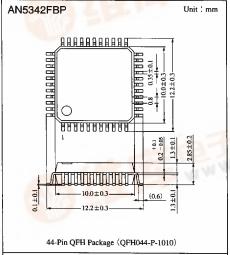
AN5342FBP, AN5342K


Color TV Horizontal Aperture Correction IC

Overview

The AN5342FBP or AN5342K is a horizontal aperture correction IC for color TV. It provides a Y signal waveform with a preshoot or overshoot feature to emphasize horizontal outlines.

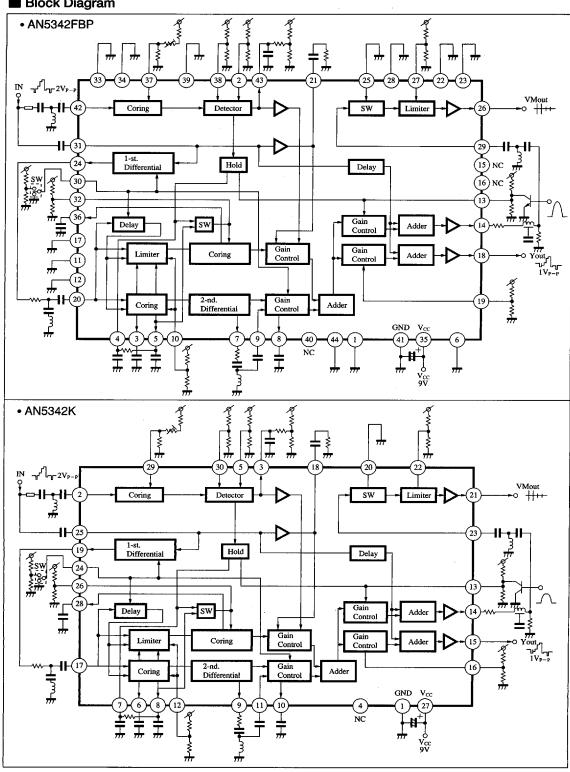
Features

- Including a circuit to add a preshoot or overshoot to a Y signal waveform
- · Dynamic sharpness control
- Built-in noise reduction circuit for Y signal
- VM signal output

■ Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit	
Supply voltage	V _{cc}	11	V	
Supply current	I _{cc}	90	mA	
Power dissipation Note 2) PD		990	mW	
Operating ambient temperature Note 1)	Topr	-20 to +70	r	
Storage temperature Note 1) T _{stg}		-55 to +150	°C	

Note 1) Ta=25°C except operating ambient temperature and storage temperature.


Note 2) For only AN5342FBP, allowable power dissipation of the package at Ta = 70°C.

■ Recommended Operating Range (Ta=25°C)

Parameter	Symbol	Range
Operating supply voltage range	V _{cc}	8.1V to 10.8V

■ 6932852 0014268 Tlo ■

■ Block Diagram

6932852 0014269 957 1 **Panasonic**

■ Pin Descriptions• AN5342FBP

Pin No.	Pin name	Pin No.	Pin name
1	GND (lead frame)	23	GND (lead frame)
2	DSC large signal gain control	24	Pre-correction first differential output
3	Differential signal bias 1	25	Test Pin
4	Noise reduction bias	26	VM output
5	Differential signal bias 2	27	VM limiter control
6	GND (lead frame)	28	GND (lead frame)
7	Post-correction First Differential output	29	VM input
8	Apert. corr. Bias	30	Delay time switching
9	Second differential input	31	Y input
10	Apert. corr./detail level control	32	Detail coring control
11	GND (lead frame)	33	GND (lead frame)
12	GND (lead frame)	34	GND (lead frame)
13	VM peaking control	35	V _{cc}
14	Y output for VM	36	Coring Bias
15	NC	37	DSC bias
_16	NC	38	DSC small signal gain control
.17	GND (lead frame)	39	GND (lead frame)
18	Y output	40	NC
19	Sharpness control	41	GND (main)
20	Pre-correction first differential input	42	DSC input
21	Brightness detection	43	DSC Detection output
22	GND (lead frame)	44	GND (lead frame)

