

SEMICONDUCTOR

DM74ALS373 Octal D-Type 3-STATE Transparent Latch

General Description

These 8-bit registers feature totem-pole 3-STATE outputs designed specifically for driving highly-capacitive or relatively low-impedance loads. The high-impedance state and increased high-logic-level drive provide these registers with the capability of being connected directly to and driving the bus lines in a bus-organized system without need for interface or pull-up components. They are particularly attractive for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

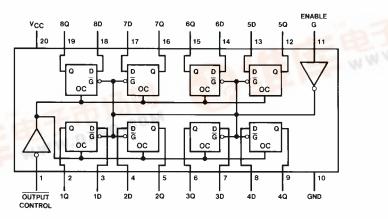
The eight latches of the DM74ALS373 are transparent Dtype latches. While the enable (G) is HIGH the Q outputs will follow the data (D) inputs. When the enable is taken LOW the output will be latched at the level of the data that was set up.

A buffered output control input can be used to place the eight outputs in either a normal logic state (HIGH or LOW logic levels) or a high-impedance state. In the high-impedance state the outputs neither load nor drive the bus lines significantly.

The output control does not affect the internal operation of the latches. That is, the old data can be retained or new data can be entered even while the outputs are OFF.

April 1984 **Revised February 2000**

M74ALS373 Octal D-Type 3-STATE Transparent Latch


Features

- Switching specifications at 50 pF
- Switching specifications guaranteed over full temperature and $V_{\mbox{\scriptsize CC}}$ range
- Advanced oxide-isolated, ion-implanted Schottky TTL process
- Functionally and pin for pin compatible with LS TTL counterpart
- Improved AC performance over DM74LS373 at approximately half the power
- 3-STATE buffer-type outputs drive bus lines directly

Ordering Code:

Order Number	Package Number	Package Description
DM74ALS373WM	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
DM74ALS373SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
DM74ALS373N	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Devices also available	in Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.

Connection Diagram

DM74ALS373

Function Table Logic Diagram Output Enable D Output OUTPUT CONTROL <u>-</u>•> Control G Q L Н Н Н н L L L 10 _____ n х L L Q_0 Н Х Х Ζ 20 _4 30 <u>-</u>7 40 -8 Ē 50 -13 ō 60 -14 ō 70 17 õ 80 -18 ENABLE G

2 10

6 30

9 ----- 40

12 50

15 60

<u>16</u> 70

<u>19</u> 80

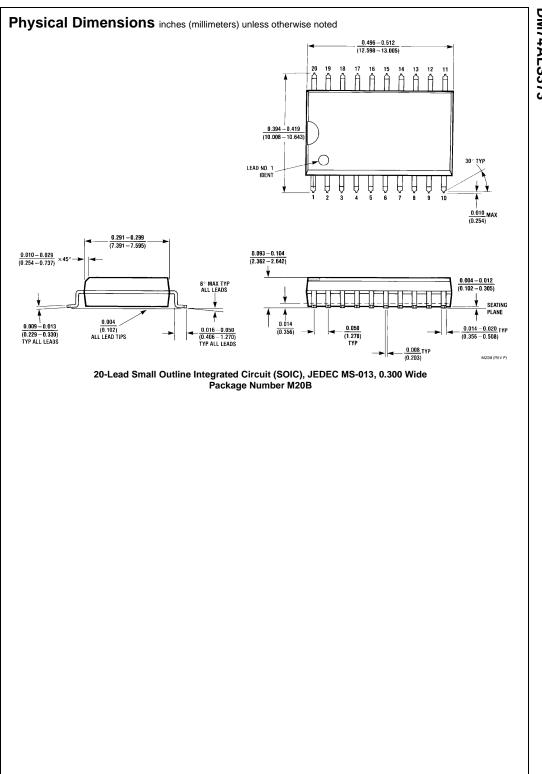
Absolute Maximum Ratings(Note 1)

