

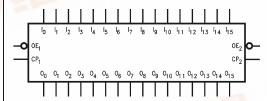
August 1999 Revised October 1999

## 74ACT16374 16-Bit D-Type Flip-Flop with 3-STATE Outputs

## **General Description**

The ACT16374 contains sixteen non-inverting D-type flipflops with 3-STATE outputs and is intended for bus oriented applications. The device is byte controlled. A buffered clock (CP) and Output Enable (OE) are common to each byte and can be shorted together for full 16-bit operation.

#### **Features**


- Buffered Positive edge-triggered clock
- Separate control logic for each byte
- 16-bit version of the ACT374
- Outputs source/sink 24 mA
- TTL-compatible inputs

### **Ordering Code:**

| Order Number  | Package Number | Package Description                                                         |  |  |  |  |  |
|---------------|----------------|-----------------------------------------------------------------------------|--|--|--|--|--|
| 74ACT16374SSC | MS48A          | 48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide      |  |  |  |  |  |
| 74ACT16374MTD | MTD48          | 48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide |  |  |  |  |  |

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

## **Logic Symbol**



## **Pin Descriptions**

| Pin Names                               | Description                      |  |  |  |  |  |
|-----------------------------------------|----------------------------------|--|--|--|--|--|
| <del>OE</del> <sub>n</sub>              | Output Enable Input (Active LOW) |  |  |  |  |  |
| CPn                                     | Clock Pulse Input                |  |  |  |  |  |
| I <sub>0</sub> -I <sub>15</sub>         | Inputs                           |  |  |  |  |  |
| O <sub>0</sub> –O <sub>15</sub> Outputs |                                  |  |  |  |  |  |

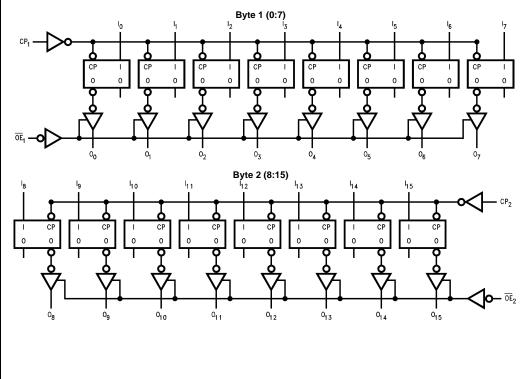
#### **Connection Diagram**



FACT™ is a trademark of Fairchild Semiconductor Corporation.

## **Functional Description**

The ACT16374 consists of sixteen edge-triggered flip-flops with individual D-type inputs and 3-STATE true outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. Each byte has a buffered clock and buffered Output Enable common to all flip-flops within that byte. The description which follows applies to each byte. Each flip-flop will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CPn) transition. With the Output Enable  $(\overline{OE}_n)$  LOW, the contents of the flip-flops are available at the outputs. When  $\overline{\text{OE}}_{n}$  is HIGH, the outputs go to the high impedance state. Operation of the  $OE_n$  input does not affect the state of the flip-flops.


### **Truth Tables**

|                 | Inputs          |                                | Outputs                        |
|-----------------|-----------------|--------------------------------|--------------------------------|
| CP <sub>1</sub> | OE <sub>1</sub> | I <sub>0</sub> –I <sub>7</sub> | 0 <sub>0</sub> -0 <sub>7</sub> |
| ~               | L               | Н                              | Н                              |
| ~               | L               | L                              | L                              |
| L               | L               | X                              | (Previous)                     |
| Х               | Н               | X                              | Z                              |

|                 | Inputs          |                                 | Outputs                         |
|-----------------|-----------------|---------------------------------|---------------------------------|
| CP <sub>2</sub> | OE <sub>2</sub> | I <sub>8</sub> -I <sub>15</sub> | O <sub>8</sub> -O <sub>15</sub> |
| \               | L               | Н                               | Н                               |
| ~               | L               | L                               | L                               |
| L               | L               | Χ                               | (Previous)                      |
| Х               | Н               | Х                               | Z                               |

