

June 1996

Revised November 2000

AIRCHIL SEMICONDUCTOR TM

74ACT1284 **IEEE 1284 Transceiver**

General Description

The 74ACT1284 contains four non-inverting bidirectional buffers and three non-inverting buffers with open Drain outputs and high drive capability on the B Ports. It is intended to provide a standard signaling method for a bi-direction parallel peripheral in an Extended Capabilities Port mode (ECP).

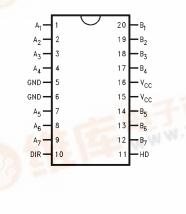
The HD (active HIGH) input pin enables the B Ports to switch from open Drain to a high drive totem pole output, capable of sourcing 14 mA on all seven buffers. The DIR input determines the direction of data flow on the bidirectional buffers. DIR (active HIGH) enables data flow from A Ports to B Ports. DIR (active LOW) enables data flow from B Ports to A Ports.

Features

- TTL-compatible inputs
- A Ports have standard 4 mA totem pole outputs
- Typical input hysteresis of 0.5V
- B Port high drive source/sink capability of 14 mA
- Bidirectional non-inverting buffers
- Supports IEEE P1284 Level 1 and Level 2 signaling standards for bidirectional parallel communications between personal computers and printing peripherals
- B Port outputs in High Impedance mode during power down
- Guaranteed 4000V minimum ESD protection

Ordering Code:

Order Number	Package Number	r Package Description				
74ACT1284SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide				
74ACT1284MSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide				
74ACT1284MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide				
Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.						


Logic Symbol

Pin Descriptions

Pin Names	Description			
HD	High Drive Enable input (Active HIGH)			
DIR	Direction Control Input			
A ₁ - A ₄	Side A Inputs or Outputs			
B ₁ - B ₄	Side B Inputs or Outputs			
A ₅ - A ₇	Side A Inputs			
B ₅ - B ₇	Side B Outputs			

Connection Diagram

4ACT1284 IEEE 1284 Transceive

dzsc.com

FACT™ is a trademark of Fairchild Semiconductor Corporation.

Truth Table							
	Inputs		Outputs				
	DIR	HD					
	L	L	B_1 - B_4 Data to A_1 - A_4 , and				
	L	н	$A_5 - A_7$ Data to $B_5 - B_7$ (Note 1) $B_1 - B_4$ Data to $A_1 - A_4$, and				
	н	L	$A_5 - A_7$ Data to $B_5 - B_7$ $A_1 - A_7$ Data to $B_1 - B_7$ (Note 2)				
	н	H	$A_1 - A_7$ Data to $B_1 - B_7$ (Note 2) $A_1 - A_7$ Data to $B_1 - B_7$				
Note 1: B ₅ - B ₇ Open Drain			1 /				
Note 2: B ₁ - B ₇ Open Drain	Outputs						
Logic Diagra	m						

Absolute Maximum Ratings(Note 3) (Note 4)

(Note 4)	
Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
$V_{I} = -0.5V$	–20 mA
$V_I = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (VI) A Side	$-0.5V$ to $V_{CC} + 0.5V$
DC Input Voltage (VI) B Side	-2V to +7V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_O = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O) A Side	–0.5V to V_{CC} + 0.5V
DC Output Voltage (V _O) B Side	-2V to +7V
DC Output Source	
or Sink Current (I _O)	± 50 mA
DC V_{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	± 50 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$

DC Electrical Characteristics

Recommended Operating Conditions

Supply Voltage (V _{CC})	4.7V to 5.5V
Input Voltage (V _I)	0V to V_{CC}
Output Voltage (V _O)	0V to V_{CC}
Operating Temperature (T _A)	$-40^\circ C$ to $+85^\circ C$

74ACT1284

Note 3: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications. Note 4: Either voltage limit or current limit is sufficient to protect inputs.

