SYMBOL	PARAMETER	CONDITIO	NS			MIN.	TYP.	MAX.	UNIT
	Clamping voltages								
V_{BG}	Battery to ground	$I_G = 1 \text{ mA}$				50	55	65	V
V_{BL}	Battery to load	$I_{L} = I_{G} = 1 n$	$I_L = I_G = 1 \text{ mA}$					65	V
$-V_{LG}$	Negative load to ground	$I_{L} = 10 \text{ mA}$				18	23	28	V
$-V_{LG}$	Negative load voltage ¹	$I_{L} = 10 \text{ A}; t_{p}$	= 300 µ	เร		20	25	30	V
	Supply voltage	battery to g	round						
V_{BG}	Operating range ²					5.5	-	35	V
	Currents	$9 \text{ V} \leq \text{V}_{BG} \leq$	$9 \text{ V} \le \text{V}_{BG} \le 16 \text{ V}$						
I _B	Quiescent current ³	$V_{LG} = 0 V$				-	-	20	μA
				T _{mb} =	= 25°C	-	0.1	2	μA
I _L	Off-state load current ⁴	$V_{BL} = V_{BG}$				-	-	20	μA
				T _{mb} =	= 25°C	-	0.1	1	μA
I_{G}	Operating current ⁵	$I_L = 0 A$				-	2	4	mA
I _L	Nominal load current ⁶	$V_{BL} = 0.5 V$		T _{mb} =	= 85°C	9	-	-	А
	Resistances	V _{BG}	ΙL	t _p ⁷	T_{mb}				
R _{on}	On-state resistance	9 to 35 V	10 A	300 µs	25°C	-	28	38	mΩ
					150°C	-	-	70	mΩ
R _{on}	On-state resistance	6 V	10 A	300 µs	25°C	-	36	48	mΩ
					150°C	-	-	88	mΩ
R _G	Internal ground resistance	I _G = 10 mA				95	150	190	Ω

2 On-state resistance is increased if the supply voltage is less than 9 V.

4 The measured current is in the load pin only.

¹ For a high side switch, the load pin voltage goes negative with respect to ground during the turn-off of an inductive load.

³ This is the continuous current drawn from the supply when the input is low and includes leakage current to the load.

⁵ This is the continuous current drawn from the supply with no load connected, but with the input high.

⁶ Defined as in ISO 10483-1. For comparison purposes only. This parameter will not be characterised for automotive PPAP.

⁷ The supply and input voltage for the R_{ON} tests are continuous. The specified pulse duration t_p refers only to the applied load current.

BUK210-50Y

INPUT CHARACTERISTICS

 $9 \text{ V} \le \text{V}_{BG} \le 16 \text{ V}$. Limits are at $-40^{\circ}\text{C} \le \text{T}_{mb} \le 150^{\circ}\text{C}$ and typicals at $\text{T}_{mb} = 25^{\circ}\text{C}$ unless otherwise stated.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I,	Input current	$V_{IG} = 5 V$	20	90	160	μA
V _{IG}	Input clamping voltage	I ₁ = 200 μA	5.5	7	8.5	V
V _{IG(ON)}	Input turn-on threshold voltage		-	2.4	3	V
V _{IG(OFF)}	Input turn-off threshold voltage		1.5	2.1	-	V
ΔV_{IG}	Input turn-on hysteresis		-	0.3	-	V
I _{I(ON)}	Input turn-on current	$V_{IG} = 3 V$	-	-	100	μA
I _{I(OFF)}	Input turn-off current	V _{IG} = 1.5 V	10	-	-	μA

STATUS CHARACTERISTICS

The status output is an open drain transistor, and requires an external pull-up circuit to indicate a logic high. Limits are at -40°C $\leq T_{mb} \leq 150$ °C and typicals at $T_{mb} = 25$ °C unless otherwise stated. Refer to TRUTH TABLE.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{SG}	Status clamping voltage	I _s = 100 μA	5.5	7	8.5	V
V _{SG}	Status low voltage	I _s = 100 μA	-	-	1	V
		$T_{mb} = 25^{\circ}$	-	0.7	0.8	V
I _s	Status leakage current	$V_{SG} = 5 V$	-	-	15	μA
		$T_{mb} = 25^{\circ}$; -	0.1	1	μA
I _s	Status saturation current ¹	$V_{SG} = 5 V$	2	7	12	mA
	Application information					
R _s	External pull-up resistor		-	47	-	kΩ

OPEN CIRCUIT DETECTION CHARACTERISTICS

An open circuit load can be detected in the on-state. Refer to TRUTH TABLE. Limits are at -40°C $\leq T_{mb} \leq 150°C$ and typical is at T_{mb} = 25 °C.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
	Open circuit detection	$9 \text{ V} \leq \text{V}_{\text{BG}} \leq 35 \text{ V}$				
I _{L(TO)}	Low current detect threshold		0.24	-	1.6	А
		$T_j = 25^{\circ}C$	0.4	0.8	1.2	A
$\Delta I_{L(TO)}$	Hysteresis		-	0.16	-	А

¹ In a fault condition with the pull-up resistor short circuited while the status transistor is conducting. This condition should be avoided in order to prevent possible interference with normal operation of the device.