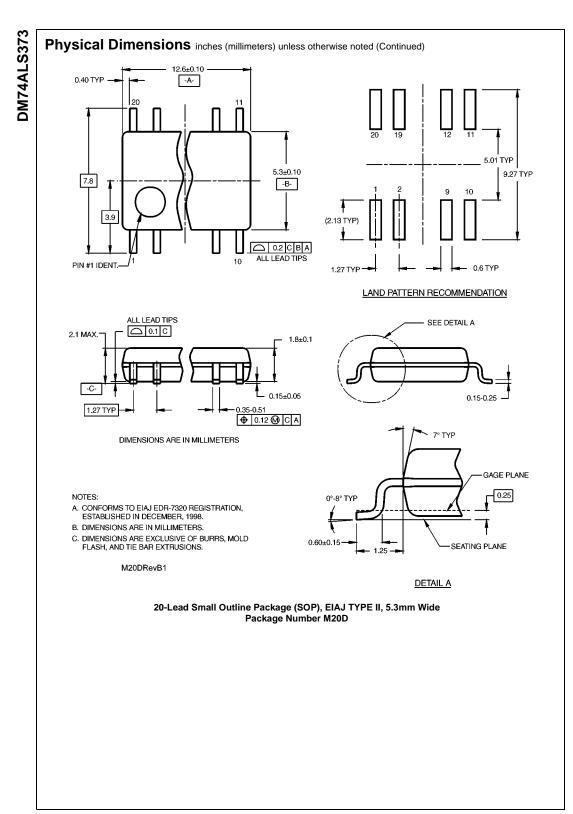
Supply Voltage	7V
Input Voltage	7V
Voltage Applied to Disabled Output	5.5V
Operating Free Air Temperature Range	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	$-65^{\circ}C$ to $+150^{\circ}C$
Typical θ _{JA}	
N Package	57.0°C/W
M Package	76.0°C/W

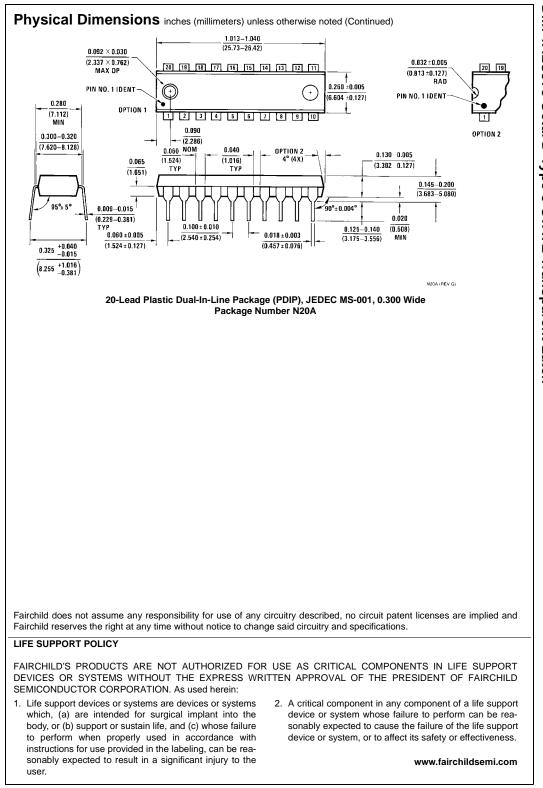
Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

