

74ALVC16821 Low Voltage 20-Bit D-Type Flip-Flops with 3.6V Tolerant Inputs and Outputs

General Description

Features

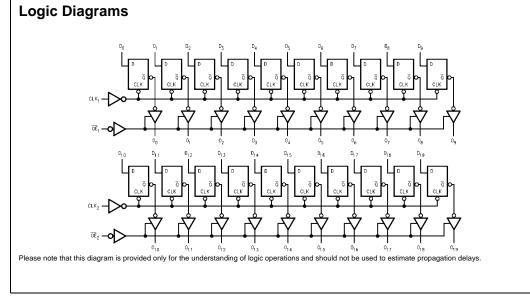
- 1.65V-3.6V V_{CC} supply operation
- 3.6V tolerant inputs and outputs
- t_{PD}
 - 4.0 ns max for 3.0V to 3.6V V_{CC}
 - 4.9 ns max for 2.3V to 2.7V V_{CC}
 - 8.8 ns max for 1.65V to 1.95V V_{CC}
- Power-off high impedance inputs and outputs
- Supports live insertion and withdrawal (Note 1)
- Uses patented noise/EMI reduction circuitry
- Latchup conforms to JEDEC JED78
- ESD performance:
 - Human body model > 2000V
 - Machine model > 200V

Ordering Code:

	Tolerant	Inputs and	dOutput	5
Central Description The ALVC16821 contains twenty non-inverting D-type fip-flops with 3-STATE outputs and is intended for bus ori- ented applications. The 74ALVC16821 is designed for low voltage (1.65V to 3.6V) V _{CC} applications with I/O compatibility up to 3.6V. The 74ALVC16821 is fabricated with an advanced CMOS technology to achieve high speed operation while maintain- ing low CMOS power dissipation.		 Features 1.650-3.6V V_{CC} supply operation 3.6V tolerant inputs and outputs 1.6p 4.0 ns max for 3.0V to 3.6V V_{CC} 4.0 ns max for 2.3V to 2.7V V_{CC} 4.0 ns max for 1.65V to 1.95V V_{CC} 5.0 ns max for 1.65V to 1.95V to 1		
Ordering C	ode:			WWW.02.
Order Number	Package Number			Descriptions
4ALVC16821MTD Device also available in		by appending suffix letter "X"		kage (TSSOP), JEDEC MO-153, 6.1mm Wide
Logic Sym	bol		Pin Descr	iptions
D ₀ D ₁ D ₂ D ₃ D ₄	D ₅ D ₆ D ₇ D ₈ D ₉ D ₁₀ D ₁₁ D ₁₂		Pin Names	Description
	5 5 5 57 58 59 510 511 512 5	013 014 015 016 017 018 019 0E2	OEn	Output Enable Input (Active LOW)
	05 06 07 08 09 010 011 012 4	CLK2 013 014 015 016 017 018 019	CLKn	Clock Input
			D ₀ -D ₁₉	Inputs
			O ₀ -O ₁₉	Outputs
			0 10	
				281-
			-186	IB IT W.

Truth Tables

	Inputs		Outputs
CLK1	OE ₁	D ₀ –D ₉	0 ₀ –0 ₉
Х	Н	Х	Z
~	L	L	L
~	L	н	н
L or H	L	Х	O ₀
	-		_
	Inputs		Outputs
CLK ₂	Inputs OE ₂	D ₁₀ -D ₁₉	Outputs O ₁₀ –O ₁₉
CLK ₂ X		D ₁₀ -D ₁₉ X	
-	0E ₂		0 ₁₀ –0 ₁₉
-	OE₂ H	Х	0 ₁₀ –0 ₁₉ Z


H = HIGH Voltage Level

 $\label{eq:constraint} \begin{array}{l} \mathsf{H} = \mathsf{HIGH} \ \mathsf{Voltage} \ \mathsf{Level} \\ \mathsf{L} = \mathsf{LOW} \ \mathsf{Voltage} \ \mathsf{Level} \\ \mathsf{X} = \mathsf{Immaterial} \ (\mathsf{HIGH} \ \mathsf{or} \ \mathsf{LOW}, \mathsf{inputs} \ \mathsf{may} \ \mathsf{not} \ \mathsf{float}) \\ \mathsf{Z} = \mathsf{High} \ \mathsf{Impedance} \\ \mathsf{O}_0 = \mathsf{Previous} \ \mathsf{O}_0 \ \mathsf{before} \ \mathsf{LOW-to-HIGH} \ \mathsf{transition} \ \mathsf{of} \ \mathsf{Clock} \end{array}$