• AN5342K

Pin No.	Pin name	Pin No.	Pin name
1	GND	16	Sharpness control
2	DSC input	17	Pre-correction first differential input
_3	DSC detection output	18	Brightness Detection
4	NC	19	Pre-correction first differential output
5	DSC large signal Gain control	20	Test
6	Differential signal Bias 1	21	VM output
7	Noise reduction bias	22	VM limiter control
8	Differential signal Bias 2	23	VM input
9	Post-correction first differential output	24	Delay time switching
10	Aperture correction bias	25	Y input
11	Second differential input	26	Detail coring control
12	Aperture correction/detail separation level control	27	V _{cc}
13	VM peaking control	28	Coring bias
14	Y output for VM	29	DSC bias
15	Y output	30	DSC small signal gain control

■ Electrical Characteristics $(Ta=25\pm2\%)$ (AN5342FBP)

Parameter	Symbol	Condition	min	typ	max	Unit
Circuit current	I ₃₅		44	55	66	mA
Chedit current	I ₁₉		0.4	0.7	1.2	mA
	V ₄₂₋₄₁		2.3	2.7	3.1	V
	V ₂₋₄₁		4.4	4.8	5.2	V
	V_{10-41}		2.7	3.1	3.5	v
	V_{3-41}		2.6	3.2	3.8	V
	V ₅₋₄₁		2.6	3.2	3.8	v
	V_{7-41}		1.8	2.4	3.0	V
	V ₈₋₄₁		2.9	3.5	4.1	V
	V ₉₋₄₁		2.3	2.7	3.1	v
	V_{13-41}		2.7	3.1	3.5	V
Circuit voltage	V_{14-41}		3.1	3.7	4.3	V
	V_{18-41}		3.1	3.7	4.3	V
	V_{20-41}		4.4	4.9	5.3	V
	V_{21-41}		3.6	4.0	4.4	V
	V_{24-41}		5.5	6.1	6.7	V
	V ₂₆₋₄₁		7.5	8.1	8.6	V
	V_{27-41}		2.2	2.6	3.0	V
	V ₂₉₋₄₁		1.9	2.3	2.7	v
	V_{31-41}		4.1	4.5	4.9	v
	V_{32-41}		5.0	5.4	5.8	V
	V_{36-41}		5.0	5.6	6.2	V
	V ₃₈₋₄₁		3.9	4.3	4.7	V
Y signal voltage gain (1)	ΔV_{18-41}	ΔV_{18} at $\Delta V_{31} = 1 V$	420	500	580	mV
Y signal voltage gain (2)	ΔV_{14-41}	ΔV_{14} at $\Delta V_{31} = 1V$	420	500	580	. mV
Y signal voltage gain (3)	ΔV_{21-41}	ΔV_{21} at $\Delta V_{31} = 1V$	0.95	1.1	1.25	V
Delay Section						
Y signal delay time	t _{DL} (Y)	Y signal input, output deley time at DL=100ns	188	235	282	ns
Y signal frequency characteristics (1)	e _{f (Y1)}	f=10MHz/f=1MHz at DL=100ns	-6	-4		dB
Y signal frequency characteristics (2)	e _{f (Y2)}	f=10MHz/f=1MHz at DL=65ns	-6	-3	_	dB
Primary differential signal delay time	t_{DL}	DL=100ns	80	100	120	ns
Primary differential signal delay time varying amount	⊿t _{DL}	Difference at delay time change over	28	35	42	ns
Aperture Correction Section						
Aperture correction signal maximum gain	$A_{\upsilon (L)}$	f=2MHz Output at Vin=0.5V _{P-P}	0.7	0.9	1.3	V_{P-P}
Aperture correction signal coring characteristics (1)	e _{CO (Li)}	f=4MHz, Vin=75mV _{P-P} Output amplitude at V ₁₀ =1V	100	130	160	mV _{P-P}
Aperture correction signal coring characteristics (2)	e _{CO (L₂)}	f=4MHz, Vin=75mV _{P-P} Output amplitude at V ₁₀ =5V	_	25	50	mV _{P-P}
Aperture correction signal secondary differential gain ratio	⊿ A _{v′ (L)}	f=4Hz/f=2MHz at Vin=0.5V _{P-P}	-6	-4	-2	dB
Detail Correction Section			'			
Detail correction signal maximum gain	$A_{v(S)}$	f=4MHz Input output ratio at Vin=50mV _{P-P}	16	18	21	dB

