

# FAIRCHILD

SEMICONDUCTOR

April 1988 Revised July 1999 '4F243 Quad Bus Transceiver with 3-STATE Outputs

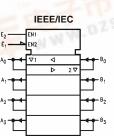
# 74F243 Quad Bus Transceiver with 3-STATE Outputs

#### **General Description**

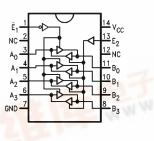
The 74F243 is a quad bus transmitter/receiver designed for 4-line asynchronous 2-way data communications between data busses. 2-Way asynchronous data bus communication

**Features** 

Input clamp diodes limit high-speed termination effects


### **Ordering Code:**

 Order Code
 Package Number
 Package Description


 74F243SC
 M14A
 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow

 Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.
 Image: Content of the ordering code.

#### Logic Symbol



## Connection Diagram



#### **Truth Table**

|       | Inp | uts            | Inputs/Outputs |                |  |  |
|-------|-----|----------------|----------------|----------------|--|--|
| W WE1 |     | E <sub>2</sub> | A <sub>n</sub> | B <sub>n</sub> |  |  |
|       | L   | L              | Input          | B = A          |  |  |
|       | L   | Н              | N/A            | N/A            |  |  |
|       | н   | L              | Z              | Z              |  |  |
|       | н   | Н              | A = B          | Input          |  |  |

H = HIGH Voltage Level L = LOW Voltage Level

```
vel Z = High Impedance
vel N/A = Not Allowed
```

## Unit Loading/Fan Out

| Pin<br>Names                    | Description                | U.L.<br>HIGH/LOW  | Input I <sub>IH</sub> /I <sub>IL</sub><br>Output I <sub>OH</sub> /I <sub>OL</sub> |  |
|---------------------------------|----------------------------|-------------------|-----------------------------------------------------------------------------------|--|
| Ē <sub>1</sub>                  | Enable Input (Active LOW)  | 1.0/1.67          | 20 µA/–1 mA                                                                       |  |
| E <sub>2</sub>                  | Enable Input (Active HIGH) | 1.0/1.67          | 20 µA/–1 mA                                                                       |  |
| A <sub>n</sub> , B <sub>n</sub> | Inputs                     | 3.5/2.67          | 70 μA/–1.6 mA                                                                     |  |
|                                 | Outputs                    | 600/106.6<br>(80) | –12 mA/64 mA<br>(48 mA)                                                           |  |



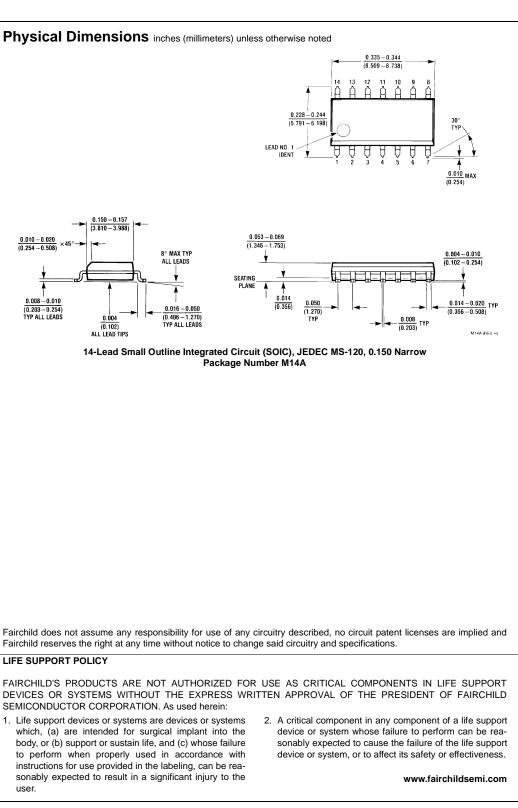
# Absolute Maximum Ratings(Note 1)

