

FAIRCHILD

SEMICONDUCTOR

September 2001 Revised February 2002 '4ALVC08 Low Voltage Quad 2-Input AND Gate with 3.6V Tolerant Inputs and Outputs

74ALVC08 Low Voltage Quad 2-Input AND Gate with 3.6V Tolerant Inputs and Outputs

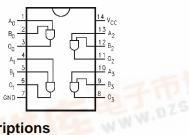
General Description

The ALVC08 contains four 2-input AND gates. This product is designed for low voltage (1.65V to 3.6V) V_{CC} applications with I/O compatibility up to 3.6V

The ALVC08 is fabricated with an advanced CMOS technology to achieve high-speed operation while maintaining low CMOS power dissipation.


Features

- 1.65V to 3.6V V_{CC} supply operation
- 3.6V tolerant inputs and outputs
- t_{PD}
 - 2.9 ns max for 3.0V to 3.6V V_{CC} 3.2 ns max for 2.3V to 2.7V V_{CC} 5.3 ns max for 1.65V to 1.95V V_{CC}
- Power-off high impedance inputs and outputs
- Uses patented Quiet Series™ noise/EMI reduction circuitry
- Latchup conforms to JEDEC JED78
- ESD performance: Human body model > 2000V Machine model > 250V


Ordering Code:

Order Number	Package Number	Package Description				
74ALVC08M	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow					
74ALVC08MTC	74ALVC08MTC MTC14 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wid					
Devices also available	Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.					

Logic Symbol

Connection Diagram

Pin Descriptions

Pin Names	Description
A _n , B _n	Inputs
0 _n	Outputs

Quiet ${\sf Series^{{\rm TM}}}$ is a trademark of Fairchild Semiconductor Corporation.

74ALVC08

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Input Voltage (VI)	-0.5V to 4.6V
Output Voltage (V _O) (Note 2)	–0.5V to V_{CC} +0.5V
DC Input Diode Current (I _{IK})	
V ₁ < 0V	–50 mA
DC Output Diode Current (I _{OK})	
$V_{O} < 0V$	–50 mA
DC Output Source/Sink Current	
(I _{OH} /I _{OL})	±50 mA
DC V_{CC} or GND Current per	
Supply Pin (I _{CC} or GND)	±100 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$

Recommended Operating Conditions (Note 3)

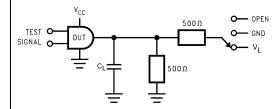
Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: I_O Absolute Maximum Rating must be observed, limited to 4.6V. Note 3: Floating or unused control inputs must be held HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
VIH	HIGH Level Input Voltage		1.65 - 1.95	$0.65 \times V_{CC}$		
			2.3 - 2.7	1.7		V
			2.7 - 3.6	2.0		
VIL	LOW Level Input Voltage		1.65 - 1.95		$0.35 \times V_{CC}$	
			2.3 - 2.7		0.7	V
			2.7 - 3.6		0.8	
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	1.65 - 3.6	V _{CC} - 0.2		
		$I_{OH} = -4 \text{ mA}$	1.65	1.2		
		I _{OH} = -6 mA	2.3	2.0		
		I _{OH} = -12 mA	2.3	1.7		V
			2.7	2.2		
			3.0	2.4		
		I _{OH} = -24 mA	3.0	2		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	1.65 - 3.6		0.2	
		I _{OL} = 4 mA	1.65		0.45	
		I _{OL} = 6 mA	2.3		0.4	V
		I _{OL} = 12 mA	2.3		0.7	v
			2.7		0.4	
		$I_{OL} = 24 \text{ mA}$	3.0		0.55	
l _l	Input Leakage Current	$0 \le V_I \le 3.6V$	3.6		±5.0	μΑ
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6		40	μA
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	3 - 3.6		750	μΑ

AC Electrical Characteristics


	Parameter	$\textbf{T}_{\textbf{A}}=-\textbf{40}^{\circ}\textbf{C}$ to $+\textbf{85}^{\circ}\textbf{C},\textbf{R}_{L}=\textbf{500}\Omega$								
Symbol		C _L = 50 pF			C _L = 30 pF			Units		
		$V_{CC}=3.3V\pm0.3V$		$V_{CC} = 2.7V$		$V_{CC}=\textbf{2.5V}\pm\textbf{0.2V}$		$V_{CC}=1.8V\pm0.15V$		onito
		Min	Max	Min	Max	Min	Max	Min	Max	
t _{PHL} , t _{PLH}	Propagation Delay	1.2	2.9		3.0	1.0	3.2	1.2	5.3	ns