	ool Paran	neter	Min No		n	Max		Units	
V _{CC}	Supply Voltage		4.5 5			5.5		V	
V _{IH}	HIGH Level Input Volt	age	2					V	
V _{IL}	LOW Level Input Volta	age				0.8		V	
I _{OH}	HIGH Level Output Co	urrent				-2.6		mA	
IOL	LOW Level Output Cu	rrent				24		mA	
t _W	Width of Enable Pulse	, HIGH or LOW	10					ns	
t _{SU}	Data Setup Time (Not	e 2)	10↓					ns	
t _H	Data Hold Time (Note	2)	7↓					ns	
T _A	Free Air Operating Te	mperature	0			70		°C	
	(\downarrow) arrow indicates the negative edge	1	eference.			-		-	
Symbol	Parameter	Conditions		Min	Тур	Max	Units		
		ture range. All typical values are measured at $V_{CC} = 5V$		1		Max	Unite		
VIK	Input Clamp Voltage	V _{CC} = 4.5V, I _I = -18 m	A				-1.5	V	
V _{OH}									
° OH	HIGH Level	$V_{CC} = 4.5V$		-2.6 mA	2.4	3.3		V	
VОН	HIGH Level Output Voltage	$V_{CC} = 4.5V$ $V_{CC} = 4.5V \text{ to } 5.5V$		-2.6 mA		3.3		V	
∙он		00		-2.6 mA	2.4 V _{CC} – 2	3.3		-	
V _{OL}		$V_{CC} = 4.5V \text{ to } 5.5V$ $I_{OH} = -400 \ \mu\text{A}$	I _{OH} =					V	
V _{OL}	Output Voltage LOW Level Output Voltage	$V_{CC} = 4.5V \text{ to } 5.5V$ $I_{OH} = -400 \ \mu\text{A}$ $V_{CC} = 4.5V$	I _{OH} =	24 mA		3.3 0.35	0.5	V	
V _{OL}	Output Voltage LOW Level Output Voltage Input Current at Maximum	$V_{CC} = 4.5V \text{ to } 5.5V$ $I_{OH} = -400 \ \mu\text{A}$ $V_{CC} = 4.5V$ $V_{CC} = 5.5V$	I _{OH} =					V V V	
V _{OL}	Output Voltage LOW Level Output Voltage Input Current at Maximum Input Voltage	$\label{eq:VCC} \begin{array}{l} \hline V_{CC} = 4.5V \mbox{ to } 5.5V \\ \hline I_{OH} = -400 \mu A \\ \hline V_{CC} = 4.5V \\ \hline V_{CC} = 5.5V \\ \hline V_{IH} = 7V \end{array}$	I _{OH} =				0.5	V V V mA	
V _{OL}	Output Voltage LOW Level Output Voltage Input Current at Maximum Input Voltage HIGH Level Input Current	$\begin{split} & \nabla_{CC} = 4.5 \text{V to } 5.5 \text{V} \\ & I_{OH} = -400 \ \mu\text{A} \\ & \nabla_{CC} = 4.5 \text{V} \\ & \nabla_{CC} = 5.5 \text{V} \\ & \nabla_{CC} = 5.5 \text{V} \\ & \nabla_{H} = 7 \text{V} \\ & \nabla_{CC} = 5.5 \text{V}, \ \nabla_{H} = 2.7 \text{V} \end{split}$	I _{OH} =				0.5	V V V mA μA	
V _{OL} I IH	Output Voltage LOW Level Output Voltage Input Current at Maximum Input Voltage HIGH Level Input Current LOW Level Input Current	$\begin{split} & \nabla_{CC} = 4.5 \text{V to } 5.5 \text{V} \\ & I_{OH} = -400 \ \mu\text{A} \\ & \nabla_{CC} = 4.5 \text{V} \\ & \nabla_{CC} = 5.5 \text{V} \\ & \nabla_{H} = 7 \text{V} \\ & \nabla_{CC} = 5.5 \text{V}, \ \nabla_{IH} = 2.7 \text{V} \\ & \nabla_{CC} = 5.5 \text{V}, \ \nabla_{IH} = 0.4 \text{V} \end{split}$	I _{OH} =	24 mA	V _{CC} - 2		0.5 0.1 20 -0.1	V V V mA mA	
V _{OL} I IH IL O	Output Voltage LOW Level Output Voltage Input Current at Maximum Input Voltage HIGH Level Input Current LOW Level Input Current Output Drive Current	$\begin{array}{c} \hline V_{CC} = 4.5V \mbox{ to } 5.5V \\ \hline I_{OH} = -400 \ \mu A \\ \hline V_{CC} = 4.5V \\ \hline V_{CC} = 5.5V \\ \hline V_{IH} = 7V \\ \hline V_{CC} = 5.5V, \ V_{IH} = 2.7V \\ \hline V_{CC} = 5.5V, \ V_{IL} = 0.4V \\ \hline V_{CC} = 5.5V \end{array}$	I _{OH} =				0.5	V V V mA μA	
V _{OL} I IH IL O	Output Voltage LOW Level Output Voltage Input Current at Maximum Input Voltage HIGH Level Input Current LOW Level Input Current Output Drive Current OFF-State Output Current	$\label{eq:constraint} \begin{array}{l} \hline V_{CC} = 4.5V \mbox{ to } 5.5V \\ \hline I_{OH} = -400 \ \mu A \\ \hline V_{CC} = 4.5V \\ \hline V_{CC} = 5.5V \\ \hline V_{H} = 7V \\ \hline V_{CC} = 5.5V, \ V_{IH} = 2.7V \\ \hline V_{CC} = 5.5V, \ V_{IL} = 0.4V \\ \hline V_{CC} = 5.5V \\ \hline V_{CC} = 5.5V \end{array}$	I _{OH} =	24 mA	V _{CC} - 2		0.5 0.1 20 -0.1	V V V mA mA	