■ Electrical Characteristics (cont.) $(Ta=25\pm2\%)$ (AN5342FBP)

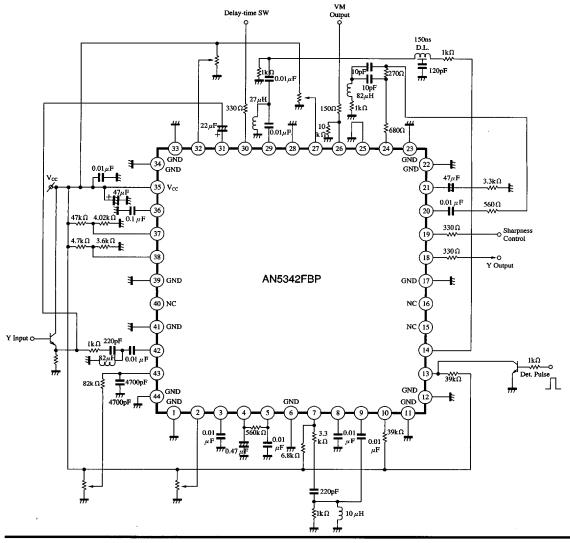
Parameter	Symbol	Condition	min	typ	max	Unit
<u> </u>		f=4MHz		-712	Пил	Cint
Detail correction signal gain control (typ.)	$\Delta A_{\nu (S)}$	Vin= 50mV_{P-P} Output ratio at V ₄₃ = $5 \text{V} \rightarrow 3 \text{V}$	-8.5	-6	-3.5	dB
Detail correction signal coring characteristics	e _{CO} (s)	f=4MHz Vin=50mV _{P-P} Output ratio at V_{32} =5V \rightarrow 3V	-7	-4	-2	dB
Detail correction signal limiter characteristics	⊿e _{LT} (s)	f=4MHz Vin=100mV _{P-P} Output ratio at V ₁₀ =5V→3V	_	-5	-3	dB
Detail correction signal sharpness control	$\Delta A_{v^{'}(s)}$	f=4MHz Vin=50mV _{P-P} Output ratio at V_{19} =5V \rightarrow 3V		-7	-4	dB
DSC Section						
DSC output voltage (1)	V _{LIM} (DSC)	f=4MHz Output DC at Vin=27mV _{P-P}	2	3	4	v
DSC output voltage (2)	V _{s (DSC)}	f=4MHz Output DC at Vin=150mV _{P-P}	7.5	8.8	_	V
DSC output voltage (3)	V _{L (DSC)}	f=4MHz Output DC at Vin=840mV _{P-P}		0.2	1.0	v
Noise reduction characteristics	V_{NR}	f=4MHz Pin② bias voltage at Vin=150mV _{P-P}		0.2	1.0	v
VM Section						
VM signal maximum gain	A _v (VM)	f=4MHz Output amplitude at Vin=100mV _{P-P}	0.6	0.9	1.4	V_{P-P}
VM signal limiter characteristics	$\varDelta A_{\upsilon \; (VM)}$	f=4MHz Vin=100mV _{P-P} Output ratio at V ₂₇ =5V→3V	2.5	4.0	5.5	dB
VM signal SW operation characteristics	e _{off (VM)}	f=4MHz Vin=100mV _{P-P} Output ratio at V ₂₅ =0 \rightarrow 2V	_	-40	-25	dB
VM signal output DC level	V ₂₆₋₄₁	Difference in case between , V25=0 and V25=2V	-90	0	+90	mV
Reference Value						
Y signal delay time variation amount	⊿t _{DL (Y)}	Delay time difference in delay time changeover		(35)		ns
Primary differential signal pulse width (1)	∆t _(DL1)	Output amplitude at 125ns rise pulse inputs (DL=100ns)	_	(190)	_	ns
Primary differential signal pulse width (2)	⊿t _(DL2)	Output amplitude at 125ns rise pulse inputs (DL=65ns)	_	(225)		ns
Primary differential signal output amplitude (1)	$A_{\nu (DL_1)}$	Output amplitude at 125ns rise pulse inputs (DL=100ns)	_	(0.9)		V _{P-P}
Primary differential signal output amplitude (2)	$A_{v (DL_2)}$	Output amplitude at 125ns rise pulse inputs (DL=65ns)	_	(0.8)		V _{P-P}
Aperture correction signal gain difference at delay change-over	△A _v (L)	f=2MHz, Vin= $0.5V_{P-P}$ Output ratio at $V_{30}=0\rightarrow 3V$		(-3)	_	dB

Note) The characteristics value in parentheses is not a guaranteed value, but reference one on design.