| Storage Temperature                         | $-65^{\circ}C$ to $+150^{\circ}C$    |
|---------------------------------------------|--------------------------------------|
| Ambient Temperature under Bias              | $-55^{\circ}C$ to $+125^{\circ}C$    |
| Junction Temperature under Bias             | $-55^{\circ}C$ to $+150^{\circ}C$    |
| V <sub>CC</sub> Pin Potential to Ground Pin | -0.5V to +7.0V                       |
| Input Voltage (Note 2)                      | -0.5V to +7.0V                       |
| Input Current (Note 2)                      | -30 mA to +5.0 mA                    |
| Voltage Applied to Output                   |                                      |
| in HIGH State (with $V_{CC} = 0V$ )         |                                      |
| Standard Output                             | -0.5V to V <sub>CC</sub>             |
| 3-STATE Output                              | -0.5V to +5.5V                       |
| Current Applied to Output                   |                                      |
| in LOW State (Max)                          | twice the rated I <sub>OL</sub> (mA) |
| ESD Last Passing Voltage (Min)              | 4000V                                |

# Recommended Operating Conditions

| Free Air Ambient Temperature | $0^{\circ}C$ to $+70^{\circ}C$ |
|------------------------------|--------------------------------|
| Supply Voltage               | +4.5V to +5.5V                 |

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.


Note 2: Either voltage limit or current limit is sufficient to protect inputs.

# **DC Electrical Characteristics**

| Symbol                             | Parameter                             |                                            | Min        | Тур | Max  | Units | V <sub>cc</sub> | Conditions                                                                 |
|------------------------------------|---------------------------------------|--------------------------------------------|------------|-----|------|-------|-----------------|----------------------------------------------------------------------------|
| V <sub>IH</sub>                    | Input HIGH Voltage                    |                                            | 2.0        |     |      | V     |                 | Recognized as a HIGH Signal                                                |
| V <sub>IL</sub>                    | Input LOW Voltage                     |                                            |            |     | 0.8  | V     |                 | Recognized as a LOW Signal                                                 |
| V <sub>CD</sub>                    | Input Clamp Diode Voltage             |                                            |            |     | -1.2 | V     | Min             | I <sub>IN</sub> = -18 mA                                                   |
| V <sub>OH</sub>                    | Output HIGH<br>Voltage                | 10% V <sub>CC</sub><br>10% V <sub>CC</sub> | 2.4<br>2.0 |     |      | v     | Min             | $I_{OH} = -3 \text{ mA } (A_n, B_n)$ $I_{OH} = -15 \text{ mA } (A_n, B_n)$ |
|                                    |                                       | 5% V <sub>CC</sub>                         | 2.7        |     |      |       |                 | $I_{OH} = -3 \text{ mA} (A_n, B_n)$                                        |
| V <sub>OL</sub>                    | Output LOW<br>Voltage                 | 10% V <sub>CC</sub>                        |            |     | 0.55 | V     | Min             | $I_{OL} = 64 \text{ mA} (A_n, B_n)$                                        |
| IIH                                | Input HIGH<br>Current                 |                                            |            |     | 5.0  | μΑ    | Max             | V <sub>IN</sub> = 2.7V                                                     |
| I <sub>BVI</sub>                   | Input HIGH Current<br>Breakdown Test  |                                            |            |     | 7.0  | μΑ    | Max             | $V_{IN} = 7.0V \ (\overline{E}_1, E_2)$                                    |
| I <sub>BVIT</sub>                  | Input HIGH Current<br>Breakdown (I/O) |                                            |            |     | 0.5  | mA    | Max             | V <sub>IN</sub> = 5.5V (A <sub>n</sub> , B <sub>n</sub> )                  |
| ICEX                               | Output HIGH<br>Leakage Current        |                                            |            |     | 50   | μΑ    | Max             | V <sub>OUT</sub> = V <sub>CC</sub>                                         |
| V <sub>ID</sub>                    | Input Leakage<br>Test                 |                                            | 4.75       |     |      | V     | 0.0             | $I_{ID} = 1.9 \ \mu A$<br>All Other Pins Grounded                          |
| I <sub>OD</sub>                    | Output Leakage<br>Circuit Current     |                                            |            |     | 3.75 | μΑ    | 0.0             | V <sub>IOD</sub> = 150 mV<br>All Other Pins Grounded                       |
| IIL                                | Input LOW Current                     |                                            |            |     | -1.0 | mA    | Max             | $V_{IN} = 0.5V (E_1, E_2)$                                                 |
| I <sub>IH</sub> + I <sub>OZH</sub> | Output Leakage Current                |                                            |            |     | 70   | μΑ    | Max             | $V_{OUT} = 2.7V (A_n, B_n)$                                                |
| I <sub>IL</sub> + I <sub>OZL</sub> | Output Leakage Current                |                                            |            |     | -1.6 | mA    | Max             | $V_{OUT} = 0.5V (A_n, B_n)$                                                |
| I <sub>OS</sub>                    | Output Short-Circuit Current          |                                            | -100       |     | -225 | mA    | Max             | $V_{OUT} = 0V (A_n, B_n)$                                                  |
| I <sub>CCH</sub>                   | Power Supply Current                  |                                            |            | 64  | 80   | mA    | Max             | V <sub>O</sub> = HIGH                                                      |
| I <sub>CCL</sub>                   | Power Supply Current                  |                                            |            | 64  | 90   | mA    | Max             | $V_0 = LOW$                                                                |
| I <sub>CCZ</sub>                   | Power Supply Current                  |                                            |            | 71  | 90   | mA    | Max             | V <sub>O</sub> = HIGH Z                                                    |