PowerMOS transistor TOPFET high side switch

UNDERVOLTAGE & OVERVOLTAGE CHARACTERISTICS

Limits are at -40°C \leq T_{mb} \leq 150°C and typicals at T_{mb} = 25 °C. Refer to TRUTH TABLE.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
	Undervoltage					
V _{BG(UV)}	Low supply threshold voltage ¹		2	4.2	5.5	V
$\Delta V_{\text{BG(UV)}}$	Hysteresis		-	0.5	-	V
	Overvoltage					
$\begin{array}{l} V_{BG(OV)} \\ \Delta V_{BG(OV)} \end{array}$	High supply threshold voltage ² Hysteresis		40 -	45 1	50 -	V V

TRUTH TABLE

	AE	BNORMA DE	AL CON TECTE		S	LOAD		
INPUT	SUP	PLY		LOAD		OUTPUT	STATUS	DESCRIPTION
	UV	ov	LC	SC	ОТ			
L	Х	Х	Х	Х	Х	OFF	Н	off
н	0	0	0	0	0	ON	Н	on & normal
н	0	0	1	0	0	ON	L	on & low current detect
н	1	0	Х	Х	Х	OFF	Н	supply undervoltage lockout
н	0	1	Х	0	0	OFF	Н	supply overvoltage shutdown
н	0	0	0	1	Х	OFF	L	SC tripped
н	0	0	0	0	1	OFF	L	OT shutdown ³

KEY TO ABBREVIATIONS

- logic low L
- н Х
- 0
- logic high don't care condition not present 1 condition present

- UV undervoltage OV overvoltage LC low current or open circuit load
- SC short circuit
- OT overtemperature

¹ Undervoltage sensor causes the device to switch off and reset.

² Overvoltage sensor causes the device to switch off to protect its load.

³ The status will continue to indicate OT (even if the input goes low) until the device cools below the reset threshold. Refer to OVERLOAD PROTECTION CHARACTERISTICS.

OVERLOAD PROTECTION CHARACTERISTICS

5.5 V \leq V_{BG} \leq 35 V, limits are at -40°C \leq T_{mb} \leq 150°C and typicals at T_{mb} = 25 °C unless otherwise stated. Refer to TRUTH TABLE.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
	Overload protection	$V_{BL} = V_{BG}$				
$I_{L(lim)}$	Load current limiting	$V_{BG} \ge 9 V$	34	45	64	A
	Short circuit load protection					
V _{BL(TO)}	Battery load threshold voltage ¹	V _{BG} = 16 V V _{BG} = 35 V	8	10	12	V
		V _{BG} = 35 V	15	20	25	V
t _{d sc}	Response time ²	$V_{BL} > V_{BL(TO)}$	-	180	250	μs
	Overtemperature protection					
T _{j(TO)}	Threshold junction		150	170	190	°C
,(10)	temperature ³					
$\Delta T_{j(TO)}$	Hysteresis		-	10	-	°C

SWITCHING CHARACTERISTICS

 T_{mb} = 25 °C, V_{BG} = 13 V, for resistive load R_L = 13 Ω .

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
	During turn-on	from input going high				
t _{d on}	Delay time	to 10% V_L	-	40	60	μs
dV/dt _{on}	Rate of rise of load voltage	30% to 70% $V_{\rm L}$	-	0.35	1	V/µs
t _{on}	Total switching time	to 90% V _L	-	140	200	μs
	During turn-off	from input going low				
t _{d off}	Delay time	to 90% V _L	-	55	80	μs
dV/dt _{off}	Rate of fall of load voltage	70% to 30% V_L	-	0.6	1	V/µs
t _{off}	Total switching time	to 10% V_L	-	85	120	μs

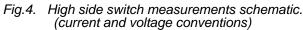
CAPACITANCES

 $T_{mb} = 25$ °C; f = 1 MHz; $V_{IG} = 0$ V. designed in parameters.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
C _{ig}	Input capacitance	V _{BG} = 13 V	-	15	20	pF
C _{bl}	Output capacitance	V _{BL} = 13 V	-	250	350	pF
C_{sg}	Status capacitance	$V_{SG} = 5 V$	-	11	15	pF

¹ The battery to load threshold voltage for short circuit protection is proportional to the battery supply voltage. After short circuit protection has operated, the input voltage must be toggled low for the switch to resume normal operation.