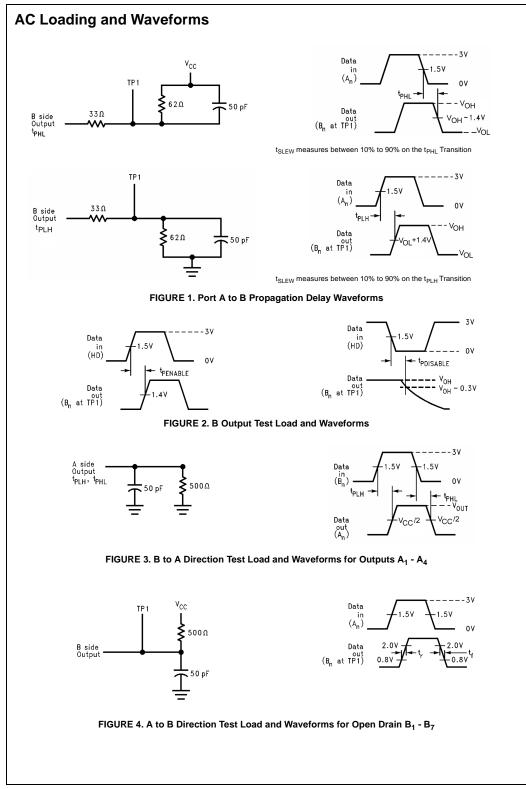
Symbol	Parameter	Vcc	Guaranteed Limits				
		(V)	$T_A = +25^{\circ}C$	$\textbf{T}_{\textbf{A}} = \textbf{0}^{\circ}\textbf{C} \text{ to } +\textbf{70}^{\circ}\textbf{C}$	$T_{A}=-40^{\circ}C$ to $+85^{\circ}C$	Units	Conditions
VIH	Minimum HIGH Level	4.7	2.0	2.0	2.0	V	Recognized
	Input Voltage	5.5	2.0	2.0	2.0	V	High Signal
V _{IL}	Maximum LOW Level	4.7	0.8	0.8	0.8	V	Recognized
	Input Voltage	5.5	0.8	0.8	0.8	v	Low Signal
V _{OH}	Minimum HIGH Level		4.5	4.5	4.5		I _{OUT} = -50 μA (An)
	Output Voltage	4.7				v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ (Note 5
		4.7	3.7	3.7	3.7	v	$I_{OH} = -4 \text{ mA} (A_n)$
			2.4	2.4	2.4		$I_{OH} = -14 \text{ mA} (B_n)$
V _{OL}	Maximum LOW Level		0.2	0.2	0.2		I _{OUT} = 50 μA (An)
	Output Voltage	4.7				v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ (Note 5
		4.7	0.4	0.4	0.4	v	$I_{OH} = 4 \text{ mA} (A_n)$
							I _{OH} = 14 mA (B _n)
I _{IN}	Maximum Input	5.5		±0.1	±1.0	μA	$V_I = V_{CC}, GND$
	Leakage Current	5.5		±0.1	1.0	μΑ	(DIR, A5, A6, A7, HD)
I _{CCT}	Maximum I _{CC} /Input	5.5		1.5	1.5	mA	$V_I = V_{CC} - 2.1V$
I _{CC}	Maximum Quiescent	5.5	400	400	500		$V_{IN} = V_{CC}$ or GND
	Supply Current	5.5	400	400	500	μΛ	VIN - VCC OF OND
I _{OZ}	Maximum Output	5.5	±20	±20	±20	ıιΔ	$V_0 = V_{CC}$, GND
	Leakage Current	5.5	120	120	±20	μΛ	v0 = vcc, GND
I _{OFF}	Maximum B-Side Power Down	0.0	100	100	100	μA	V _{OUT} = 5.25V
	Leakage Current	0.0	100	100	100	μΑ	VOUT - 3.23V
$\Delta_{\rm VT}$	Input Hysteresis	5.0	0.4	0.4	0.35	V	$V_T + - V_T -$
R _D	Maximum Output Impedance	5.0	22	22	24	Ω	B _n (Note 6)
	Minimum Output Impedance	5.0	8	8	6	Ω	B _n (Note 6)

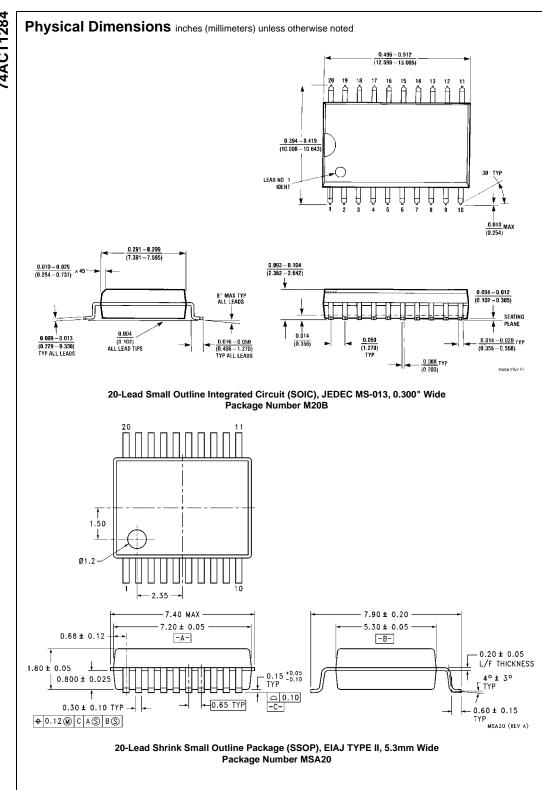
Note 5: All outputs loaded; thresholds on input associated with output under test.