- = LOW-to-HIGH transition

Functional Description

The 74ALVC16821 contains twenty D-type flip-flops with 3-STATE standard outputs. The device is byte controlled with each byte functioning identically, but independent of each other. Control pins can be shorted together to obtain full 20-bit operation. The following description applies to each byte. The twenty flip-flops will store the state of their individual D-type inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CLK) transition. The 3-STATE standard outputs are controlled by the Output Enable (\overline{OE}_n) input. When \overline{OE}_n is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the flip-flops.

Absolute Maximum Ratings(Note 2)

Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Input Voltage (VI)	-0.5V to 4.6V
Output Voltage (V _O) (Note 3)	–0.5V to V _{CC} +0.5V
DC Input Diode Current (I _{IK})	
V ₁ < 0V	–50 mA
DC Output Diode Current (I _{OK})	
V _O < 0V	–50 mA
DC Output Source/Sink Current	
(I _{OH} /I _{OL})	±50 mA
DC V _{CC} or GND Current per	
Supply Pin (I _{CC} or GND)	±100 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$

Recommended Operating Conditions (Note 4)

Power Supply	
Operating	1.65V to 3.6V
Input Voltage (VI)	0V to V_{CC}
Output Voltage (V _O)	0V to V_{CC}
Free Air Operating Temperature (T _A)	$-40^\circ C$ to $+85^\circ C$
Minimum Input Edge Rate ($\Delta t/\Delta V$)	
$V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$	10 ns/V
Note 2: The Absolute Maximum Ratings are those the safety of the device cannot be guaranteed. The operated at these limits. The parametric values d	e device should not be

the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

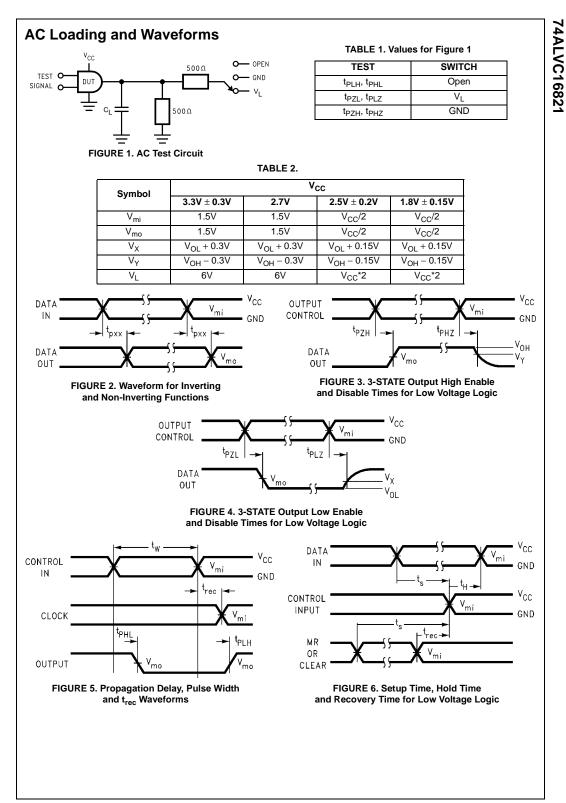
Note 3: I_{O} Absolute Maximum Rating must be observed.

Note 4: Floating or unused control inputs must be held HIGH or LOW.