74ALVC08

Capacitance

Symbol	Parameter	Conditions	T _A =	T _A = +25°C		
		Conditions	V _{CC}	Typical	Units	
CIN	Input Capacitance	$V_I = 0V \text{ or } V_{CC}$	3.3	4.5	pF	
C _{PD}	Power Dissipation Capacitance	$f = 10 \text{ MHz}, C_L = 50 \text{ pF}$	3.3	26		
			2.5	25	pF	
			1.8	24		

AC Loading and Waveforms

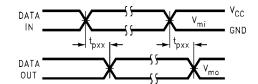
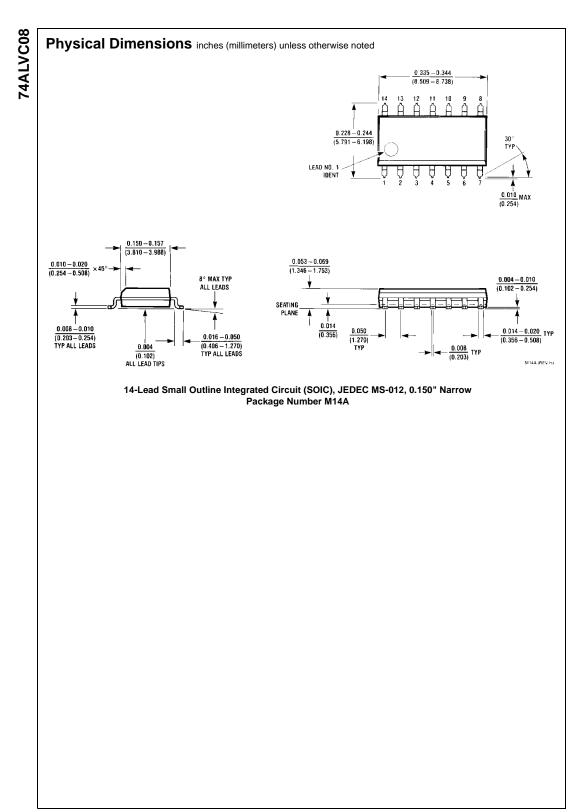
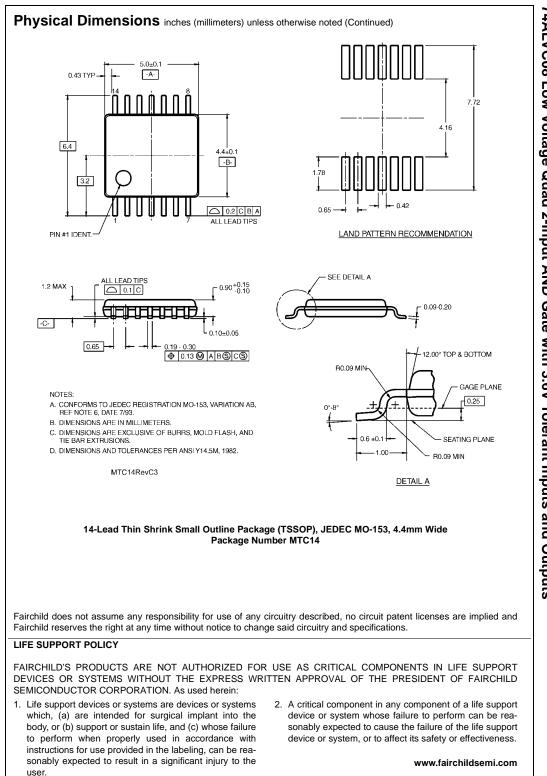


TABLE 1. Values for Figure 1


TEST	SWITCH
t _{PLH} , t _{PHL}	Open


FIGURE 1. AC Test Circuit TABLE 2. Variable Matrix (Input Characteristics: f = 1MHz; t_r = t_f = 2ns; Z₀ = 50 Ω)

Symbol	V _{cc}					
Cymbol	$3.3V \pm 0.3V$	2.7V	$\textbf{2.5V} \pm \textbf{0.2V}$	$\textbf{1.8V} \pm \textbf{0.15V}$		
V _{mi}	1.5V	1.5V	V _{CC} /2	V _{CC} /2		
V _{mo}	1.5V	1.5V	V _{CC} /2	V _{CC} /2		