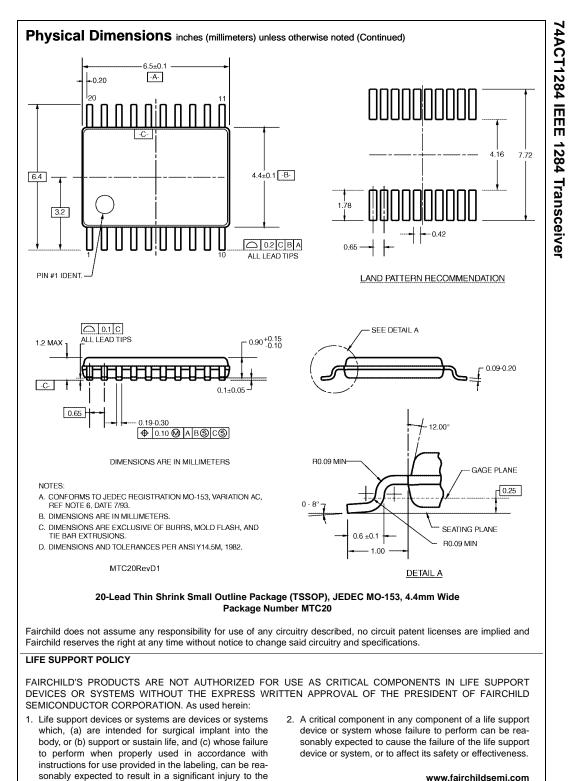
Note 6: This parameter is guaranteed but not tested, characterized only: RD is the measure of the B-Side output impedance with the output in the HIGH state.

AC Electrical Characteristics

 $T_A = +25^{\circ}C$ $T_A = 0^\circ C$ to $+70^\circ C$ $T_A = -40^{\circ}C$ to $+85^{\circ}C$ Figure $\mathbf{V_{CC}}=\mathbf{4.7V}-\mathbf{5.5V}$ $\mathbf{V_{CC}}=\mathbf{4.7V}-\mathbf{5.5V}$ $\mathbf{V_{CC}}=\mathbf{4.7V}-\mathbf{5.5V}$ Symbol Parameter Units Number Min Max Min Max Min Max 2.0 $A_1\text{-}A_7$ to $B_1\text{-}B_7$ 2.0 20.0 20.0 2.0 24.0 t_{PHL} ns Figure 1 A₁- A₇ to B₁ - B₇ 2.0 20.0 2.0 20.0 2.0 24.0 Figure 2 ns t_{PLH} t_{PHL} B₁ - B₄ to A₁ - A₄ 2.0 20.0 2.0 20.0 2.0 24.0 ns Figure 3 t_{PLH} B₁ - B₄ to A₁ - A₄ 2.0 20.0 2.0 20.0 2.0 24.0 ns Figure 3 Output Enable Time t_{pEnable} 2.0 20.0 2.0 20.0 2.0 24.0 ns Figure 2 HD to B₁ - B₇ Output Disable Time t_{pDisable} 2.0 20.0 2.0 20.0 2.0 24.0 Figure 2 ns HD to B₁ - B₇ Output Slew Rate t_{SKEW} Figures 1, 2 0.40 t_{PLH} B₁ - B₇ 0.05 0.05 0.40 0.05 0.40 V/ns t_{PHL} t_r, t_f $t_{\mbox{\scriptsize RISE}}$ and $t_{\mbox{\scriptsize FALL}}$ Figure 4 120 120 120 ns B₁ - B₇ (Note 7) (Note 8)


Note 7: Open Drain


Note 8: This parameter is guaranteed but not tested, characterized only.


Note: Pulse Generator for all pulses; Rate \leq 1.0 MHz; A_0 \leq 500; t_f \leq 2.5 ns, t_r \leq 2.5 ns.

Capacitance

Symbol	Parameter	Тур	Units	Conditions
CIN	Input Capacitance	4.0	pF	$V_{CC} = OPEN (HD, DIR A_5 - A_7)$
C _{I/O}	I/O Pin Capacitance	12.0	pF	$V_{CC} = 5.0V$

www.fairchildsemi.com

user.