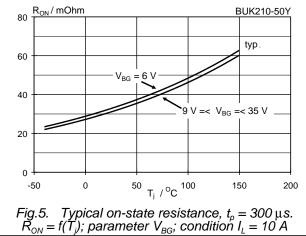
² Measured from when the input goes high.

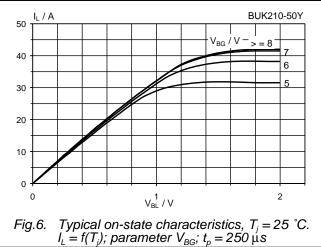

³ After cooling below the reset temperature the switch will resume normal operation.

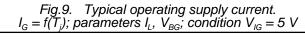
VBG

BUK210-50Y

PowerMOS transistor TOPFET high side switch

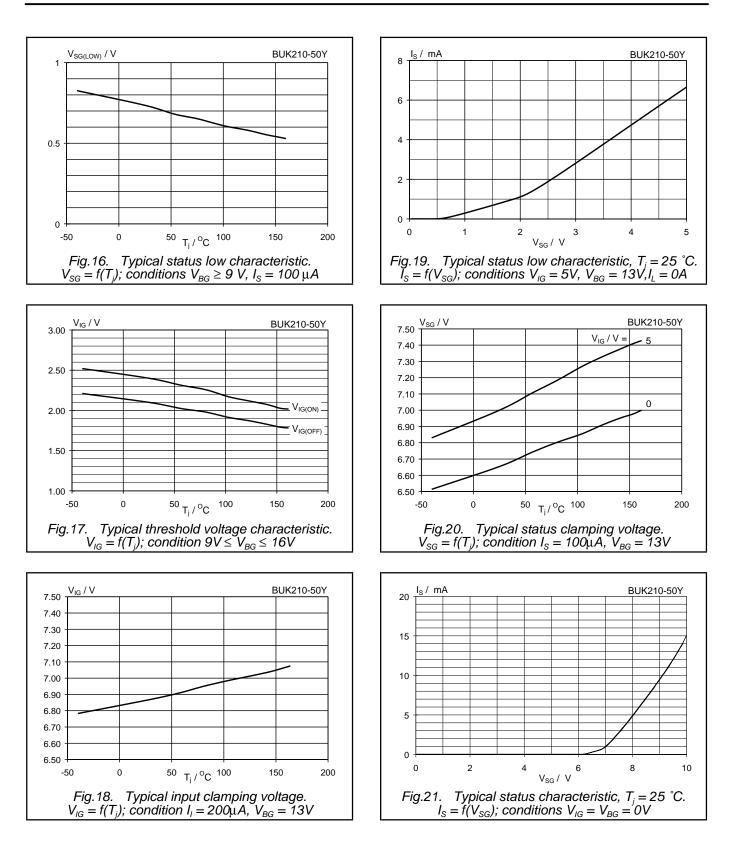

I_{BG(ON)} / mA BUK210-50Y 5 VBL UNDERVOLTAGE CLAMPING IΒ 4 SHUTDOWN Ш OVERVOLTAGE В IL TOPFET SHUTDOWN 3 IS HSS OPERATING VIG = 5 V VLG G 2 RS IG LOAD QUIESCENT VIG = 0 V Λ 10 20 30 40 V_{BG} / V 50 70 0 60 Typical supply characteristics, 25 °C. $I_G = f(V_{BG})$; parameter V_{IG} Fig.7. R_{ON} / mOhm BUK210-50Y BUK210-50Y 40 38 R_{ON} max typ 36 34 6 V 32 30 V =< V_{BG} =< 35 V 28 26 24 22 20 10 V_{BG} / V 150 200 1 100 Fig.8. Typical on-state resistance, $T_j = 25$ °C. $R_{ON} = f(V_{BG})$; condition $I_L = 10$ A; $t_p = 300 \,\mu$ s BUK210-50Y I_G / mA BUK210-50Y 3.0 $I_L = 0 A$ V_{BG} 2.5 6 1 $9 V \le V_{BG} \le 35 V$ 2.0 5 $I_L > I_{L(TO)}$ 15 typ. 1.0 0.5 $V_{BG} = 50 V$ 0 2 -50 0 $\frac{50}{T_i}$ $\frac{100}{C}$ 150 200