H = HIGH Voltage Level L = LOW Voltage Level

## **Logic Diagrams**



## **Absolute Maximum Ratings**(Note 1)

Supply Voltage ( $V_{CC}$ ) -0.5V to +7.0V

DC Input Diode Current (I<sub>IK</sub>)

 $\begin{aligned} &V_{I} = -0.5 \text{V} & -20 \text{ mA} \\ &V_{I} = V_{CC} + 0.5 \text{V} & +20 \text{ mA} \end{aligned}$ 

DC Output Diode Current (I<sub>OK</sub>)

 $\begin{aligned} \text{V}_{\text{O}} &= -0.5 \text{V} & -20 \text{ mA} \\ \text{V}_{\text{O}} &= \text{V}_{\text{CC}} + 0.5 \text{V} & +20 \text{ mA} \end{aligned}$ 

DC V<sub>CC</sub> or Ground Current

per Output Pin  $\pm\,50\,\,\mathrm{mA}$  Storage Temperature  $-65^{\circ}\mathrm{C}$  to +150  $^{\circ}\mathrm{C}$ 

# Recommended Operating Conditions

Supply Voltage (V<sub>CC</sub>) 4.5V to 5.5V

 $\begin{array}{lll} \text{Input Voltage (V_I)} & \text{OV to V}_{\text{CC}} \\ \text{Output Voltage (V}_{\text{O}}) & \text{OV to V}_{\text{CC}} \end{array}$ 

Operating Temperature ( $T_A$ )  $-40^{\circ}C$  to  $+85^{\circ}C$ Minimum Input Edge Rate ( $\Delta V/\Delta t$ ) 125 mV/ns

V<sub>IN</sub> from 0.8V to 2.0V

V<sub>CC</sub> @ 4.5V, 5.5V

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

#### **DC Electrical Characteristics**

| Symbol           | Parameter                      | V <sub>CC</sub> | T <sub>A</sub> = +25°C T <sub>A</sub> = |       | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ | Units                           | Conditions                         |  |
|------------------|--------------------------------|-----------------|-----------------------------------------|-------|-----------------------------------------------|---------------------------------|------------------------------------|--|
| Syllibol         |                                | (V)             | Тур С                                   |       | aranteed Limits                               | Uillis                          |                                    |  |
| V <sub>IH</sub>  | Minimum HIGH                   | 4.5             | 1.5                                     | 2.0   | 2.0                                           | V                               | $V_{OUT} = 0.1V$                   |  |
|                  | Input Voltage                  | 5.5             | 1.5                                     | 2.0   | 2.0                                           | v                               | or V <sub>CC</sub> – 0.1V          |  |
| V <sub>IL</sub>  | Maximum LOW                    | 4.5             | 1.5                                     | 0.8   | 0.8                                           | V                               | $V_{OUT} = 0.1V$                   |  |
|                  | Input Voltage                  | 5.5             | 1.5                                     | 0.8   | 0.8                                           | v                               | or V <sub>CC</sub> - 0.1V          |  |
| V <sub>OH</sub>  | Minimum HIGH                   | 4.5             | 4.49                                    | 4.4   | 4.4                                           | V                               | I <sub>OUT</sub> = -50 μA          |  |
|                  | Output Voltage                 | 5.5             | 5.49                                    | 5.4   | 5.4                                           | v                               | 1 <sub>OUT</sub> = -30 μA          |  |
|                  |                                |                 |                                         |       |                                               |                                 | $V_{IN} = V_{IL}$ or $V_{IH}$      |  |
|                  |                                | 4.5             |                                         | 3.86  | 3.76                                          | V                               | $I_{OH} = -24 \text{ mA}$          |  |
|                  |                                | 5.5             |                                         | 4.86  | 4.76                                          |                                 | $I_{OH} = -24 \text{ mA (Note 2)}$ |  |
| V <sub>OL</sub>  | Maximum LOW                    | 4.5             | 0.001                                   | 0.1   | 0.1                                           | V                               | I <sub>OUT</sub> = 50 μA           |  |
|                  | Output Voltage                 | 5.5             | 0.001                                   | 0.1   | 0.1                                           | v                               | I <sub>OUT</sub> = 50 μA           |  |
|                  |                                |                 |                                         |       |                                               |                                 | $V_{IN} = V_{IL}$ or $V_{IH}$      |  |
|                  |                                | 4.5             |                                         | 0.36  | 0.44                                          | V                               | $I_{OL} = 24 \text{ mA}$           |  |
|                  |                                | 5.5             |                                         | 0.36  | 0.44                                          |                                 | I <sub>OL</sub> = 24 mA (Note 2)   |  |
| l <sub>OZ</sub>  | Maximum 3-STATE                | 5.5             |                                         | ± 0.5 | ± 5.0                                         | μА                              | $V_I = V_{IL}, V_{IH}$             |  |
|                  | Leakage Current                | 5.5             |                                         | ± 0.5 | ± 3.0                                         | μΛ                              | $V_O = V_{CC}$ , GND               |  |
| I <sub>IN</sub>  | Maximum Input                  | 5.5             | 5.5 ±0.1 ±1.0                           | μА    | $V_{L} = V_{CC}$ , GND                        |                                 |                                    |  |
|                  | Leakage Current                | 5.5             |                                         | ± 0.1 | ± 1.0                                         | μΛ                              | VI = VCC, GND                      |  |
| I <sub>CCT</sub> | Maximum I <sub>CC</sub> /Input | 5.5             | 0.6                                     |       | 1.5                                           | mA                              | $V_I = V_{CC} - 2.1V$              |  |
| I <sub>CC</sub>  | Maximum Quiescent              | 5.5             |                                         | 8.0   | 80.0                                          | μА                              | $V_{IN} = V_{CC}$ or GND           |  |
|                  | Supply Current                 | 5.5             |                                         | 0.0   | 80.0                                          | μΑ                              | VIN = VCC OI GIVD                  |  |
| I <sub>OLD</sub> | Minimum Dynamic                | 5.5             |                                         |       | 75                                            | mA                              | V <sub>OLD</sub> = 1.65V Max       |  |
| I <sub>OHD</sub> | Output Current (Note 3)        | 5.5             |                                         |       | -75                                           | mA V <sub>OHD</sub> = 3.85V Min |                                    |  |