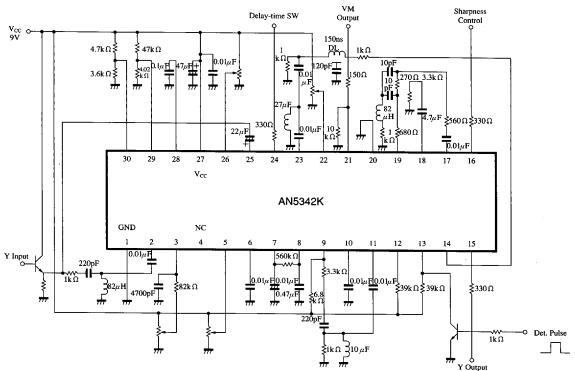
■ Electrical Characteristics $(T_a=25\pm2\%)$ (AN5342K)


Parameter	Symbol	Condition	min	typ	max	Unit
Circuit current	I ₂₇		44	55	66	mA
Circuit current	I ₁₆		0.4	0.7	1.2	mA
	V_{2-1}		2.3	2.7	3.1	v
	V ₅₋₁		4.4	4.8	5.2	V
	V ₁₂₋₁		2.7	3.1	3.5	V
	V_{6-1}		2.6	3.2	3.8	V
	V_{8-1}		2.6	3.2	3.8	V
	V ₉₋₁		1.8	2.4	3.0	V
	V_{10-1}		2.9	3.5	4.1	V
	V ₁₁₋₁		2.3	2.7	3.1	V
	V ₁₃₋₁		2.7	3.1	3.5	V
6 1. 1. 1.	V_{14-1}	_	3.1	3.7	4.3	v
Circuit voltage	V_{15-1}		3.1	3.7	4.3	V
	V_{17-1}	-	4.4	4.9	5.3	V
	V_{18-1}	-	3.6	4.0	4.4	V
	V ₁₉₋₁	1	5.5	6.1	6.7	v
	V ₂₁₋₁	4	7.5	8.1	8.6	v
	V ₂₂₋₁	_	2.2	2.6	3.0	V
	V ₂₃₋₁		1.9	2.3	2.7	V
	V ₂₅₋₁		4.1	4.5	4.9	V
	V ₂₆₋₁	•	5.0	5.4	5.8	V
	V ₂₈₋₁		5.0	5.6	6.2	V
Y signal voltage gain (1)	V_{30-1} ΔV_{15-1}	ΔV_{15} at $\Delta V_{25} = 1V$	3.9	4.3	4.7	V
Y signal voltage gain (1)			420 420	500	580	mV
Y signal voltage gain (3)	ΔV_{14-1} ΔV_{18-1}	$\Delta V_{14} \text{ at } \Delta V_{25} = 1V$ $\Delta V_{18} \text{ at } \Delta V_{25} = 1V$	0.95	1.1	1.25	mV V
Delay Section	△ ¥ 18~-1	2 v 18 at 2 v 25 - 1 v	0.93	1.1	1.23	
Y signal delay time	t _{DL} (Y)	Y signal input, output deley time at DL=100ns	188	235	282	ns
Y signal frequency characteristics (1)	e _{f (Y1)}	f=10MHz/f=1MHz at DL=100ns	-6	-4		dB
Y signal frequency characteristics (2)	e _f (Y ₂)	f=10MHz/f=1MHz at DL=65ns	-6	-3		dB
Primary differential signal delay time	t _{DL}	DL=100ns	80	100	120	ns
Primary differential signal delay time varying amount	⊿t _{DL}	Difference in delay time change-over	28	35	42	ns
Aperture Correction Section						
Aperture correction signal maximum gain	A _{υ (L)}	f=2MHz Output at Vin=0.5V _{P-P}	0.7	0.9	1.3	V _{P-P}
Aperture correction signal coring characteristics (1)	e _{CO (L₁)}	f=4MHz, Vin=75mV _{P-P} Output amplitude at $V_{12}=1V$	100	130	160	mV _{P-P}
Aperture correction signal coring characteristics (2)	e _{CO (L2)}	f=4MHz, Vin=75mV _{P-P} Output amplitude at V_{12} =5V		25	50	mV_{P-P}
Aperture correction signal secondary differential gain ratio	Δ A _{ν'} (L)	f=4MHz/f=2MHz at Vin=0.5V _{P-P}	-6	-4	-2	₫B
Detail Correction Section		·····				
Detail correction signal maximum gain	$A_{\upsilon\left(S\right)}$	Input output ratio at Vin=50mV _{P-P}	16	18	21	dB
Detail correction signal gain control (typ.)	$\Delta A_{v(S)}$	Output ratio at V ₃ =5V→3V	-8.5	-6	-3.5	dB