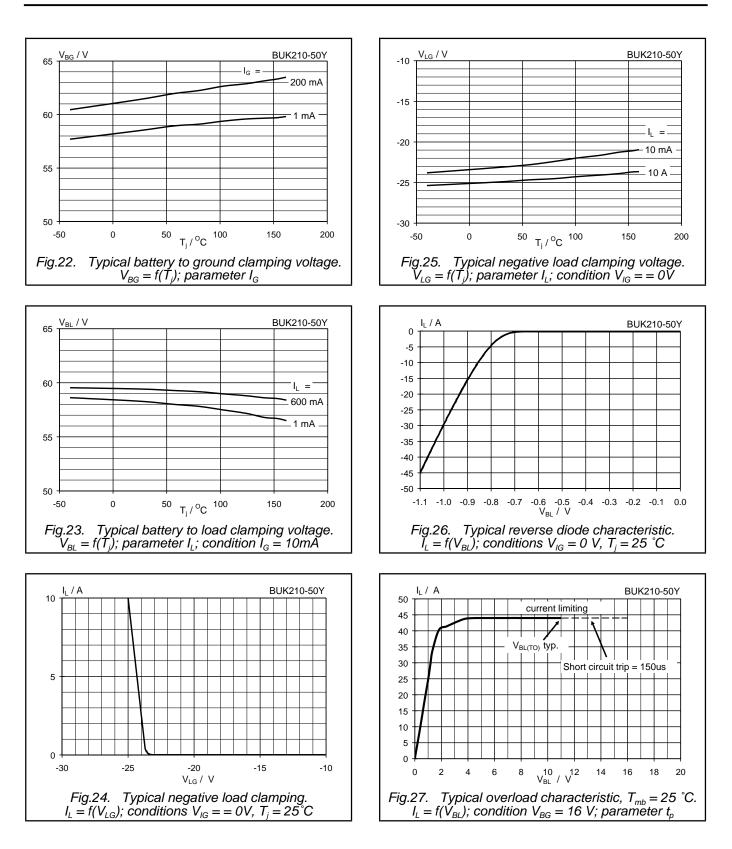



VSG

VIG

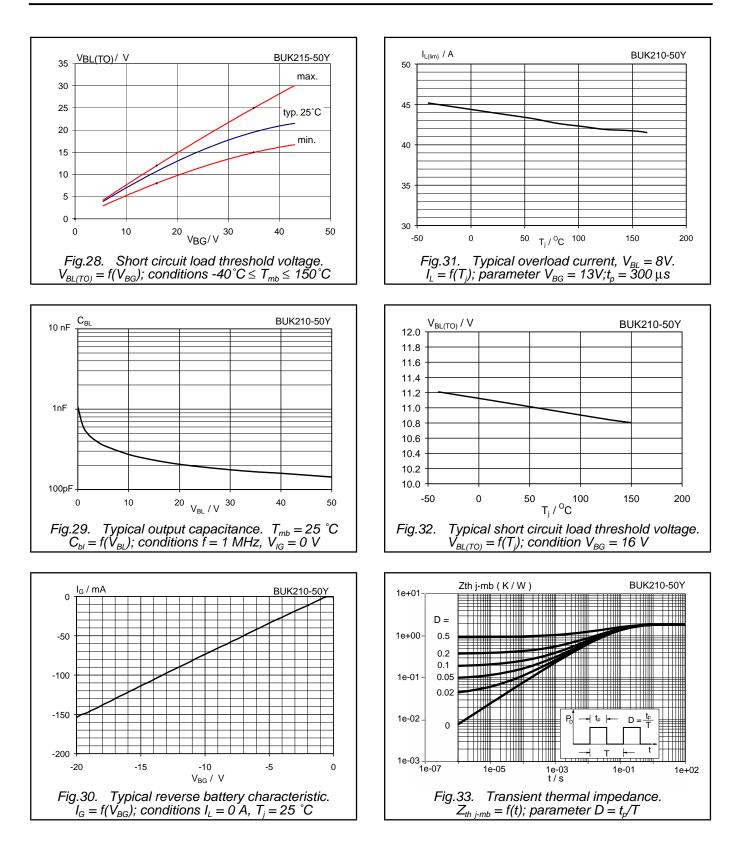
(

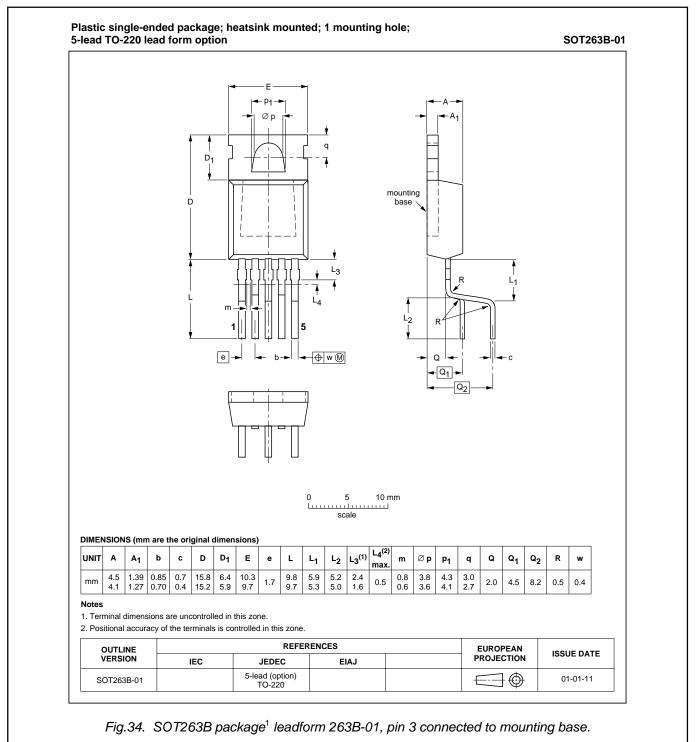




PowerMOS transistor TOPFET high side switch

BUK210-50Y I_B / A BUK210-50Y $I_{L(OC)}$ / A 100E-6 1.6 max 10E-6 1.2 typ 1E-6 100E-9 0.8 max. 10E-9 typ. 0.4 min. 1E-9 0.0 100E-12 $T_{j} / {}^{0}C^{100}$ 50 T_i / $^{\rm O}$ C 100 -50 0 50 150 200 -50 0 150 200 Fig. 10. Typical supply quiescent current. $I_B = f(T_j)$; condition $V_{BG} = 16$ V, $V_{IG} = 0$ V, $V_{LG} = 0$ V Fig.13. Low load current detection threshold. $I_{L(OC)} = f(T_j)$; conditions $V_{IG} = 5 V$; $V_{BG} \ge 9 V$ BUK210-50Y BUK210-50Y $I_{\rm I}$ / A V_{BG(UV)} / V 100E-6 5.5 max. 10E-6 Etyp. 1E-6 4.5 100E-9 typ 10E-9 3.5 on 1E-9 off 00E-12 2.5 10E-12 0 $\frac{50}{T_i}$ T_i ^{0}C $\frac{100}{T_i}$ 50 T_i / $^{\rm O}$ C 100 -50 150 200 -50 0 150 200 Fig.11. Typical off-state leakage current. $I_L = f(T_j)$; conditions $V_{BL} = 16 V = V_{BG}$, $V_{IG} = 0 V$. Fig. 14. Supply undervoltage thresholds. $V_{BG(UV)} = f(T_j)$; conditions $V_{IG} = 5 V$; $V_{BL} \le 2 V$ 100E-6 I_S / A BUK210-50Y BUK210-50Y VBG(OV) / V 55 max 10E-6 max. 50 typ. 1E-6 -on 45 100E-9 off min. 40 10E-9 1E-9 35 -50 0 50 T_i / $^{\circ}$ C 100 150 200 -50 0 50 T_i / 0 C 100 150 200 Fig.12. Status leakage current. $I_{S} = f(T_{j})$; conditions $V_{SG} = 5 V$, $V_{IG} = V_{BG} = 0 V$ Fig. 15. Supply overvoltage thresholds. $V_{BG(OV)} = f(T_j)$; conditions $V_{IG} = 5$ V; $I_L = 100$ mA


PowerMOS transistor TOPFET high side switch


BUK210-50Y

PowerMOS transistor TOPFET high side switch

BUK210-50Y

MECHANICAL DATA

BUK210-50Y

DEFINITIONS

DATA SHEET STATUS				
DATA SHEET STATUS ¹	PRODUCT STATUS ²	DEFINITIONS		
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice		
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product		
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A		

Limiting values

Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

© Philips Electronics N.V. 2002

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

¹ Please consult the most recently issued datasheet before initiating or completing a design.

² The product status of the device(s) described in this datasheet may have changed since this datasheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.