| AC EI            | ectrical Characteris                                                | tics                                                            |     |     |                                                                                          |      |                                                                                       |     |       |
|------------------|---------------------------------------------------------------------|-----------------------------------------------------------------|-----|-----|------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------|-----|-------|
| Symbol           | Parameter                                                           | $T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$ |     |     | $T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = 5.0V$ $C_{L} = 50 \text{ pF}$ |      | $T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = 5.0V$ $C_{L} = 50 \text{ pF}$ |     | Units |
|                  |                                                                     | Min                                                             | Тур | Max | Min                                                                                      | Мах  | Min                                                                                   | Max |       |
| t <sub>PLH</sub> | Propagation Delay                                                   | 2.5                                                             | 4.0 | 5.2 | 2.0                                                                                      | 6.5  | 2.0                                                                                   | 6.2 | 20    |
| t <sub>PHL</sub> | A <sub>n</sub> to B <sub>n</sub> , B <sub>n</sub> to A <sub>n</sub> | 2.5                                                             | 4.0 | 5.2 | 2.0                                                                                      | 8.5  | 2.0                                                                                   | 6.5 | ns    |
| t <sub>PZH</sub> | Output Enable Time                                                  | 2.0                                                             | 4.3 | 5.7 | 2.0                                                                                      | 8.0  | 2.0                                                                                   | 6.7 |       |
| t <sub>PZL</sub> | $\overline{E}_1$ to $B_n$ , $E_2$ to $A_n$                          | 2.0                                                             | 5.8 | 7.5 | 2.0                                                                                      | 10.5 | 2.0                                                                                   | 8.5 | ns    |
| t <sub>PHZ</sub> | Output Disable Time                                                 | 2.0                                                             | 4.5 | 6.0 | 1.5                                                                                      | 7.5  | 1.5                                                                                   | 7.0 |       |
| t <sub>PLZ</sub> | $\overline{E}_1$ to $B_n$ , $E_2$ to $A_n$                          | 2.0                                                             | 4.5 | 6.0 | 2.0                                                                                      | 8.5  | 2.0                                                                                   | 7.0 |       |

74F243