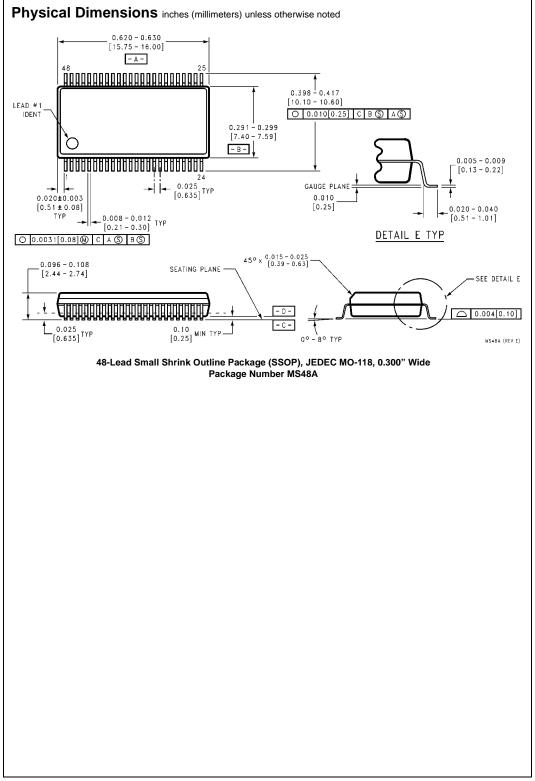
Note 2: All outputs loaded; thresholds associated with output under test.

Note 3: Maximum test duration 2.0 ms; one output loaded at a time.