V _{OL} I III III O OZH	Output Voltage LOW Level Output Voltage Input Current at Maximum Input Voltage HIGH Level Input Current LOW Level Input Current Output Drive Current OFF-State Output Current HIGH Level Voltage Applied	$\begin{array}{c} \hline V_{CC} = 4.5V \mbox{ to } 5.5V \\ \hline I_{OH} = -400 \ \mu A \\ \hline V_{CC} = 4.5V \\ \hline V_{CC} = 5.5V \\ \hline V_{H} = 7V \\ \hline V_{CC} = 5.5V \ V_{IH} = 2.7V \\ \hline V_{CC} = 5.5V \ V_{IL} = 0.4V \\ \hline V_{CC} = 5.5V \\ \hline V_{CC} = 5.7V \\ \hline V_{CC$	I _{OH} =	24 mA	V _{CC} - 2		0.5 0.1 20 -0.1 -112	V V V mA μA mA mA	
V _{OL} I III III O OZH	Output Voltage LOW Level Output Voltage Input Current at Maximum Input Voltage HIGH Level Input Current LOW Level Input Current Output Drive Current OFF-State Output Current HIGH Level Voltage Applied OFF-State Output Current	$\label{eq:constraint} \begin{array}{c} \hline V_{CC} = 4.5V \mbox{ to } 5.5V \\ \hline I_{OH} = -400 \ \mu A \\ \hline V_{CC} = 4.5V \\ \hline V_{CC} = 5.5V \\ \hline V_{H} = 7V \\ \hline V_{CC} = 5.5V, \ V_{IH} = 2.7V \\ \hline V_{CC} = 5.5V, \ V_{IL} = 0.4V \\ \hline V_{CC} = 5.5V \\ \hline \end{array}$	I _{OH} =	24 mA	V _{CC} - 2		0.5 0.1 20 -0.1 -112	V V V mA μA mA mA	
V _{OL} 1 1	Output Voltage LOW Level Output Voltage Input Current at Maximum Input Voltage HIGH Level Input Current LOW Level Input Current OUtput Drive Current OFF-State Output Current HIGH Level Voltage Applied OFF-State Output Current LOW Level Voltage Applied	$\label{eq:constraint} \begin{array}{l} \hline V_{CC} = 4.5V \mbox{ to } 5.5V \\ \hline I_{OH} = -400 \ \mu A \\ \hline V_{CC} = 4.5V \\ \hline V_{CC} = 5.5V \\ \hline V_{H} = 7V \\ \hline V_{CC} = 5.5V \ V_{IH} = 2.7V \\ \hline V_{CC} = 5.5V \ V_{IL} = 0.4V \\ \hline V_{CC} = 5.5V \\ \hline V_{CC} = 0.4V \\ \hline \end{array}$	I _{OH} =	24 mA 2.25V	V _{CC} - 2	0.35	0.5 0.1 20 -0.1 -112 20 -20	V V V MA μΑ μΑ μΑ	
V _{OL}	Output Voltage LOW Level Output Voltage Input Current at Maximum Input Voltage HIGH Level Input Current LOW Level Input Current Output Drive Current OFF-State Output Current HIGH Level Voltage Applied OFF-State Output Current	$\label{eq:constraint} \begin{array}{c} \hline V_{CC} = 4.5V \mbox{ to } 5.5V \\ \hline I_{OH} = -400 \ \mu A \\ \hline V_{CC} = 4.5V \\ \hline V_{CC} = 5.5V \\ \hline V_{H} = 7V \\ \hline V_{CC} = 5.5V, \ V_{IH} = 2.7V \\ \hline V_{CC} = 5.5V, \ V_{IL} = 0.4V \\ \hline V_{CC} = 5.5V \\ \hline \end{array}$	I _{OH} =	24 mA	V _{CC} - 2		0.5 0.1 20 -0.1 -112 20	V V V mA mA mA μA	


17


27


mΑ

Outputs Disabled

over recommended operating free air temperature range							
Symbol	Parameter	Conditions	From	То	Min	Мах	L
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output	$V_{CC} = 4.5V \text{ to } 5.5V$ $R_L = 500\Omega$ $C_L = 50 \text{ pF}$	Data	Any Q	2	12	
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output		Data	Any Q	4	16	
t _{PLH}	Propagation Delay Time LOW-to-HIGH Level Output		Enable	Any Q	6	22	
t _{PHL}	Propagation Delay Time HIGH-to-LOW Level Output		Enable	Any Q	7	23	
t _{PZH}	Output Enable Time to HIGH Level Output		Output Control	Any Q	6	18	
t _{PZL}	Output Enable Time to LOW Level Output	-	Output Control	Any Q	5	20	
t _{PHZ}	Output Disable Time from HIGH Level Output		Output Control	Any Q	2	10	
t _{PLZ}	Output Disable Time from LOW Level Output		Output Control	Any Q	2	12	