■ Electrical Characteristics (cont.) $(Ta=25\pm2\%)$ (AN5342K)


Parameter	Symbol	Condition	min	typ	max	Unit
Detail correction signal coring characteristics	e _{CO (S)}	f=4MHz, Vin=50mV _{P-P} Output ratio at V_{26} =5V \rightarrow 3V	-7	-4	-2	dB
Detail correction signal limiter characteristics	⊿e _{LT} (S)	f=4MHz, Vin= 100 mV _{P-P} Output ratio at V ₁₂ = 5 V \rightarrow 3V		-5	-3	dB
Detail correction signal sharpness control	$\Delta A_{\nu'(S)}$	f=4MHz, Vin=50mV _{P-P} Output ratio at $V_{16}=5V\rightarrow3V$	_	-7	-4	dB
DSC Section						
DSC output voltage (1)	V _{LIM (DSC)}	f=4MHz Output DC at Vin=27mV _{P-P}	2	3	4	v
DSC output voltage (2)	V _{S (DSC)}	f=4MHz, Output DC at Vin=150mV _{P-P}	7.5	8.8		V
DSC output voltage (3)	V _{L (DSC)}	f=4MHz, Output DC at Vin=840mV _{P-P}		0.2	1.0	v
Noise reduction characteristics	V_{NR}	f=4MHz, Pin⊕ bias voltage at Vin=150mV _{P-P}		0.2	1.0	v
VM Section						
VM signal maximum gain	$A_{\nu (VM)}$	f=4MHz, Output amplitude at Vin=100mV _{P-P}	0.6	0.9	1.4	V _{P-P}
VM signal limiter characteristics	ΔA _{ν (VM)}	f=4MHz, Vin=100mV _{P-P} Output ratio at $V_{22}=0\rightarrow 2V$	2.5	4.0	5.5	dB
VM signal SW operation characteristics	e _{off} (v _M)	f=4MHz, Vin=100mV _{P-P} Output ratio at $V_{20}=5V\rightarrow3V$		-40	-25	dB
VM signal output DC level	⊿ V _{21−1}	V _{CC} =9V, Pin② output voltage difference at V ₂₀ =0V/2V	-90	0	+90	mV
Reference Value						
Y signal delay time variation amount	⊿t _{DL} (Y)	Difference of delay time in delay time change-over		(35)	_	ns
Primary differential signal pulse width (1)	⊿t _(DL1)	Pulse width in 125ns pulse input (DL=100ns)		(190)		ns
Primary differential signal pulse width (2)	$\Delta t_{(DL_2)}$	Pulse width in 125ns pulse input (DL=65ns)		(225)		ns
Primary differential signal output amplitude (1)	$A_{v (DL_1)}$	Pulse width in 125ns pulse input (DL=100ns)		(0.9)		V_{P-P}
Primary differential signal output amplitude (2)	$A_{v (DL_2)}$	Pulse width in 125ns pulse input (DL=65ns)		(0.8)		V _{P-P}
Profile correction signal gain difference at delay change-over	$\Delta A_{v(L)}$	f=2Mz, Vin=0.5V _{P-P} Output ratio at $V_{24}=0\rightarrow 3V$	_	(-3)		dB

Note) The characteristics value in parentheses is not a guaranteed value, but reference one on design.


ICs for

■ Application Circuit of AN5342FBP

■ Application Circuit

ICs for