## **AC Electrical Characteristics**

|                  |                         | V <sub>CC</sub> | $T_A = +25^{\circ}C$ |     |     | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ |     |       |
|------------------|-------------------------|-----------------|----------------------|-----|-----|-----------------------------------------------|-----|-------|
| Symbol           | Symbol Parameter        |                 | $C_L = 50 pF$        |     |     | C <sub>L</sub> = 50 pF                        |     | Units |
|                  |                         | (Note 4)        | Min                  | Тур | Max | Min                                           | Max |       |
| f <sub>MAX</sub> | Maximum Clock Frequency | 5.0             | 71                   |     |     | 67                                            |     | MHz   |
| t <sub>PLH</sub> | Propagation Delay       | 5.0             | 3.1                  | 5.3 | 7.9 | 3.1                                           | 8.4 | ns    |
| t <sub>PHL</sub> | CP to O <sub>n</sub>    | 5.0             | 3.0                  | 5.1 | 7.3 | 3.0                                           | 7.8 | 113   |
| t <sub>PZH</sub> | Output Enable Time      | 5.0             | 2.5                  | 4.7 | 7.4 | 2.5                                           | 7.9 | ns    |
| $t_{PZL}$        |                         | 3.0             | 3.0                  | 5.4 | 8.0 | 2.0                                           | 8.5 | 115   |
| t <sub>PHZ</sub> | Output Disable Time     | 5.0             | 2.1                  | 5.1 | 7.9 | 2.1                                           | 8.2 | ns    |
| t <sub>PLZ</sub> |                         | 3.0             | 2.0                  | 4.8 | 7.4 | 2.0                                           | 7.9 | 115   |

**Note 4:** Voltage Range 5.0 is  $5.0V \pm 0.5V$ .


# **AC Operating Requirements**

| Symbol         | Parameter           | V <sub>CC</sub> (V) | $T_A = +25$ °C $C_L = 50 \text{ pF}$ |     | $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $C_L = 50 \text{ pF}$ | Units |
|----------------|---------------------|---------------------|--------------------------------------|-----|---------------------------------------------------------------------------|-------|
|                |                     | (Note 5)            | Тур                                  | Gua | ranteed Limits                                                            |       |
| t <sub>S</sub> | Setup Time, HIGH or | 5.0                 | 0.7                                  | 3.0 | 2.0                                                                       |       |
|                | LOW, Input to Clock | 5.0                 | 0.7                                  | 3.0 | 3.0                                                                       | ns    |
| t <sub>H</sub> | Hold Time, HIGH or  | F.0                 | 0.0                                  | 1.0 | 4.0                                                                       |       |
|                | LOW, Input to Clock | 5.0                 | 0.8                                  | 1.0 | 1.0                                                                       | ns    |
| t <sub>W</sub> | CP Pulse Width,     | 5.0                 | 1.5                                  | 5.0 | 5.0                                                                       |       |
| Ī              | HIGH or LOW         | 5.0                 | 1.5                                  | 5.0 | 5.0                                                                       | ns    |

Note 5: Voltage Range 5.0 is 5.0V ± 0.5V.

## Capacitance

|                 | Symbol | Parameter                     | Тур | Units | Conditions             |
|-----------------|--------|-------------------------------|-----|-------|------------------------|
| C <sub>IN</sub> |        | Input Capacitance             | 4.5 | pF    | V <sub>CC</sub> = 5.0V |
| $C_{PD}$        |        | Power Dissipation Capacitance | 30  | pF    | $V_{CC} = 5.0V$        |



## Physical Dimensions inches (millimeters) unless otherwise noted (Continued) -12.50±0.10-0.40 TYP -B-9.20 8.10 4.05 0.2 C B A 19 ALL LEAD TIPS PIN #1 IDENT. -0.30 - 0.50 LAND PATTERN RECOMMENDATION 0.1 C SEE DETAIL A $0.90^{+0.15}_{-0.10}$ ALL LEAD TIPS 0.09-0.20 0.10±0.05 0.50 0.17-0.27 ⊕ 0.13M A BS CS 12.00° TOP & BOTTOM DIMENSIONS ARE IN MILLIMETERS R0.16 GAGE PLANE 1.25 NOTES: A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB, REF NOTE 6, DATE 7/93. B. DIMENSIONS ARE IN MILLIMETERS. SEATING PLANE 0.60±0.10 **—** 1.00 C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982. DETAIL A MTD48REVB1 48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD48

which, (a) are intended for surgical implant into the

body, or (b) support or sustain life, and (c) whose failure

to perform when properly used in accordance with

instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the

user.

www.fairchildsemi.com

device or system whose failure to perform can be rea-

sonably expected to cause the failure of the life support

device or system, or to affect its safety or effectiveness.