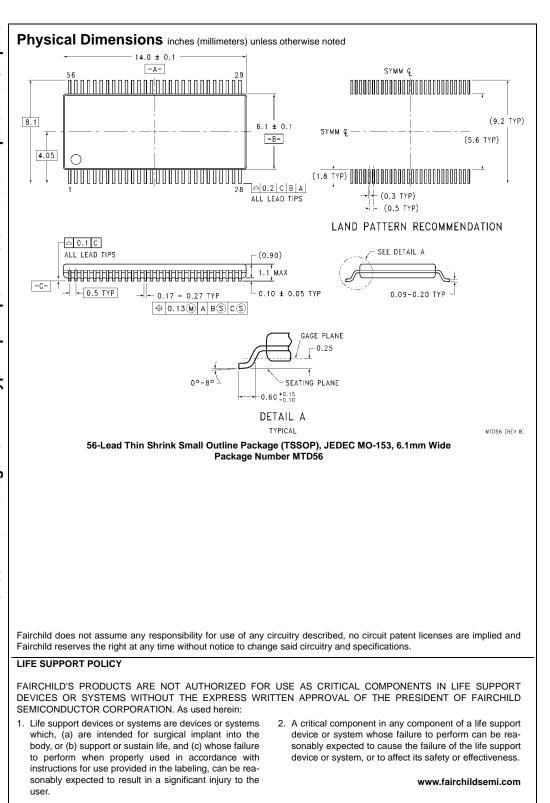
DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Мах	Units
VIH	HIGH Level Input Voltage		1.65 - 1.95	0.65 x V _{CC}		
			2.3 - 2.7	1.7		V
			2.7 - 3.6	2.0		
V _{IL}	LOW Level Input Voltage		1.65 - 1.95		0.35 x V _{CC}	
			2.3 - 2.7		0.7	V
			2.7 - 3.6		0.8	
V _{OH}	HIGH Level Output Voltage	I _{OH} = 100 μA	1.65 - 3.6	V _{CC} - 0.2		
		$I_{OH} = -4 \text{ mA}$	1.65	1.2		
		$I_{OH} = -6 \text{ mA}$	2.3	2.0		
		I _{OH} = -12 mA	2.3	1.7		V
			2.7	2.2		
			3.0	2.4		
		I _{OH} = -24 mA	3.0	2		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	1.65 - 3.6		0.2	
		I _{OL} = 4 mA	1.65		0.45	
		$I_{OL} = 6 \text{ mA}$	2.3		0.4	V
		I _{OL} = 12 mA	2.3		0.7	v
			2.7		0.4	
		I _{OL} = 24 mA	3.0		0.55	
l _l	Input Leakage Current	$0 \le V_I \le 3.6V$	3.6		±5.0	μA
I _{OZ}	3-STATE Output Leakage	$0 \le V_O \le 3.6V$	3.6		±10	μA
I _{CC}	Quiescent Supply Current	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6		40	μA
ΔI_{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	3 - 3.6		750	μA

74ALVC16821


~
2
œ
Ö
~
C
5
\Box
∢
4
N

AC Electrical Characteristics


	Parameter	$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $R_L = 500\Omega$								
Symbol		C _L = 50 pF				C _L = 30 pF				Units
		$V_{CC}=3.3V\pm0.3V$		$V_{CC} = 2.7V$		$V_{CC}=2.5V\pm0.2V$		$V_{CC}=1.8V\pm0.15V$		Units
		Min	Max	Min	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	250		200		200		100		MHz
t _{PHL} , t _{PLH}	Propagation Delay	1.3	4.0	1.5	4.9	1.0	4.4	1.5	8.8	
	CLK to On	1.5	4.0	1.5	4.9	1.0	4.4	1.5	0.0	ns
t _{PZL} , t _{PZH}	Output Enable Time	1.3	4.2	1.5	5.3	1.0	4.7	1.5	9.8	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	1.3	4.2	1.5	4.7	1.0	4.2	1.5	7.6	ns
t _W	Pulse Width	1.5		1.5		1.5		4.0		ns
t _S	Setup Time	1.5		1.5		1.5		2.5		ns
t _H	Hold Time	1.0		1.0		1.0		1.0		ns

Capacitance

Symbol	Parameter		Conditions	T _A = -	Units	
Symbol	Faidheter		Conditions	V _{CC}		Typical
CIN	Input Capacitance		$V_I = 0V \text{ or } V_{CC}$	3.3	6	pF
C _{OUT}	Output Capacitance		$V_I = 0V \text{ or } V_{CC}$	3.3	7	pF
C _{PD}	Power Dissipation Capacitance	Outputs Enabled	f = 10 MHz, C _L = 50 pF	3.3	20	ρF
				2.5	20	рі

